Urinary Creatinine as an Indicator of Water Intake in Sheep and Goats Sustainably Farmed in Tropical Climates
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations and Experimental Location
2.2. Animals, Experimental Design, and Diets
2.3. Nutrient Intake
2.4. Water Intake
2.5. Urine Collection and Urine Volume Estimation
2.6. Sample Collection and Laboratory Analyses
2.7. Statistical Analyses
3. Results
3.1. Descriptive Statistics
3.2. Effects of Titanium Doses and Animal Species on Water and Dry Matter Intake, Creatinine, and Urinary Volume
3.3. Pearson Correlation
3.4. Mathematical Models for Predicting Water Intake in Small Ruminants
4. Discussion
4.1. Effects of Titanium Doses and Animal Species on Water and Dry Matter Intake, Creatinine, and Urinary Volume
4.2. Correlation Between Water Consumption, Food Intake, and Physiological Parameters
4.3. Mathematical Models for Predicting Water Intake
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IPCC | Intergovernmental Panel on Climate Change |
| UFBA | Federal University of Bahia |
| TiO2 | Titanium dioxide |
| DM | Dry matter |
| DWI | Drinking water intake |
| NM | Natural matter |
| SD | Standard deviation |
| SEM | Standard error of the mean |
| CP | Crude protein |
| BW | Body weight |
| MBW | Metabolic body weight |
| IH2O | Water intake |
| IW | Initial weight of the bucket with water |
| FW | Final weight of the bucket with water after 24 h |
| EW | Average difference in bucket weights for estimating evaporation |
| H2O | Water |
| H2SO4 | Sulfuric acid |
| LANA | Animal Nutrition Laboratory |
| MM | Mineral matter |
| EE | Ether extract |
| NDF | Neutral detergent fiber |
| ADF | Acid detergent fiber |
| NDFap | Neutral detergent fiber corrected for ash and protein |
| OM | Organic matter |
| NFC | Non-fibrous carbohydrates |
| TC | Total carbohydrates |
| UV | Urinary volume |
References
- Antanaitis, R.; Džermeikaitė, K.; Krištolaitytė, J.; Ribelytė, I.; Bespalovaitė, A.; Bulvičiūtė, D.; Palubinskas, G.; Anskienė, L. The impacts of heat stress on rumination, drinking, and locomotory behavior, as registered by innovative technologies, and acid–base balance in fresh multiparous dairy cows. Animals 2024, 14, 1169. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Malik, J.K. Effects of changing global climate on small ruminant production system. In Migratory Small Ruminant Farming System in the Himalayas—Peculiarities, Problems, Prospects, Climate Effects, Nutrition and Health; Springer Nature: Singapore, 2025; pp. 115–143. [Google Scholar] [CrossRef]
- Ben Moula, A.; Kchikich, A.; Chentouf, M.; Hamdache, A.; Bouraada, K.; Essafi, M.; Ezziyyani, M. Climate change impacts on sheep and goat production and reproduction. J. Cent. Eur. Agric. 2024, 25, 910–918. [Google Scholar] [CrossRef]
- Nunes, K.G.; Costa, R.N.T.; Cavalcante, I.N.; Gondim, R.S.; Lima, S.C.R.V.; Mateos, L. Groundwater resources for agricultural purposes in the Brazilian semiarid region. Rev. Bras. Eng. Agríc. Ambient. 2022, 26, 915–923. [Google Scholar] [CrossRef]
- Oliveira, B.Y.S.; Moura, C.M.S.; Araújo, G.G.L.; Turco, S.H.N.; Voltolini, T.V.; Furtado, D.A.; Medeiros, A.N.; Gois, G.C.; Campos, F.S. Thermoregulatory responses and ingestive behavior of sheep subjected to water restriction and high- and low-energy diets in a semiarid environment. J. Therm. Biol. 2024, 119, 103749. [Google Scholar] [CrossRef]
- Salem, H.B.; Smith, T. Feeding strategies to increase small ruminant production in dry environments. Small Rumin. Res. 2008, 77, 174–194. [Google Scholar] [CrossRef]
- Calianno, M.; Castillo, D.A.; Hurtado, S.I.; Deluchi, S.; Garcia, B.; Villar, L.; Villagra, E.S.; Easdale, M.H. Effect of air temperature, milk production and shearing on drinking water intake of angora goats in pen during summer. Small Rumin. Res. 2025, 252, 107584. [Google Scholar] [CrossRef]
- Schlecht, E.; Dickhöfer, U.; Predotova, M.; Buerkert, A. The importance of semiarid natural mountain pastures for feed intake and recycling of nutrients by traditionally managed goats on the Arabian Peninsula. J. Arid. Environ. 2011, 75, 1136–1146. [Google Scholar] [CrossRef]
- Araújo, G.G.L.D.; Voltolini, T.V.; Chizzotti, M.L.; Turco, S.H.N.; Carvalho, F.F.R.D. Water and small ruminant production. Rev. Bras. Zootec. 2010, 39, 326–336. [Google Scholar] [CrossRef]
- Ibidhi, R.; Salem, H.B. Water footprint assessment of sheep farming systems based on farm survey data. Animal 2019, 13, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Sözcü, A.; Öziş Altınçekiş, Ş. Water stress in small ruminants and poultry. In Innovative Studies in Agriculture, Forestry and Aquaculture; Köprücü, K., Ed.; Livre de Lyon: Lyon, France, 2024; pp. 61–84. [Google Scholar]
- Pérez, S.; Calvo, J.H.; Calvete, C.; Joy, M.; Lobón, S. Mitigation and animal response to water stress in small ruminants. Anim. Front. 2023, 13, 81–88. [Google Scholar] [CrossRef]
- Akinmoladun, O.F.; Muchenje, V.; Fon, F.N.; Mpendulo, C.T. Small ruminants: Farmers’ hope in a world threatened by water scarcity. Animals 2019, 9, 456. [Google Scholar] [CrossRef] [PubMed]
- McDowell, R.E. Nutrition of Grazing Ruminants in Warm Climates; Academic Press: New York, NY, USA, 1985; pp. 37–58. [Google Scholar]
- NRC–National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Chen, X.B.; Gomes, M.J. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives—An Overview of the Technical Details; Rowett Research Institute: Aberdeen, UK, 1992. [Google Scholar]
- Chizzotti, M.L.; Tedeschi, L.O.; Valadares Filho, S.C. A meta-analysis of energy and protein requirements for maintenance and growth of Nellore cattle. J. Anim. Sci. 2008, 86, 1588–1597. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, A.C.S.; Santos, S.A.; Carvalho, G.G.P.; Mariz, L.D.S.; Tosto, M.S.L.; Valadares Filho, S.C.; Azevedo, J.A.G. A comparative study on the excretion of urinary metabolites in goats and sheep to evaluate spot sampling applied to protein nutrition trials. J. Anim. Sci. 2018, 96, 3381–3397. [Google Scholar] [CrossRef] [PubMed]
- Valadares, R.F.D.; Gonçalves, L.C.; Rodriguez, N.M.; Valadares Filho, S.C.; Sampaio, I.B.M. Protein levels in cattle diets. 4. Ruminal ammonia N concentration, plasma urea N, and urea and creatinine excretions. Rev. Bras. Zootec. 1997, 26, 1270–1278. [Google Scholar]
- David, D.B.; Poli, C.H.E.C.; Savian, J.V.; Amaral, G.A.; Azevedo, E.B.; Jochims, F. Urinary creatinine as a nutritional and urinary volume marker in sheep fed with tropical or temperate forages. Arq. Bras. Med. Vet. Zootec. 2015, 67, 1009–1015. [Google Scholar] [CrossRef]
- Mukminah, N.; Rianto, E.; Purbowati, E. Excretions of urinary creatinine on young and mature Kacang goat under different feeding levels. Anim. Prod. 2015, 17, 30–34. [Google Scholar] [CrossRef]
- Weiss, W.P. Predicting energy values of feeds. J. Dairy Sci. 1993, 76, 1802–1811. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russell, J.B. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef]
- Da Cruz, C.H.; Santos, S.A.; de Carvalho, G.G.P.; Azevedo, J.A.G.; Detmann, E.; Valadares Filho, S.C.; Mariz, L.D.S.; Pereira, E.S.; Nicory, I.M.C.; Tosto, M.S.L.; et al. Estimating digestible nutrients in diets for small ruminants fed with tropical forages. Livest. Sci. 2021, 249, 104532. [Google Scholar] [CrossRef]
- Souza, E.J.O.; Guim, A.; Batista, Â.M.V.; Albuquerque, D.B.; Monteiro, C.C.F.; Zumba, E.R.F.; Torres, T.R. Ingestive behavior and water intake in goats and sheep fed with Maniçoba hay and silage. Rev. Bras. Saúde Prod. Anim. 2010, 11, 1056–1067. [Google Scholar]
- Valadares, R.F.D.; Broderick, G.A.; Valadares Filho, S.D.C.; Clayton, M.K. Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J. Dairy Sci. 1999, 82, 2686–2696. [Google Scholar] [CrossRef]
- Plaizier, J.C.; Martin, A.; Duffield, T.; Bagg, R.; Dick, P.; McBride, B.W. Effect of a prepartum administration of monensin in a controlled-release capsule on apparent digestibilities and nitrogen utilization in transition dairy cows. J. Dairy Sci. 2000, 83, 2918–2925. [Google Scholar] [CrossRef] [PubMed]
- Detmann, E.; Costa e Silva, L.F.; Rocha, G.C.; Palma, M.N.N.; Rodrigues, J.P.P. Métodos para Análise de Alimentos, 2nd ed.; Suprema: Visconde do Rio Branco, Brazil, 2021; 214p. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 18th ed.; Association of Official Analytical Chemists Inc.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Silva, J.C.S.; Correa, G.A.L.; Mayorga, O.L.M.; Duran, E.N.C.; Portilla, D.P.; Diaz, F.A.T.; Granja-Salcedo, Y.T.; Valencia, D.M.E. Effect of marker dosage frequency and spot fecal sampling frequency in the prediction accuracy of fecal output using chromic oxide and titanium dioxide in grazing BON steers. Trop. Anim. Health Prod. 2021, 53, 448. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.A.; de Oliveira, J.S.; Santos, E.M.; de Lima Cruz, G.F.; de Araújo, G.G.L.; da Silva, M.M.C.; Sobral, G.C.; Ramos, J.P.F.; Gomes, P.G.B.; Medeiros, G.L.; et al. Evaluation of internal markers in digestibility estimation for sheep and goats. Trop. Anim. Health Prod. 2024, 56, 126. [Google Scholar] [CrossRef]
- Titgemeyer, E.C.; Armendariz, C.K.; Bindel, D.J.; Greenwood, R.H.; Löest, C.A. Evaluation of titanium dioxide as a digestibility marker for cattle. J. Anim. Sci. 2001, 79, 1059–1063. [Google Scholar] [CrossRef]
- Moreira, M.A.; Alves, A.A.; Garcez, B.S.; Moreira, A.L.; Azevêdo, D.M.M.R.; Parente, H.N. Digestibility markers of sheep diets containing hydrolyzed sugarcane-top hay. Rev. Bras. Saúde Prod. Anim. 2017, 18, 38–49. [Google Scholar] [CrossRef]
- Peres, M.T.P.; Batista, R.; Twardowski, T.D.S.; Ribeiro Filho, H.M.N.; Monteiro, A.L.G. Titanium dioxide (TiO2) as a marker to estimate fecal output in sheep. Ciênc. Rural. 2019, 49, e20190190. [Google Scholar] [CrossRef]
- Titgemeyer, E.C. Design and interpretation of nutrient digestion studies. J. Anim. Sci. 1997, 75, 2235–2247. [Google Scholar] [CrossRef]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. Technical Note: A Procedure for the Preparation and Quantitative Analysis of Samples for Titanium Dioxide. J. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Albuquerque, Í.; Araújo, G.G.L.; Santos, F.; Carvalho, G.G.P.; Santos, E.; Nobre, I.; Bezerra, L.; Silva-Júnior, J.; Silva-Filho, E.; Oliveira, R. Performance, body water balance, ingestive behavior and blood metabolites in goats fed with cactus pear (Opuntia ficus-indica L. Miller) silage subjected to an intermittent water supply. Sustainability 2020, 12, 2881. [Google Scholar] [CrossRef]
- Pereira, T.C.J.; Pereira, M.L.A.; Carvalho, G.G.P.; Silva, H.G.O.; Santos, A.B.; Pina, D.D.S.; Sousa, L.B. Creatinine as a urinary marker of the purine derivatives excretion in urine spot samples of lambs fed peach palm meal. Animals 2022, 12, 1195. [Google Scholar] [CrossRef]
- Del Valle, T.A.; de Morais, J.P.G.; Campana, M.; Azevedo, E.B.; Louvandini, H.; Abdalla, A.L. Purine derivatives and creatinine urine excretion as a tool to estimate sheep feed intake. Anim. Feed. Sci. Technol. 2023, 301, 115666. [Google Scholar] [CrossRef]
- Chedid, M.; Jaber, L.S.; Giger-Reverdin, S.; Duvaux-Ponter, C.; Hamadeh, S.K. Water stress in sheep raised under arid conditions. Can. J. Anim. Sci. 2014, 94, 243–257. [Google Scholar] [CrossRef]
- Pereira, A.M.F.; Titto, E.A.L.; de Almeida, J.A. Adaptation of Ruminants to Hot Climates; Appris: Curitiba, Brazil, 2019. [Google Scholar]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of Climate Changes on Animal Production and Sustainability of Livestock Systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- Torres, R.N.S.; Costa, L.B.S.; Almeida, M.T.C.; Ezequiel, J.M.B. Empirical equations for drinking water intake prediction of growing lambs: Meta-analysis. Small Rumin. Res. 2021, 203, 106487. [Google Scholar] [CrossRef]
- Freitas, A.C.B.; Costa, R.L.D.; Bartholazzi Junior, A.; Quirino, C.R. Water and food utilization efficiencies in sheep and their relationship with some production traits. Small Rumin. Res. 2021, 197, 106334. [Google Scholar] [CrossRef]
- Al-Ramamneh, D.I.; Riek, A.; Gerken, M. Deuterium oxide dilution accurately predicts water intake in sheep and goats. Animal 2010, 4, 1609–1614. [Google Scholar] [CrossRef] [PubMed]
- Adeniji, O.; Mupangwa, J.F.; Nherera-Chokuda, F.V.; Nsahlai, I.V. Resilience of lambs to limited water availability without compromising their production performance. Animals 2020, 10, 1491. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, M.; Delagarde, R. Drinking water intake, milk production, and grazing behaviour of alpine dairy goats in response to daytime water restriction on temperate pastures. J. Therm. Biol. 2023, 109, 103720. [Google Scholar] [CrossRef]
- Yirga, F.; Abebe, A.; Asfaw, S.; Tesfaye, D. Effects of salinity levels of drinking water on water intake and loss, feed utilization, body weight, thermoregulatory traits, and blood constituents in gowing and mature blackhead ogaden sheep and Somali goats. Animals 2024, 14, 1565. [Google Scholar] [CrossRef]
- Kozloski, G.V.; Fiorentini, G.; Härter, C.J.; Sanchez, L.M.B. Creatinine use as an indicator of urinary excretion in ovines. Cienc. Rural 2005, 35, 98–102. [Google Scholar] [CrossRef]
- Silva, L.F.C.; Valadares Filho, S.C.; Chizzotti, M.L.; Rotta, P.P.; Prados, L.F.; Valadares, R.F.D.; Zanetti, D.; Braga, J.M.S. Creatinine excretion and relationship with body weight of Nellore cattle. Rev. Bras. Zootec. 2012, 41, 757–764. [Google Scholar] [CrossRef]
- Marsden, K.A.; Lush, L.; Holmberg, J.A.; Whelan, M.J.; King, A.J.; Wilson, R.P.; Charteris, A.F.; Cardenas, L.M.; Jones, D.L.; Chadwick, D.R. Sheep urination frequency, volume, N excretion and chemical composition: Implications for subsequent agricultural N losses. Agric. Ecosyst. Environ. 2020, 302, 107073. [Google Scholar] [CrossRef]
- Gonda, H.L.; Lindberg, J.E. Evaluation of dietary nitrogen utilization in dairy cows based on urea concentrations in blood, urine and milk, and on urinary concentration of purine derivatives. Acta Agric. Scand. Sect. A—Anim. Sci. 1994, 44, 236–245. [Google Scholar] [CrossRef]
- Gurgel, A.L.C. Mathematical Models for Decision-Making in Sheep Production in a Pasture Environment. Ph.D. Thesis, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil, 21 January 2022. [Google Scholar]
- Silva, T.S.; de Araujo, G.G.L.; Santos, E.M.; de Oliveira, J.S.; Campos, F.S.; Godoi, P.F.A.; Gois, G.C.; Perazzo, A.F.; Ribeiro, O.L.; Turco, S.H.N. Water intake and ingestive behavior of sheep fed diets based on silages of cactus pear and tropical forages. Trop. Anim. Health Prod. 2021, 53, 244. [Google Scholar] [CrossRef]
- Costa, C.d.J.P.; Araújo, G.G.L.d.; Magalhães, A.L.R.; de Andrade, A.P.; Turco, S.H.N.; Matos, M.H.T.d.; Silva, D.C.N.d.; Araújo, C.d.A.; Valença, R.d.L.; Silva, T.G.F.d. Physiological and metabolic responses to water restriction in ewes under semiarid conditions. Vet. Sci. 2025, 12, 790. [Google Scholar] [CrossRef]
- Cannas, A.; Tedeschi, L.O.; Atzori, A.S.; Lunesu, M.F. How can nutrition models increase the production efficiency of sheep and goat operations? Anim. Front. 2019, 9, 33–44. [Google Scholar] [CrossRef]
| Ingredients | Inclusion Level (g/kg) | |
|---|---|---|
| Tifton-85 hay | 600.0 | |
| Soybean meal | 110.0 | |
| Ground corn | 270.0 | |
| Mineral mixture 1 | 20.0 | |
| Chemical composition (g/kg of DM) | Mean | SD |
| Dry matter (DM) g/kg, natural matter (NM) | 841.1 | 0.63 |
| Organic matter | 801.0 | 0.64 |
| Mineral matter | 40.1 | 0.01 |
| Crude protein | 114.1 | 0.39 |
| Ether extract | 24.8 | 0.11 |
| Neutral detergent fiber | 481.4 | 0.81 |
| Indigestible neutral detergent fiber | 156.7 | 2.09 |
| Neutral detergent fiber corrected for ash and protein | 447.8 | 0.92 |
| Acid detergent fiber | 240.3 | 0.83 |
| Hemicellullose | 207.6 | 1.30 |
| Cellullose | 197.0 | 0.76 |
| Lignin | 43.2 | 0.20 |
| Non-fibrous carbohydrates 2 | 339.7 | 0.84 |
| Total carbohydrates 3 | 821.1 | 0.34 |
| Total digestible nutrients 4 | 657.7 | 0.68 |
| Variable | N | Mean | SD | Minimum | Maximum |
|---|---|---|---|---|---|
| IH2O | |||||
| L/day | 42 | 1.87 | 0.63 | 0.93 | 3.13 |
| g/kg BW | 42 | 60.13 | 28.48 | 20.31 | 155.74 |
| g/kg MBW | 42 | 141.32 | 60.90 | 53.38 | 329.36 |
| DMI | |||||
| g/day | 48 | 969.77 | 235.22 | 474.66 | 1498.00 |
| g/kg BW | 48 | 29.91 | 5.29 | 19.13 | 47.75 |
| g/kg MBW | 48 | 71.00 | 11.62 | 46.92 | 97.81 |
| Urinary volume | |||||
| L/day | 43 | 1.45 | 0.60 | 0.49 | 2.98 |
| mL/kg BW | 43 | 46.76 | 26.34 | 16.90 | 149.02 |
| mL/kg MBW | 43 | 109.93 | 56.32 | 40.07 | 315.14 |
| Body weight (kg) | 48 | 32.81 | 7.45 | 17.60 | 47.70 |
| Metabolic body weight | 48 | 13.64 | 2.35 | 8.60 | 18.15 |
| Creatinine (mg/L) | 48 | 523.61 | 246.23 | 133.00 | 1173.00 |
| Item | Marker (Grams/Day) | SEM | Specie | SEM | p Value | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.0 | 1.75 | 2.50 | 3.25 | 4.0 | Sheep | Goats | Linear | Quadratic | Specie | Marker × Specie | |||
| IH2O | |||||||||||||
| L/day | 1.66 | 1.94 | 1.80 | 1.33 | 2.14 | 0.286 | 2.02 | 1.52 | 0.282 | 0.512 | 0.227 | 0.146 | 0.220 |
| g/kg BW | 53.22 | 62.22 | 57.85 | 46.46 | 67.41 | 9.862 | 54.78 | 60.1 | 10.32 | 0.424 | 0.333 | 0.657 | 0.268 |
| g/kg MBW | 125.14 | 146.34 | 135.8 | 106.8 | 159.66 | 22.397 | 134.89 | 134.61 | 23.00 | 0.431 | 0.279 | 0.991 | 0.253 |
| DMI | |||||||||||||
| g/day | 1011.11 | 926.71 | 925.89 | 980.55 | 1007.05 | 63.782 | 1128.38 | 812.15 | 57.35 | 0.733 | 0.084 | <0.001 | 0.226 |
| g/kg BW | 31.122 | 28.027 | 29.192 | 30.22 | 31.51 | 1.606 | 30.10 | 29.93 | 1.28 | 0.416 | 0.059 | 0.871 | 0.104 |
| g/kg MBW | 74.07 | 67.03 | 69.72 | 72.12 | 74.54 | 3.515 | 74.64 | 68.35 | 2.68 | 0.484 | 0.082 | 0.034 | 0.124 |
| Creatinine (mg/L) | 455.72 | 495.66 | 520.85 | 583.55 | 571.28 | 86.997 | 589.63 | 461.19 | 71.78 | 0.200 | 0.812 | 0.229 | 0.927 |
| Urinary volume (L/day) | 1.571 | 1.562 | 1.459 | 1.240 | 1.280 | 0.194 | 1.422 | 1.425 | 0.17 | 0.103 | 0.993 | 0.992 | 0.737 |
| Variable | DMI | Creatinine | Body Weight | Metabolic Body Weight | Urinary Volume | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| g/day | g/kg BW | g/kg MBW | L/day | mL/kg BW | mL/kg MBW | |||||||||||||
| r | p | r | p | r | p | r | p | r | p | r | p | R | p | r | p | r | p | |
| L/day | 0.043 | 0.784 | 0.203 | 0.197 | 0.164 | 0.299 | −0.284 | 0.068 | −0.111 | 0.481 | −0.111 | 0.481 | 0.262 | 0.093 | 0.297 | 0.056 | 0.294 | 0.056 |
| g/kg BW | −0.373 | 0.014 | 0.226 | 0.151 | 0.007 | 0.961 | −0.373 | 0.015 | −0.586 | <0.001 | −0.593 | <0.001 | 0.297 | 0.055 | 0.569 | <0.001 | 0.524 | <0.001 |
| g/kg MBW | −0.296 | 0.056 | 0.221 | 0.145 | 0.042 | 0.792 | −0.365 | 0.017 | −0.504 | <0.001 | −0.509 | <0.001 | 0.297 | 0.055 | 0.526 | <0.001 | 0.488 | <0.001 |
| Equation | Coefficient of Determination (R2) | p | |
|---|---|---|---|
| 1 | ŶH2Og/kgBW = 112.42 − 5.17 × MBW + 0.40 × UV | 46 | <0.001 |
| 2 | ŶH2Og/kgBW = 164.72 − 6.60 × MBW + 0.025 × Creat | 40 | <0.001 |
| 3 | ŶH2Og/kgBW = 139.53 + 0.016 × DMI − 2.48 × BW − 0.025×Creat | 40 | <0.001 |
| 4 | ŶH2Og/kgBW = 92.78 + 0.01 × DMI − 2.02 × BW + 0.39 × UV | 46 | <0.001 |
| 5 | ŶH2Og/kgBW = 116.22 + 0.017 × DMI − 6.65 × MBW + 0.39 × UV | 47 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza-Conde, E.; Tosto, M.; Mendes, R.; Araújo, M.L.; Gama Junior, J.H.; Santana, B.; Alba, H.; Santos, S.; Pereira Neto, E.; Azevêdo, J.A.; et al. Urinary Creatinine as an Indicator of Water Intake in Sheep and Goats Sustainably Farmed in Tropical Climates. Sustainability 2025, 17, 10709. https://doi.org/10.3390/su172310709
Souza-Conde E, Tosto M, Mendes R, Araújo ML, Gama Junior JH, Santana B, Alba H, Santos S, Pereira Neto E, Azevêdo JA, et al. Urinary Creatinine as an Indicator of Water Intake in Sheep and Goats Sustainably Farmed in Tropical Climates. Sustainability. 2025; 17(23):10709. https://doi.org/10.3390/su172310709
Chicago/Turabian StyleSouza-Conde, Emanoela, Manuela Tosto, Raiane Mendes, Maria Leonor Araújo, José Herailton Gama Junior, Beatriz Santana, Henry Alba, Stefanie Santos, Evandro Pereira Neto, José Augusto Azevêdo, and et al. 2025. "Urinary Creatinine as an Indicator of Water Intake in Sheep and Goats Sustainably Farmed in Tropical Climates" Sustainability 17, no. 23: 10709. https://doi.org/10.3390/su172310709
APA StyleSouza-Conde, E., Tosto, M., Mendes, R., Araújo, M. L., Gama Junior, J. H., Santana, B., Alba, H., Santos, S., Pereira Neto, E., Azevêdo, J. A., Silva, R., Pina, D., & Carvalho, G. G. (2025). Urinary Creatinine as an Indicator of Water Intake in Sheep and Goats Sustainably Farmed in Tropical Climates. Sustainability, 17(23), 10709. https://doi.org/10.3390/su172310709

