Site Suitability Assessment for Microalgae Plant Deployment in Saudi Arabia Using Multi-Criteria Decision Making and the Analytic Hierarchy Process: A Spatial Approach
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Sources
3.2. Criteria Selection
3.2.1. Microalgae Cultivation Method Assumption
3.2.2. Rationale of Enablers and Restrictors
3.3. Analytic Hierarchy Process (AHP) Weightage
3.4. Suitability Classification
4. Results
4.1. Area of Interest
4.2. Suitability Index
4.3. The Critical Role of Industrial Zones in Microalgae Suitability over Other Key Enablers
4.4. Availability of Medium, Low, and Very Low Suitability Area
5. Discussion
5.1. Comparative Analysis of Microalgae Suitability Between the Red Sea and Arabian Gulf Coasts
5.1.1. Common Enablers for High Suitability in Both Coasts
5.1.2. Key Differences Between the Red Sea and Arabian Gulf Coasts
5.2. Comparative Analysis of Microalgae Suitability Studies in Different Regions
5.3. Limitation and Future Development
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luijendijk, A.P.; Kras, E.; Dagalaki, V.; Morelissen, R.; Hoteit, I.; Ranasinghe, R. Regime Shifts in Future Shoreline Dynamics of Saudi Arabia. Front. Mar. Sci. 2022, 8, 798657. [Google Scholar] [CrossRef]
- Sharif, M. Analysis of projected temperature changes over Saudi Arabia in the twenty-first century. Arab. J. Geosci. 2015, 8, 8795–8809. [Google Scholar] [CrossRef]
- Nofal, R.; Abboud, I.A. Geomorphological evolution of marine heads on the eastern coast of Red Sea at Saudi Arabian region, using remote sensing techniques. Arab. J. Geosci. 2016, 9, 163. [Google Scholar] [CrossRef]
- Kumar Patel, A.; Tseng, Y.-S.; Rani Singhania, R.; Chen, C.-W.; Chang, J.-S.; Di Dong, C. Novel application of microalgae platform for biodesalination process: A review. Bioresour. Technol. 2021, 337, 125343. [Google Scholar] [CrossRef] [PubMed]
- Yap, J.K.; Sankaran, R.; Chew, K.W.; Halimatul Munawaroh, H.S.; Ho, S.-H.; Rajesh Banu, J.; Show, P.L. Advancement of green technologies: A comprehensive review on the potential application of microalgae biomass. Chemosphere 2021, 281, 130886. [Google Scholar] [CrossRef]
- Ridley, C.J.A.; Parker, B.M.; Norman, L.; Schlarb-Ridley, B.; Dennis, R.; Jamieson, A.E.; Clark, D.; Skill, S.C.; Smith, A.G.; Davey, M.P. Growth of microalgae using nitrate-rich brine wash from the water industry. Algal Res. 2018, 33, 91–98. [Google Scholar] [CrossRef]
- Schipper, K.; Al Jabri, H.M.S.J.; Wijffels, R.H.; Barbosa, M.J. Realizing algae value chains in arid environments: An Arabian Peninsula perspective. Trends Biotechnol. 2023, 41, 750–759. [Google Scholar] [CrossRef]
- Varshney, P.; Mikulic, P.; Vonshak, A.; Beardall, J.; Wangikar, P.P. Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour. Technol. 2015, 184, 363–372. [Google Scholar] [CrossRef]
- Zhao, B.; Su, Y. Macro assessment of microalgae-based CO2 sequestration: Environmental and energy effects. Algal Res. 2020, 51, 102066. [Google Scholar] [CrossRef]
- Abreu, A.P.; Morais, R.C.; Teixeira, J.A.; Nunes, J. A comparison between microalgal autotrophic growth and metabolite accumulation with heterotrophic, mixotrophic and photoheterotrophic cultivation modes. Renew. Sustain. Energy Rev. 2022, 159, 112247. [Google Scholar] [CrossRef]
- Padri, M.; Boontian, N.; Piasai, C.; Phorndon, T. Coupling wastewater treatment with microalgae biomass production: Focusing on biomass generation and treatment efficiency. Eng. J. 2020, 24, 11–29. [Google Scholar] [CrossRef]
- Agboola, M.O.; Bekun, F.V.; Joshua, U. Pathway to environmental sustainability: Nexus between economic growth, energy consumption, CO2 emission, oil rent and total natural resources rent in Saudi Arabia. Resour. Policy 2021, 74, 102380. [Google Scholar] [CrossRef]
- Correa, D.F.; Beyer, H.L.; Possingham, H.P.; Thomas-Hall, S.R.; Schenk, P.M. Global mapping of cost-effective microalgal biofuel production areas with minimal environmental impact. GCB Bioenergy 2019, 11, 914–929. [Google Scholar] [CrossRef]
- Lozano-Garcia, D.F.; Cuellar-Bermudez, S.P.; del Rio-Hinojosa, E.; Betancourt, F.; Aleman-Nava, G.S.; Parra-Saldivar, R. Potential land microalgae cultivation in Mexico: From food production to biofuels. Algal Res. 2019, 39, 101459. [Google Scholar] [CrossRef]
- Boruff, B.J.; Moheimani, N.R.; Borowitzka, M.A. Identifying locations for large-scale microalgae cultivation in Western Australia: A GIS approach. Appl. Energy 2015, 149, 379–391. [Google Scholar] [CrossRef]
- Quinn, J.C.; Catton, K.B.; Johnson, S.; Bradley, T.H. Geographical Assessment of Microalgae Biofuels Potential Incorporating Resource Availability. BioEnergy Res. 2013, 6, 591–600. [Google Scholar] [CrossRef]
- Das, K.; Salam, P.A. Development of a generic methodology for assessment of microalgae cultivation potential using GIS. In Proceedings of the 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Pattaya City, Thailand, 19–21 March 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–12. [Google Scholar]
- Chowdhury, S.; Al-Zahrani, M. Characterizing water resources and trends of sector wise water consumptions in Saudi Arabia. J. King Saud Univ.—Eng. Sci. 2015, 27, 68–82. [Google Scholar] [CrossRef]
- Quintino, F.M.; Nascimento, N.; Fernandes, E.C. Aspects of Hydrogen and Biomethane Introduction in Natural Gas Infrastructure and Equipment. Hydrogen 2021, 2, 301–318. [Google Scholar] [CrossRef]
- Yousef, A.M.; Al, N.I.R.; Al, Z.A.A.K. Ownership Structure and Cash Holdings: Empirical Evidence from Saudi Arabia. J. Asian Financ. Econ. Bus. 2021, 8, 323–331. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- West, H.; Horswell, M. GIS has changed! Exploring the potential of ArcGIS Online. Teach. Geogr. 2018, 43, 22–24. [Google Scholar]
- González-Portela, R.E.; Romero-Villegas, G.I.; Kapoore, R.V.; Alammari, Z.M.; Malibari, R.A.; Shaikhi, A.A.; Al Hafedh, Y.; Aljahdali, A.H.; Banjar, R.E.; Mhedhbi, E.; et al. Cultivation of Limnospira maxima under extreme environmental conditions in Saudi Arabia: Salinity adaptation and scaling-up from laboratory culture to large-scale production. Bioresour. Technol. 2024, 406, 131089. [Google Scholar] [CrossRef] [PubMed]
- Isaimozhi, V.; Ajithkumar, V.; Mehta, B.; Lavanya, R.M.; Majumder, A.; Kumar, S.D.; Mantri, V.A.; Dineshkumar, R. Recycling of spent seawater produced by land-based seaweed cultivation for the production of value-added products from a marine microalga Chlorella sp. Biomass Convers. Biorefinery 2025, 15, 28573–28584. [Google Scholar] [CrossRef]
- Du, X.; Zhu, C.; Chi, Z. Optimizing calcium and magnesium in seawater medium with high bicarbonate concentration for efficient growth and self-flocculation harvesting of Chlorella sp. Bioresour. Technol. 2025, 430, 132569. [Google Scholar] [CrossRef]
- Tahiri, S.; Elmtili, N.E.; Boudoudouh, H.; Elhassani, D.A.; Loulad, H.; El Aamri, F. Effect of Different Culture Media on the Cells Growth of Isochrysis galbana, Tetraselmis suecica and Chaetoceros calcitrans. Thalass. Int. J. Mar. Sci. 2024, 40, 193–202. [Google Scholar] [CrossRef]
- Singh, J.; Tripathi, R.; Thakur, I.S. Characterization of endolithic cyanobacterial strain, Leptolyngbya sp. ISTCY101, for prospective recycling of CO2 and biodiesel production. Bioresour. Technol. 2014, 166, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Velásquez-Orta, S.B.; Yáñez-Noguez, I.; Ramírez, I.M.; Ledesma, M.T.O. Pilot-scale microalgae cultivation and wastewater treatment using high-rate ponds: A meta-analysis. Environ. Sci. Pollut. Res. 2024, 31, 46994–47021. [Google Scholar] [CrossRef]
- Tennakoon, S.; Apan, A.; Maraseni, T.; Altarez, R.D.D. Decoding the impacts of space and time on honey bees: GIS based fuzzy AHP and fuzzy overlay to assess land suitability for apiary sites in Queensland, Australia. Appl. Geogr. 2023, 155, 102951. [Google Scholar] [CrossRef]
- Bas, T.G.; Fariña, R.; Gallardo, F.; Vilches, M. Economic–Financial Assessment of Seawater Desalination Plants in Northern Chile to Reduce Hydric Scarcity and a Proposal for the Environmental and Sustainable Use of Brine Waste by Cultivating the Microalga Dunaliella salina to Produce β-Carotene. Processes 2023, 11, 1668. [Google Scholar] [CrossRef]
- Farahat, A.; Kambezidis, H.D.; Labban, A. The Solar Radiation Climate of Saudi Arabia. Climate 2023, 11, 75. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Ling, T.C.; Show, P.L.; Juan, J.C.; Chang, J.-S.; Lee, D.-J. Cultivation in wastewaters for energy: A microalgae platform. Appl. Energy 2016, 179, 609–625. [Google Scholar] [CrossRef]
- Padri, M.; Boontian, N.; Piasai, C. Comparison of single strain, natural algal communities and a native algal bloom: Application for wastewater treatment and biomass generation in cassava biogas effluent. Water Environ. J. 2022, 36, 679–693. [Google Scholar] [CrossRef]
- Mastoi, M.S.; Zhuang, S.; Munir, H.M.; Haris, M.; Hassan, M.; Usman, M.; Bukhari, S.S.H.; Ro, J.-S. An in-depth analysis of electric vehicle charging station infrastructure, policy implications, and future trends. Energy Rep. 2022, 8, 11504–11529. [Google Scholar] [CrossRef]
- Song, T.; Pu, H.; Schonfeld, P.; Zhang, H.; Li, W.; Peng, X.; Hu, J.; Liu, W. GIS-based multi-criteria railway design with spatial environmental considerations. Appl. Geogr. 2021, 131, 102449. [Google Scholar] [CrossRef]
- Roig-Tierno, N.; Baviera-Puig, A.; Buitrago-Vera, J.; Mas-Verdu, F. The retail site location decision process using GIS and the analytical hierarchy process. Appl. Geogr. 2013, 40, 191–198. [Google Scholar] [CrossRef]
- Rashidi Shikhteymour, S.; Borji, M.; Bagheri-Gavkosh, M.; Azimi, E.; Collins, T.W. A novel approach for assessing flood risk with machine learning and multi-criteria decision-making methods. Appl. Geogr. 2023, 158, 103035. [Google Scholar] [CrossRef]
- Ghezelbash, S.; Ghezelbash, R.; Kalantari, M. Developing a spatio-temporal interactions model for car crashes using a novel data-driven AHP-TOPSIS. Appl. Geogr. 2024, 162, 103151. [Google Scholar] [CrossRef]
- El Baroudy, A.A. Mapping and evaluating land suitability using a GIS-based model. CATENA 2016, 140, 96–104. [Google Scholar] [CrossRef]
- Ziadat, F.M. Land suitability classification using different sources of information: Soil maps and predicted soil attributes in Jordan. Geoderma 2007, 140, 73–80. [Google Scholar] [CrossRef]
- Romano, G.; Dal Sasso, P.; Trisorio Liuzzi, G.; Gentile, F. Multi-criteria decision analysis for land suitability mapping in a rural area of Southern Italy. Land Use Policy 2015, 48, 131–143. [Google Scholar] [CrossRef]
- Hamieh, A.; Rowaihy, F.; Al-Juaied, M.; Abo-Khatwa, A.N.; Afifi, A.M.; Hoteit, H. Quantification and analysis of CO2 footprint from industrial facilities in Saudi Arabia. Energy Convers. Manag. X 2022, 16, 100299. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Darwish, N.B.; Hilal, N. Analytical and forecasting study for wastewater treatment and water resources in Saudi Arabia. J. Water Process Eng. 2019, 32, 100915. [Google Scholar] [CrossRef]
- Al-Rowaily, S.L.; El-Bana, M.I.; Al-Bakre, D.A.; Assaeed, A.M.; Hegazy, A.K.; Ali, M.B. Effects of open grazing and livestock exclusion on floristic composition and diversity in natural ecosystem of Western Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 430–437. [Google Scholar] [CrossRef]
- Almalki, K.A.; Al Mosallam, M.S.; Aldaajani, T.Z.; Al-Namazi, A.A. Landforms characterization of Saudi Arabia: Towards a geomorphological map. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102945. [Google Scholar] [CrossRef]
- Acién, F.G.; Molina, E.; Fernández-Sevilla, J.M.; Barbosa, M.; Gouveia, L.; Sepúlveda, C.; Bazaes, J.; Arbib, Z. 20—Economics of microalgae production. In Microalgae-Based Biofuels and Bioproducts; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 485–503. ISBN 978-0-08-101027-3. [Google Scholar]
- Bawadekji, A.; Tonbol, K.; Ghazouani, N.; Becheikh, N.; Shaltout, M. Recent atmospheric changes and future projections along the Saudi Arabian Red Sea Coast. Sci. Rep. 2022, 12, 160. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Jones, P.D.; Athar, H.; Rahman, M.A. Recent climate change in the Arabian Peninsula: Seasonal rainfall and temperature climatology of Saudi Arabia for 1979–2009. Atmos. Res. 2012, 111, 29–45. [Google Scholar] [CrossRef]
- Al-Saidi, M.; Elagib, N.A. Ecological modernization and responses for a low-carbon future in the Gulf Cooperation Council countries. WIREs Clim. Change 2018, 9, e528. [Google Scholar] [CrossRef]
- Ouda, O.K.M. Treated wastewater use in Saudi Arabia: Challenges and initiatives. Int. J. Water Resour. Dev. 2016, 32, 799–809. [Google Scholar] [CrossRef]
- Alzahrani, F.; Elsebaei, M.; Tawfik, R. Public Acceptance of Treated Wastewater Reuse in the Agricultural Sector in Saudi Arabia. Sustainability 2023, 15, 15434. [Google Scholar] [CrossRef]
- Al-Jasser, A.O. Saudi wastewater reuse standards for agricultural irrigation: Riyadh treatment plants effluent compliance. J. King Saud Univ.—Eng. Sci. 2011, 23, 1–8. [Google Scholar] [CrossRef]
- Badr, N.B.E.; El-Fiky, A.A.; Mostafa, A.R.; Al-Mur, B.A. Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia. Environ. Monit. Assess. 2009, 155, 509–526. [Google Scholar] [CrossRef]
- Alharbi, T.; El-Sorogy, A. Assessment of seawater pollution of the Al-Khafji coastal area, Arabian Gulf, Saudi Arabia. Environ. Monit. Assess. 2019, 191, 383. [Google Scholar] [CrossRef]
- Bower, A.S.; Hunt, H.D.; Price, J.F. Character and dynamics of the Red Sea and Persian Gulf outflows. J. Geophys. Res. Ocean. 2000, 105, 6387–6414. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Ge, B.; Zhang, X.; Zhou, C.; Yan, X.; Ruan, R.; Cheng, P. Effect of heavy metals in aquaculture water on the growth of microalgae and their migration mechanism in algae-shellfish system. Chem. Eng. J. 2023, 473, 145274. [Google Scholar] [CrossRef]
- Aslani, A.; Mohammadi, M.; Gonzalez, M.J.I.; Sobczuk, T.M.; Nazari, M.; Bakhtiar, A. Evaluation of the potentials and feasibility of microalgae production in Iran. Bioresour. Technol. Rep. 2018, 1, 24–30. [Google Scholar] [CrossRef]
- Notti, D.; Giordan, D.; Caló, F.; Pepe, A.; Zucca, F.; Galve, J.P. Potential and Limitations of Open Satellite Data for Flood Mapping. Remote Sens. 2018, 10, 1673. [Google Scholar] [CrossRef]
- Chiang, Y.-Y.; Leyk, S.; Knoblock, C.A. A Survey of Digital Map Processing Techniques. ACM Comput. Surv. 2014, 47, 1–44. [Google Scholar] [CrossRef]
- Toutin, T. State-of-the-art of geometric correction of remote sensing data: A data fusion perspective. Int. J. Image Data Fusion 2011, 2, 3–35. [Google Scholar] [CrossRef]
- Adsul, S.; Shah, P.; Pathak, A.; Pathak, Y.; Patil, A.; Patil, K. IntelliMap: AI-Driven Terrain Exploration and Mapping. In Proceedings of the 2024 5th International Conference for Emerging Technology (INCET), Belgaum, India, 24–26 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–9. [Google Scholar]





| Restrictor | Data Source | Extraction Method |
|---|---|---|
| Wadi, Coastal Line | Administrative Map of Saudi Arabia 2023 by General Authority for Statistics, Saudi Arabia | Manually extracted and recalibrated to improve accuracy. |
| Residence, Industries, Agricultural areas | Land use Maps of Saudi Arabia 2023 by General Authority for Statistics, Saudi Arabia | Digitally extracted and verified against the latest industrial data using Google Earth Engine (GEE). Digitally extracted using GIS software (ArcGIS PRO 3.3) with Landsat 8 satellite imagery as a base map. |
| Wind speed, Temperature | Global Wind Atlas 2023 by Technical University of Denmark (DTU) | Digitally extracted using climate modeling tools. |
| Vegetation, | Landsat 8 Satellite Imagery by United States Geological Survey (USGS) and NASA | Analyzed and extracted using remote sensing techniques. |
| Highway, Railway | Transportation Network Map of Saudi Arabia 2023 by General Authority for Statistics, Saudi Arabia | Manually extracted and recalibrated with Google Satellite 2024 to improve accuracy. |
| Electrical Grid | Landsat 8 Satellite Imagery 2023 by United States Geological Survey (USGS) and NASA | Manually extracted and recalibrated with Google Satellite 2024 to improve accuracy. |
| Slope, Bare Rock | Landsat 8 Satellite Imagery 2023 by United States Geological Survey (USGS) and NASA | Digitally extracted and verified against the latest industrial data using Google Earth Engine (GEE). Digitally extracted using GIS software with Landsat 8 satellite imagery as a base map. |
| Data Set | Description | Weightage | |
|---|---|---|---|
| Wadi/River | Polyline shapefile that represents all grids with wadi are excluded. | 0 (inside wadi), 1 (outside wadi) | |
| Residence | Polygon shapefile utilized to accurately delineate areas that maintain a minimum distance of 500 m from residential zones. | 0 (within), 1 (outside) | |
| Slope | Polygon shapefile are employed to identify areas with slopes exceeding 4%. | 0 (area with slope > 4%) and 1 (area with slope ≤ 4%) | |
| Railway | Polylines shapefile utilized to accurately delineate areas within a 400-m distance from railway zones. | 0 (within), 1 (outside) | |
| Highway | Polylines shapefile employed to accurately delineate areas within a 400-m distance from highways. | 0 (within), 1 (outside) | |
| Electrical Grid | Polylines shapefile utilized to exclude areas along the electrical route within a 100-m radius. | 0 (within), 1 (outside) | |
| Land use and rough land contour | Polylines shapefile utilized to exclude all the footprint areas. | 0 (within), 1 (outside) | |
| Industries (Powerplant sites, Desalination sites, Factories, Industries, Oil Mining) | Polygons shapefile assigned high weights to regions exhibiting significant interdependencies or correlations with the industrial activities. | Proximity (m) | Weight |
| 1000 | 5 | ||
| 2000 | 4 | ||
| 3000 | 3 | ||
| 4000 | 2 | ||
| 5000 | 1 | ||
| The results of this area will be multiplied by factor (f) of 5. | |||
| Wastewater treatment plant | Polygons shapefile assigned high weights to regions exhibiting significant water/wastewater treatment facility activities. | Proximity (m) | Weight |
| 1000 | 5 | ||
| 2000 | 4 | ||
| 3000 | 3 | ||
| 4000 | 2 | ||
| 5000 | 1 | ||
| The results of this area will be multiplied by factor (f) of 5. | |||
| Agricultural waste/wastewater | Polygons shapefile assigned high weights to regions exhibiting significant agricultural facilities or activities that possibly provide nutrients sources for the cultivation. | Proximity (m) | Weight |
| 1000 | 5 | ||
| 2000 | 4 | ||
| 3000 | 3 | ||
| 4000 | 2 | ||
| 5000 | 1 | ||
| The results of this area will be multiplied by factor (f) of 5. | |||
| Wind and Sandstorms | polygon shapefile emphasizes lower sandstorm impacts as reflected in the weight or relative value assigned to the area in the overall calculations | Ann. wind speed (m/s) | Weight |
| 0–2 | 5 | ||
| 2–4 | 4 | ||
| 4–6 | 3 | ||
| 6–8 | 2 | ||
| >8 | 1 | ||
| The results of this area will be multiplied by factor (f) of 1. | |||
| Annual temperature | Polygons shapefile constructed to map annual temperature variations, considering that algae growth requires specific temperature conditions to optimize its growth | Ann. temp (C°) | Weight |
| <25 | 3 | ||
| 25–30 | 5 | ||
| 30–35 | 5 | ||
| 35–40 | 4 | ||
| >40 | 3 | ||
| The results of this area will be multiplied by factor (f) of 2. | |||
| Coastal line | Polylines shapefile employed to establish the minimum distance boundary of areas from the coastline, extending up to 500 m from 1000 m distance. | Proximity (m) | Weight |
| 1000 | 5 | ||
| 2000 | 4 | ||
| 3000 | 3 | ||
| 4000 | 2 | ||
| 5000 | 1 | ||
| The results of this area will be multiplied by factor (f) of 3. | |||
| Total Weightage | Suitability | Suitability Index |
|---|---|---|
| 50–55 | Suitable | Very High |
| 40–49 | High | |
| 30–39 | Medium | |
| 20–29 | Low | |
| 1–19 | Very Low | |
| 0 | Non-Suitable | - |
| Categories | Suitability Index | Area (km2) | Total (km2) |
|---|---|---|---|
| Non-Suitable | Non-Suitable | 10,763 | 10,763 |
| Suitable | Very low | 2088 | 14,008 |
| Low | 1264 | ||
| Medium | 4322 | ||
| High | 4728 | ||
| Very High | 1606 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padri, M.; Amdah, M.; Latief, M.M.; Fuentes-Grünewald, C. Site Suitability Assessment for Microalgae Plant Deployment in Saudi Arabia Using Multi-Criteria Decision Making and the Analytic Hierarchy Process: A Spatial Approach. Sustainability 2025, 17, 10480. https://doi.org/10.3390/su172310480
Padri M, Amdah M, Latief MM, Fuentes-Grünewald C. Site Suitability Assessment for Microalgae Plant Deployment in Saudi Arabia Using Multi-Criteria Decision Making and the Analytic Hierarchy Process: A Spatial Approach. Sustainability. 2025; 17(23):10480. https://doi.org/10.3390/su172310480
Chicago/Turabian StylePadri, Mohamad, Misdar Amdah, Maisarah Munirah Latief, and Claudio Fuentes-Grünewald. 2025. "Site Suitability Assessment for Microalgae Plant Deployment in Saudi Arabia Using Multi-Criteria Decision Making and the Analytic Hierarchy Process: A Spatial Approach" Sustainability 17, no. 23: 10480. https://doi.org/10.3390/su172310480
APA StylePadri, M., Amdah, M., Latief, M. M., & Fuentes-Grünewald, C. (2025). Site Suitability Assessment for Microalgae Plant Deployment in Saudi Arabia Using Multi-Criteria Decision Making and the Analytic Hierarchy Process: A Spatial Approach. Sustainability, 17(23), 10480. https://doi.org/10.3390/su172310480

