Assessment of Land Cover Changes and an Exploration of the Sustainability Key Factors at Al-Ahsa Oasis in Saudi Arabia
Abstract
1. Introduction
- Al-Ahsa has emerged as the world’s largest oasis thanks to its affordable water resources. The crop cultivation occupies 56,000 ha and grows more than 2.5 million date palm trees [2].
- The city surrounds the agricultural area. In 1950, the area of the city occupied 360 ha; it expanded to 7650 ha in 1990 and to 28,700 ha in 2014. Plans expect the area to account for 41,600 ha in 2030 (1450 H).
2. Materials and Methods
2.1. Data Description
2.2. Analysis Methods
- a.
- Visualization: Visualization of the study area for 2000 and 2020 enabled an initial overview of land cover conditions.
- b.
- Processing and enhancement: Multiple visualization layers were merged to integrate the spectral bands in the visible range, and appropriate wavelengths were selected to highlight vegetation cover variations.
- c.
- Atmospheric correction: Radiometric and atmospheric corrections were applied to minimize the effects of gases, dust, and aerosols, ensuring geometrically and radiometrically accurate images.
- d.
- Study area extraction: The corrected imagery was clipped to the Al-Ahsa Oasis boundaries to define the area of analysis.
- e.
- Classification and interpretation: Land cover classification was performed using representative training samples for each category.
- f.
- Change detection and analysis: Land cover changes were analyzed using statistical and spatial techniques, including image differencing and change detection mapping. Vegetation dynamics were evaluated through the Normalized Difference Vegetation Index (NDVI), a widely used indicator for assessing vegetation health, desertification, and land degradation processes [41].
3. Results
3.1. Measuring of LCC Level
3.2. Investigation of LCC Occurring Sustainable Key Factors
4. Discussion
4.1. Land Cover Changes
4.2. Analysis of the Sustainable Key Factors
- a
- Social variables
- b
- Economic variables
- c
- Natural events and agricultural practices problems
5. Conclusions
- Vegetation cover has decreased by −0.41% greater than −0.21%.
- The desert (sand) area has been decreased by −0.72%, while it has increased by 0.05%.
- The city area has been increased by 0.94% and 4.51%.
- Bare land (soil) area has been increased by 0.27%, while it has decreased by −0.65%.
- The social variables of farmers have no effect on the occurrence of the LCC event, except that the aged farms effect increases significantly, by 2.086, the probability of the LCC occurring (prob. = 0.008).
- Economic variables, such as modern methods of irrigation, have a significant negative effect on the probability of an LCC event occurring by −1.317 (0.004).
- Happened events (Natural events and agricultural practices), the utilization of modern technology, and absence of scavenger manpower decrease the probability of LCC occurring by −5.247 (0.016) and −3.378 (0.016), respectively, whereas the small holding size and the climate change increase the probability of LCC occurring by 5.296 (0.001) and 5.483 (0.026), respectively. The urban sprawl has a non-significant negative effect.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Municipal and Rural Affairs. Al-Ahsa City Profile; Pennard, H., Fondaro, S., La Mantia, C., Eds.; Future Saudi Cities Programme City Profiles Series; Ministry of Municipal and Rural Affairs: Al-Ahsa, Saudi Arabia, 2019. Available online: https://saudiarabia.un.org/sites/default/files/2020-03/AL-HASA.pdf (accessed on 25 April 2024).
- SAGIA. Eastern Region Economic Report, 1434/1435, Review of Regional Planning in Saudi Arabia—The Case of the Eastern Region; FSCP Dammam City Review Report; FSCP National Spatial Strategy Review; UN-Habitat: Nairobi, Kenya, 2014.
- Almadini, A.M.; Hassaballa, A.A. Depicting changes in land surface cover at Al-Hassa oasis of Saudi Arabia using remote sensing and GIS techniques. PLoS ONE 2019, 14, e0221115. [Google Scholar] [CrossRef] [PubMed]
- Mbarek, H.; Hajji, Z. Urban sprawl on agricultural areas and its environmental effects in Al-Ahsa Governorate using remote sensing technology and geographic information systems. Res. J. Lit. Coll. Univ. Munufia 2019, 30, 2213–2240. [Google Scholar] [CrossRef]
- Turner II, B.L.; Meyfroidt, P.; Kuemmerle, T.; Daniel Müller, D.; Chowdhury, R.R. Framing the search for a theory of land use. J. Land Use Sci. 2020, 15, 489–508. [Google Scholar] [CrossRef]
- Nedd, R.; Anandhi, A. Land Use Changes in the Southeastern United States: Quantitative Changes, Drivers, and Expected Environmental Impacts. Land 2022, 11, 2246. [Google Scholar] [CrossRef]
- Turner, B.L.; Skole, D.; Sanderson, S.; Fischer, G.; Fresco, L.; Leemans, R. Land-Use and Land-Cover Change: Science/Research Plan. 1995. Available online: https://asu.elsevierpure.com/en/publications/land-use-and-land-cover-change-scienceresearch-plan-2 (accessed on 6 October 2025).
- Lambing, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Alam, A.; Bhat, M.S.; Maheen, M. Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal 2020, 85, 1529–1543. [Google Scholar] [CrossRef]
- Abdullah, A.Y.M.; Masrur, A.; Adnan, M.S.G.; Baky, M.A.A.; Hassan, Q.K.; Dewan, A. Spatio-temporal patterns of land use/land cover change in the heterogeneous coastal region of Bangladesh between 1990 and 2017. Remote Sens. 2019, 11, 790. [Google Scholar] [CrossRef]
- Tahir, Z.; Haseeb, M.; Mahmood, S.A.; Batool, S.; Abdallah-Al-Wadud, M.; Ullah, S.; Tariq, A. Predicting land use and land cover changes for sustainable land management using CA-Markov modelling and GIS techniques. Sci. Rep. 2025, 15, 3271. [Google Scholar] [CrossRef]
- Briassoulis, H. Factors influencing land-use and land-cover change. Land Cover Land Use GlobChange. EOLSS 2009, 1, 126–146. [Google Scholar]
- Thuiller, W.; Guéguen, M.; Georges, D.; Bonet, R.; Chalmandrier, L.; Garraud, L.; Renaud, J.; Roquet, C.; Van Es, J.; Zimmermann, N.E.; et al. Are different facets of plant diversity well protected against climate and land cover changes? A test study in the French Alps. Ecography 2014, 37, 1254–1266. [Google Scholar] [CrossRef]
- Pauli, H.; Gottfried, M.; Dullinger, S.; Abdaladze, O.; Akhalkatsi, M.; Alonso, J.L.B.; Coldea, G.; Dick, J.; Erschbamer, B.; Calzado, R.F.; et al. Recent plant diversity changes on Europe’s Mountain summits. Science 2012, 336, 353–355. [Google Scholar] [CrossRef]
- Dwomoh, F.K.; Auch, R.F.; Brown, J.F.; Tollerud, H.J. Trends in tree cover change over three decades related to interannual climate variability and wildfire in California. Environ. Res. Lett. 2023, 18, 024007. [Google Scholar] [CrossRef]
- Tan, K.C.; Lim, H.S.; MatJafri, M.Z.; Abdullah, K. Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environ. Earth Sci. 2010, 60, 1509–1521. [Google Scholar] [CrossRef]
- Silva, L.A.; Sano, E.E.; Parreiras, T.C.; Bolfe, É.L.; Marcos, M.; Filgueiras, R.; Souza, C.M.; Silva, C.R.; Leite, M.E. Climate Change Effects on Land Use and Land Cover Suitability in the Southern Brazilian Semiarid Region. Land 2024, 13, 2008. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Fikadu, G.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.T. The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case study of Bahir Dar, Ethiopia. Landsc. Urban Plan. 2012, 106, 149–157. [Google Scholar] [CrossRef]
- Tran, D.X.; Pla, F.; Latorre-Carmona, P.; Myint, S.W.; Caetano, M.; Kieu, H.V. Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J. Photogramm. Remote Sens. 2017, 124, 119–132. [Google Scholar] [CrossRef]
- Parcerisas, L.; Marull, J.; Pino, J.; Tello, E.; Coll, F.; Basnou, C. Land use changes, landscape ecology and their socioeconomic driving forces in the Spanish Mediterranean coast (El Maresme County, 1850–2005). Environ. Sci. Policy 2012, 23, 120–132. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; Wickham, J.; Stehman, S.; et al. Conterminous United States land cover change patterns 2001–2016 from the 2016 national land cover database. ISPRS J. Photogramm. Remote Sens. 2020, 162, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Fernández, J.; Ruiz-Benito, P.; Zavala, M.A. Recent land cover changes in Spain across biogeographical regions and protection levels: Implications for conservation policies. Land Use Policy 2015, 44, 62–75. [Google Scholar] [CrossRef]
- Hietela, E.; Waldhardtb, R.; Otteb, A. Linking socio-economic factors, environment and land cover in the German Highlands, 1945–1999. J. Environ. Manag. 2005, 75, 133–143. [Google Scholar] [CrossRef]
- Simon, O.; Lyimo, J.; Yamungu, N. Exploring the impact of socioeconomic factors on land use and cover changes in Dar es Salaam, Tanzania: A remote sensing and GIS approach. Arab. J. Geosci. 2024, 17, 99. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Change 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Melendez-Pastor, I.; Hernández, E.I.; Navarro-Pedreño, J.; Gómez, I. Socioeconomic factors influencing land cover changes in rural areas: The case of the Sierra de Albarracín (Spain). Appl. Geogr. 2014, 52, 34–45. [Google Scholar] [CrossRef]
- Handavu, F.; Chirwa, P.W.C.; Syampungani, S. Socio-economic factors influencing land-use and land-cover changes in the miombo woodlands of the Copperbelt province in Zambia. For. Policy Econ. 2019, 100, 75–94. [Google Scholar] [CrossRef]
- Lai, Y.; Huang, G.; Chen, S.; Lin, S.; Lin, W.; Lyu, J. Land Use Dynamics and Optimization from 2000 to 2020 in East Guangdong Province, China. Sustainability 2021, 13, 3473. [Google Scholar] [CrossRef]
- Yono, A.; Mokua, R.A.; Dube, T. Remote sensing of land cover change dynamics in mountainous catchments and semi-arid environments: A review. Geocarto Int. 2025, 40, 2476602. [Google Scholar] [CrossRef]
- US-EPA: United states Environmental Protection Agency. Land Cover: What Are the Trends in Land Cover and Their Effects on Human Health and the Environment? Available online: https://www.epa.gov/report-environment/land-cover (accessed on 8 April 2025).
- Chen, Y.; Nakatsugawa, M. Analysis of Changes in Land Use/Land Cover and Hydrological Processes Caused by Earthquakes in the Atsuma River Basin in Japan. Sustainability 2021, 13, 13041. [Google Scholar] [CrossRef]
- Xiao, Y.; Mignolet, C.; Mari, J.F.; Benoît, M. Modeling the spatial distribution of crop sequences at a large regional scale using land-cover survey data: A case from France. Comput. Electron. Agric. 2014, 102, 51–63. [Google Scholar] [CrossRef]
- Saudi Irrigation Organisation (SIO)—Kingdom of Saudi Arabia. Available online: http://www.sio.gov.sa/ (accessed on 10 December 2021).
- Burrough, P.A. Principles of Geographic Information Systems for Hand Resources Assessment; Clarendon: Oxford, UK, 1986. [Google Scholar]
- Maguire, D.J. An overview and definition of GIS. Geogr. Inf. Syst. Princ. Appl. 1991, 1, 9–20. [Google Scholar]
- McHarg, I.L. Design Sixth Nature; Doubleday: New York, NY, USA, 1969. [Google Scholar]
- Frank, L.A.; Craven, J.D. Imaging results from Dynamics Explorer 1. Rev. Geophys. 1988, 26, 249–283. [Google Scholar] [CrossRef]
- Mylopoulos, J.; Borgida, A.; Jarke, M.; Koubarakis, M. Telos: Representing knowledge about information systems. ACM Trans. Inf. Syst. (TOIS) 1990, 8, 325–362. [Google Scholar] [CrossRef]
- Burrough, P.A. GIS and geostatistics: Essential partners for spatial analysis. Environ. Ecol. Stat. 2001, 8, 361–377. [Google Scholar] [CrossRef]
- Jassim, H.; Nisreen, A.H. A the role of remote sensing and geographic information systems techniques in detecting and analyzing the change in vegetation cover in Najaf Governorate using the index (NDVI and SAVI) indicators. Al-Adab. Mag. 2021, 2, 411–436. [Google Scholar] [CrossRef]
- Nick, T.G.; Cambell, K.M. Topics in Biostatistics. In Methods in Molecular Biology; Ambrosius, W.T., Ed.; Humana Press Inc.: Totowa, NJ, USA, 2007; Volume 404, Available online: https://www.researchgate.net/profile/Douglas-Mahoney/publication/5402488_Linear_Mixed_Effects_Models/links/57e560bf08ae9227da964db4/Linear-Mixed-Effects-Models.pdf#page=278 (accessed on 24 February 2025).
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Nagelkerke, N.J. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- AlWatan Newspaper. Ministerial Committee to Prevent Encroachments on Al-Ahsa Oasis. AlWatan Newspaper, 14 March 2019. Available online: https://www.alwatan.com.sa/article/401982 (accessed on 17 April 2024).



| Classes | Soil | City | Vegetation | Sand | Changes (2020) | Total (2020) |
|---|---|---|---|---|---|---|
| Not classified * | 0 | 0 | 0 | 0 | 0 | 30 |
| Sand | 25.471 | 0 | 0.001 | 71.138 | 25.471 | 96.61 |
| Vegetation cover | 3.442 | 02.943 | 28.679 | 01.318 | 7.703 | 36.383 |
| City | 16.517 | 13.907 | 01.350 | 03.558 | 21.425 | 35.331 |
| Soil | 209.506 | 12.878 | 09.596 | 36.853 | 59.327 | 268.83 |
| Total for the (2000) | 254.936 | 29.728 | 39.626 | 112.87 | 0 | 0 |
| Changes for (2000) | 45.429 | 15.821 | 10.947 | 41.729 | 0 | 0 |
| Difference between 2000 and 2020 | 13.898 | 5.604 | −3.243 | −16.26 | 0 | 0 |
| B | S.E. | Wald | df | Sig. | Exp(B) | 95% C.I. for EXP(B) | ||
|---|---|---|---|---|---|---|---|---|
| Lower | Upper | |||||||
| Age | 23.33 | 4 | 0 | 0 | 0 | 0 | ||
| Age (1) | 23.759 | 17,907 | 0 | 1 | 0.999 | 2.08 * | 0 | . |
| Age (2) | 4.475 | 0.984 | 20.68 | 1 | 0 | 87.78 | 12.76 | 604.03 |
| Age (3) | 2.716 | 0.777 | 12.20 | 1 | 0 | 15.12 | 3.29 | 69.4 |
| Age (4) | 2.086 | 0.784 | 7.07 | 1 | 0.008 | 8.05 | 1.73 | 37.45 |
| Social status | 0 | 0 | 3.64 | 3 | 0.303 | 0 | 0 | 0 |
| Soc. status (1) | −2.701 | 1.616 | 2.79 | 1 | 0.095 | 0.07 | 0.003 | 1.59 |
| Soc. status (2) | −1.631 | 0.989 | 2.72 | 1 | 0.099 | 0.2 | 0.028 | 1.36 |
| Soc. status (3) | 19.754 | 40,193 | 0 | 1 | 1 | 379 * | 0 | . |
| Edu. level | 0 | 0 | 3.84 | 6 | 0.699 | 0 | 0 | 0 |
| Edu. level (1) | −1.297 | 1.002 | 1.68 | 1 | 0.195 | 0.27 | 0.038 | 1.95 |
| Edu. level (2) | −0.621 | 0.984 | 0.4 | 1 | 0.528 | 0.54 | 0.078 | 3.7 |
| Edu. level (3) | −0.492 | 1.188 | 0.17 | 1 | 0.679 | 0.61 | 0.06 | 6.28 |
| Edu. level (4) | −0.11 | 1.357 | 0.01 | 1 | 0.935 | 0.9 | 0.063 | 12.8 |
| Edu. level (5) | −1.138 | 1.219 | 0.87 | 1 | 0.351 | 0.32 | 0.029 | 3.49 |
| Edu. level (6) | 0.325 | 1.04 | 0.1 | 1 | 0.755 | 1.38 | 0.18 | 10.63 |
| Nb. Fmly mbr | 0 | 0 | 0.06 | 2 | 0.971 | 0 | 0 | 0 |
| Nb. Fmly mbr (1) | −0.129 | 0.786 | 0.03 | 1 | 0.87 | 0.88 | 0.188 | 4.10 |
| Nb Fmly mbr (2) | 0.059 | 0.691 | 0.01 | 1 | 0.932 | 1.06 | 0.274 | 4.11 |
| B | S.E. | Wald | df | Sig. | Exp(B) | 95% C.I. for EXP(B) | ||
|---|---|---|---|---|---|---|---|---|
| Lower | Upper | |||||||
| Holding size | 0 | 0 | 3.60 | 1 | 0.058 | 1 | 1 | 1 |
| Methods irrig | 10.6 | 3 | 0.014 | 0 | 0 | 0 | ||
| Methods irrig (1) | −0.183 | 0.397 | 0.21 | 1 | 0.645 | 0.833 | 0.382 | 1.814 |
| Methods irrig (2) | −1.307 | 0.454 | 8.28 | 1 | 0.004 | 0.271 | 0.111 | 0.659 |
| Methods irrig (3) | 0.556 | 0.606 | 0.84 | 1 | 0.359 | 1.743 | 0.532 | 5.713 |
| Rented Land | 0 | 0 | 4.03 | 1 | 0.045 | 1 | 1 | 1 |
| Agr. machinery | 0 | 0 | 1.55 | 1 | 0.213 | 1 | 1 | 1 |
| B | S.E. | Wald | df | Sig. | Exp(B) | 95% C.I. for EXP(B) | ||
|---|---|---|---|---|---|---|---|---|
| Lower | Upper | |||||||
| Modern tech. (1) | −5.247 | 2.182 | 5.78 | 1 | 0.016 | 0.005 | 0 | 0.379 |
| Climate change (1) | 5.483 | 2.468 | 4.94 | 1 | 0.026 | 240.6 | 1.909 | 30,332 |
| Urban sprawl (1) | −0.395 | 1.766 | 0.05 | 1 | 0.823 | 0.673 | 0.021 | 21.453 |
| Avail. Scav. Manp (1) | −3.378 | 1.398 | 5.84 | 1 | 0.016 | 0.034 | 0.002 | 0.529 |
| Small holdings | 5.296 | 1.543 | 11.8 | 1 | 0.001 | 199.5 | 9.699 | 4103.3 |
| High spoilage (1) | 1.648 | 2.198 | 0.56 | 1 | 0.453 | 5.195 | 0.07 | 385.9 |
| Lack productivity (1) | −2.656 | 1.896 | 1.96 | 1 | 0.161 | 0.07 | 0.002 | 2.888 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkhaldi, G.F.; Mosbah, E.B.; Emam, A.A. Assessment of Land Cover Changes and an Exploration of the Sustainability Key Factors at Al-Ahsa Oasis in Saudi Arabia. Sustainability 2025, 17, 10821. https://doi.org/10.3390/su172310821
Alkhaldi GF, Mosbah EB, Emam AA. Assessment of Land Cover Changes and an Exploration of the Sustainability Key Factors at Al-Ahsa Oasis in Saudi Arabia. Sustainability. 2025; 17(23):10821. https://doi.org/10.3390/su172310821
Chicago/Turabian StyleAlkhaldi, Ghada F., Ezzeddine B. Mosbah, and Abda A. Emam. 2025. "Assessment of Land Cover Changes and an Exploration of the Sustainability Key Factors at Al-Ahsa Oasis in Saudi Arabia" Sustainability 17, no. 23: 10821. https://doi.org/10.3390/su172310821
APA StyleAlkhaldi, G. F., Mosbah, E. B., & Emam, A. A. (2025). Assessment of Land Cover Changes and an Exploration of the Sustainability Key Factors at Al-Ahsa Oasis in Saudi Arabia. Sustainability, 17(23), 10821. https://doi.org/10.3390/su172310821

