How Does Applying Artificial Intelligence Influence Firms’ Ambidextrous Innovation Performance? Evidence Obtained from Chinese A-Share Listed Firms
Abstract
1. Introduction
2. Literature Review
2.1. Factors Influencing Firms’ Ambidextrous Innovation
2.2. AI Technologies: Essence and Influence on Firms’ Innovation
2.3. The Role of Data in AI Application
3. Theoretical Analysis and Research Hypotheses
3.1. The Impact of Artificial Intelligence on Firms’ Ambidextrous Innovation
3.2. The Moderating Role of Firms’ Data Resources
4. Data and Methods
4.1. Data Source and Sample Selection
4.2. Description of Variables
4.2.1. Dependent Variables
4.2.2. Independent Variable
4.2.3. Moderating Variable
4.2.4. Control Variable
4.3. Model Specification
5. Empirical Results and Analysis
5.1. Descriptive Statistics and Correlation Analysis
5.2. Benchmark Regression Results and Analysis
5.3. Robustness Checks
5.3.1. Test of Omitted Variable Bias
5.3.2. Test of Sample Selection Bias
5.3.3. Test of the Instrumental Variable
5.3.4. Additional Robustness Checks
5.4. Mechanism Testing
5.5. Heterogeneity Test
5.5.1. Slack Resource Heterogeneity
5.5.2. Firms’ AI Foundation Heterogeneity
5.5.3. Industrial Competitiveness Heterogeneity
6. Conclusions and Implications
6.1. Main Research Conclusions
6.2. Theoretical Contributions
6.3. Practical Implementations
6.3.1. Implications for Government
6.3.2. Implications for Firms
6.4. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial intelligence |
| R&D | Research and development |
| GAN | Generative adversarial networks |
| CPDP | Chinese Patent Data Project |
| CSMAR | China Stock Market and Accounting Research |
| ST | Special treatment |
| IPC | International patent classification |
| AIapp | Artificial intelligence application |
| MD&A | Management discussion and analysis |
| DCMM | Management capability maturity assessment model |
| HHI | Herfindahl–Hirschman index |
| PSM | Propensity score matching |
| 2SLS | Two-stage least squares |
| IV | Instrument variable |
References
- Li, H.; Chen, Y. Does Artificial Intelligence Promote Firms’ Green Technological Innovation? Sustainability 2025, 17, 4900. [Google Scholar] [CrossRef]
- Helfat, C.E.; Kaul, A.; Ketchen, D.J.; Barney, J.B.; Chatain, O.; Singh, H. Renewing the Resource-based View: New Contexts, New Concepts, and New Methods. Strateg. Manag. J. 2023, 44, 1357–1390. [Google Scholar] [CrossRef]
- Murray, A.; Rhymer, J.; Sirmon, D.G. Humans and Technology: Forms of Conjoined Agency in Organizations. Acad. Manag. Rev. 2021, 46, 552–571. [Google Scholar] [CrossRef]
- Raisch, S.; Krakowski, S. Artificial Intelligence and Management: The Automation–Augmentation Paradox. Acad. Manag. Rev. 2021, 46, 192–210. [Google Scholar] [CrossRef]
- Gama, F.; Magistretti, S. Artificial Intelligence in Innovation Management: A Review of Innovation Capabilities and a Taxonomy of AI Applications. J. Prod. Innov. Manag. 2025, 42, 76–111. [Google Scholar] [CrossRef]
- March, J.G. Exploration and Exploitation in Organizational Learning. Organ. Sci. 1991, 2, 71–87. [Google Scholar] [CrossRef]
- Jansen, J.J.P.; Van Den Bosch, F.A.J.; Volberda, H.W. Exploratory Innovation, Exploitative Innovation, and Performance: Effects of Organizational Antecedents and Environmental Moderators. Manag. Sci. 2006, 52, 1661–1674. [Google Scholar] [CrossRef]
- Baker, T.; Nelson, R.E. Creating Something from Nothing: Resource Construction through Entrepreneurial Bricolage. Adm. Sci. Q. 2005, 50, 329–366. [Google Scholar] [CrossRef]
- Sirmon, D.G.; Hitt, M.A.; Ireland, R.D.; Gilbert, B.A. Resource Orchestration to Create Competitive Advantage: Breadth, Depth, and Life Cycle Effects. J. Manag. 2011, 37, 1390–1412. [Google Scholar] [CrossRef]
- Rosenkopf, L.; Nerkar, A. Beyond Local Search: Boundary-spanning, Exploration, and Impact in the Optical Disk Industry. Strateg. Manag. J. 2001, 22, 287–306. [Google Scholar] [CrossRef]
- Lin, C.; Chang, C.-C. A Patent-Based Study of the Relationships among Technological Portfolio, Ambidextrous Innovation, and Firm Performance. Technol. Anal. Strateg. Manag. 2015, 27, 1193–1211. [Google Scholar] [CrossRef]
- Limaj, E.; Bernroider, E.W.N. The Roles of Absorptive Capacity and Cultural Balance for Exploratory and Exploitative Innovation in SMEs. J. Bus. Res. 2019, 94, 137–153. [Google Scholar] [CrossRef]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic Capabilities and Strategic Management. Strateg. Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Kinkel, S.; Baumgartner, M.; Cherubini, E. Prerequisites for the Adoption of AI Technologies in Manufacturing—Evidence from a Worldwide Sample of Manufacturing Companies. Technovation 2021, 110, 102375. [Google Scholar] [CrossRef]
- Wu, Q.; Qalati, S.A.; Tajeddini, K.; Wang, H. The Impact of Artificial Intelligence Adoption on Chinese Manufacturing Enterprises’ Innovativeness: New Insights from a Labor Structure Perspective. Ind. Manag. Data Syst. 2025, 125, 849–874. [Google Scholar] [CrossRef]
- Wamba-Taguimdje, S.-L.; Wamba, S.; Kamdjoug, J.R.K.; Wanko, C. Influence of Artificial Intelligence (AI) on Firm Performance: The Business Value of AI-Based Transformation Projects. Bus. Process Manag. J. 2020, 26, 1893–1924. [Google Scholar] [CrossRef]
- Zebec, A.; Stemberger, M. Creating AI Business Value through BPM Capabilities. Bus. Process Manag. J. 2024, 30, 1–26. [Google Scholar] [CrossRef]
- Dey, P.; Chowdhury, S.; Abadie, A.; Yaroson, E.; Sarkar, S. Artificial Intelligence-Driven Supply Chain Resilience in Vietnamese Manufacturing Small- and Medium-Sized Enterprises. Int. J. Prod. Res. 2023, 62, 5417–5456. [Google Scholar] [CrossRef]
- Saleem, I.; Hoque, S.; Tashfeen, R.; Weller, M. The Interplay of AI Adoption, IoT Edge, and Adaptive Resilience to Explain Digital Innovation: Evidence from German Family-Owned SMEs. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 1419–1430. [Google Scholar] [CrossRef]
- Hudson, K.; Morgan, R.E. Industry Exposure to Artificial Intelligence, Board Network Heterogeneity, and Firm Idiosyncratic Risk. J. Manag. Stud. 2024. [Google Scholar] [CrossRef]
- Soto-Acosta, P.; Popa, S.; Martínez-Conesa, I. Information Technology, Knowledge Management and Environmental Dynamism as Drivers of Innovation Ambidexterity: A Study in SMEs. J. Knowl. Manag. 2018, 22, 824–849. [Google Scholar] [CrossRef]
- Bernal, P.; Maicas, J.; Vargas, P. Exploration, Exploitation and Innovation Performance: Disentangling the Evolution of Industry. Ind. Innov. 2019, 26, 295–320. [Google Scholar] [CrossRef]
- Barney, J.B.; Reeves, M. AI Won’t Give You a New Sustainable Advantage; Harvard Business Review: Boston, MA, USA, 2024; pp. 72–79. [Google Scholar]
- Cristofaro, M.; Giardino, P.L. Surfing the AI Waves: The Historical Evolution of Artificial Intelligence in Management and Organizational Studies and Practices. J. Manag. Hist. 2025. ahead-of-print. [Google Scholar] [CrossRef]
- Waseel, A.H.; Zhang, J.-H.; Shehzad, M.U.; Sarki, I.H.; Kamran, M.W. Navigating the Innovation Frontier: Ambidextrous Strategies, Knowledge Creation, and Organizational Agility in the Pursuit of Competitive Excellence. Bus. Process Manag. J. 2024, 30, 2127–2160. [Google Scholar] [CrossRef]
- Oluwafemi, T.B.; Mitchelmore, S.; Nikolopoulos, K. Leading Innovation: Empirical Evidence for Ambidextrous Leadership from UK High-Tech SMEs. J. Bus. Res. 2020, 119, 195–208. [Google Scholar] [CrossRef]
- Tan, M.; Xia, Q. Curious, Unconventional and Creative: CEO Openness and Innovation Ambidexterity. Technol. Anal. Strateg. Manag. 2024, 36, 1054–1066. [Google Scholar] [CrossRef]
- Hanifah, H.; Halim, H.; Ahmad, N.; Vafaei-Zadeh, A. Emanating the Key Factors of Innovation Performance: Leveraging on the Innovation Culture among SMEs in Malaysia. J. Asia Bus. Stud. 2019, 13, 559–587. [Google Scholar] [CrossRef]
- Khan, B.Z. Related Investing: Family Networks, Gender, and Shareholding in Antebellum New England Corporations. Bus. Hist. Rev. 2022, 96, 487–524. [Google Scholar] [CrossRef]
- Mueller, V.; Rosenbusch, N.; Bausch, A. Success Patterns of Exploratory and Exploitative Innovation. J. Manag. 2013, 39, 1606–1636. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, S.; Liu, X. Too Much of a Good Thing: The Dual Effect of R&D Subsidy on Firms’ Exploratory Innovation. IEEE Trans. Eng. Manag. 2023, 70, 1639–1651. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, Y.; Liu, X.; Zhang, H. Can Public R&D Subsidy Facilitate Firms’ Exploratory Innovation? The Heterogeneous Effects between Central and Local Subsidy Programs. Res. Policy 2021, 50, 104221. [Google Scholar] [CrossRef]
- Kim, K.; Seo, E.-H.; Kim, C.Y. The Relationships Between Environmental Dynamism, Absorptive Capacity, Organizational Ambidexterity, and Innovation Performance from the Dynamic Capabilities Perspective. Sustainability 2025, 17, 449. [Google Scholar] [CrossRef]
- Auh, S.; Menguc, B. Balancing Exploration and Exploitation: The Moderating Role of Competitive Intensity. J. Bus. Res. 2005, 58, 1652–1661. [Google Scholar] [CrossRef]
- Bachmann, J.-T.; Ohlies, I.; Flatten, T. Effects of Entrepreneurial Marketing on New Ventures’ Exploitative and Exploratory Innovation: The Moderating Role of Competitive Intensity and Firm Size. Ind. Mark. Manag. 2021, 92, 87–100. [Google Scholar] [CrossRef]
- Li, L.; Wang, Z. Does Investment in Digital Technologies Foster Exploitative and Exploratory Innovation? The Moderating Role of Strategic Flexibility. IEEE Trans. Eng. Manag. 2024, 71, 9402–9413. [Google Scholar] [CrossRef]
- Mariani, M.; Dwivedi, Y.K. Generative Artificial Intelligence in Innovation Management: A Preview of Future Research Developments. J. Bus. Res. 2024, 175, 114542. [Google Scholar] [CrossRef]
- Gehman, J.; Glaser, V.L.; Merritt, P. An Assemblage Perspective on Hybrid Agency: A Commentary on Raisch and Fomina’s “Combining Human and Artificial Intelligence”. Acad. Manag. Rev. 2025, 50, 477–479. [Google Scholar] [CrossRef]
- Grote, G.; Parker, S.K.; Crowston, K. Taming Artificial Intelligence: A Theory of Control-Accountability Alignment among AI Developers and Users. Acad. Manag. Rev. 2024. [Google Scholar] [CrossRef]
- Gregory, R.W.; Henfridsson, O.; Kaganer, E.; Kyriakou, H. The Role of Artificial Intelligence and Data Network Effects for Creating User Value. Acad. Manag. Rev. 2021, 46, 534–551. [Google Scholar] [CrossRef]
- Felin, T.; Holweg, M. Theory Is All You Need: AI, Human Cognition, and Causal Reasoning. Strategy Sci. 2024, 9, 346–371. [Google Scholar] [CrossRef]
- Raisch, S.; Fomina, K. Combining Human and Artificial Intelligence: Hybrid Problem-Solving in Organizations. Acad. Manag. Rev. 2025, 50, 441–464. [Google Scholar] [CrossRef]
- Kemp, A. Competitive Advantage Through Artificial Intelligence: Toward a Theory of Situated AI. Acad. Manag. Rev. 2024, 49, 618–635. [Google Scholar] [CrossRef]
- Chalmers, D.; MacKenzie, N.G.; Carter, S. Artificial Intelligence and Entrepreneurship: Implications for Venture Creation in the Fourth Industrial Revolution. Entrep. Theory Pract. 2021, 45, 1028–1053. [Google Scholar] [CrossRef]
- Krakowski, S.; Luger, J.; Raisch, S. Artificial Intelligence and the Changing Sources of Competitive Advantage. Strateg. Manag. J. 2023, 44, 1425–1452. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, C.; Wei, W.; Li, S. Research on the Influence Mechanism of Enterprise Industrial Internet Standardization on Digital Innovation. Sustainability 2023, 15, 7347. [Google Scholar] [CrossRef]
- Te’eni, D.; Yahav, I.; Zagalsky, A.; Schwartz, D.; Silverman, G.; Cohen, D.; Mann, Y.; Lewinsky, D. Reciprocal Human-Machine Learning: A Theory and an Instantiation for the Case of Message Classification. Manag. Sci. 2023. in advance. [Google Scholar] [CrossRef]
- Kakatkar, C.; Bilgram, V.; Füller, J. Innovation Analytics: Leveraging Artificial Intelligence in the Innovation Process. Bus. Horiz. 2020, 63, 171–181. [Google Scholar] [CrossRef]
- Brem, A.; Giones, F.; Werle, M. The AI Digital Revolution in Innovation: A Conceptual Framework of Artificial Intelligence Technologies for the Management of Innovation. IEEE Trans. Eng. Manag. 2023, 70, 770–776. [Google Scholar] [CrossRef]
- Rammer, C.; Fernández, G.P.; Czarnitzki, D. Artificial Intelligence and Industrial Innovation: Evidence from German Firm-Level Data. Res. Policy 2022, 51, 104555. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, X.; Dong, Y.; Lou, X. How Does Artificial Intelligence Application Enable Sustainable Breakthrough Innovation? Evidence from Chinese Enterprises. Sustainability 2025, 17, 7787. [Google Scholar] [CrossRef]
- Liu, J.; Chang, H.; Forrest, J.Y.-L.; Yang, B. Influence of Artificial Intelligence on Technological Innovation: Evidence from the Panel Data of China’s Manufacturing Sectors. Technol. Forecast. Soc. Change 2020, 158, 120142. [Google Scholar] [CrossRef]
- Boussioux, L.; Lane, J.N.; Zhang, M.; Jacimovic, V.; Lakhani, K.R. The Crowdless Future? Generative AI and Creative Problem-Solving. Organ. Sci. 2024, 35, 1589–1607. [Google Scholar] [CrossRef]
- Yu, Z.; Liang, Z.; Wu, P. How Data Shape Actor Relations in Artificial Intelligence Innovation Systems: An Empirical Observation from China. Ind. Corp. Change 2021, 30, 251–267. [Google Scholar] [CrossRef]
- Lebovitz, S.; Lifshitz-Assaf, H.; Levina, N. To Engage or Not to Engage with AI for Critical Judgments: How Professionals Deal with Opacity When Using AI for Medical Diagnosis. Organ. Sci. 2022, 33, 126–148. [Google Scholar] [CrossRef]
- Moser, C.; Den Hond, F.; Lindebaum, D. Morality in the Age of Artificially Intelligent Algorithms. Acad. Manag. Learn. Educ. 2022, 21, 139–155. [Google Scholar] [CrossRef]
- Barney, J. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Hillebrand, L.; Raisch, S.; Schad, J. Managing with Artificial Intelligence: An Integrative Framework. Acad. Manag. Ann. 2025, 19, 343–375. [Google Scholar] [CrossRef]
- Grant, R.M. Toward a Knowledge-based Theory of the Firm. Strateg. Manag. J. 1996, 17, 109–122. [Google Scholar] [CrossRef]
- Yu, S.; Chai, Y.; Samtani, S.; Liu, H.; Chen, H. Motion Sensor–Based Fall Prevention for Senior Care: A Hidden Markov Model with Generative Adversarial Network Approach. Inf. Syst. Res. 2024, 35, iii–viii. [Google Scholar] [CrossRef]
- Raisch, S.; Birkinshaw, J. Organizational Ambidexterity: Antecedents, Outcomes, and Moderators. J. Manag. 2008, 34, 375–409. [Google Scholar] [CrossRef]
- He, Z.-L.; Tong, T.W.; Zhang, Y.; He, W. A Database Linking Chinese Patents to China’s Census Firms. Sci. Data 2018, 5, 180042. [Google Scholar] [CrossRef]
- CSMAR. Available online: https://data.csmar.com/ (accessed on 20 October 2025).
- Nambisan, S.; Lyytinen, K.; Majchrzak, A.; Song, M. Digital Innovation Management: Reinventing Innovation Management Research in a Digital World. MIS Q. 2017, 41, 223–238. [Google Scholar] [CrossRef]
- Cordero, R. The Measurement of Innovation Performance in the Firm: An Overview. Res. Policy 1990, 19, 185–192. [Google Scholar] [CrossRef]
- Guan, J.; Liu, N. Exploitative and Exploratory Innovations in Knowledge Network and Collaboration Network: A Patent Analysis in the Technological Field of Nano-Energy. Res. Policy 2016, 45, 97–112. [Google Scholar] [CrossRef]
- Kindermann, B.; Beutel, S.; Garcia de Lomana, G.; Strese, S.; Bendig, D.; Brettel, M. Digital Orientation: Conceptualization and Operationalization of a New Strategic Orientation. Eur. Manag. J. 2021, 39, 645–657. [Google Scholar] [CrossRef]
- Mishra, S.; Ewing, M.T.; Cooper, H.B. Artificial Intelligence Focus and Firm Performance. J. Acad. Mark. Sci. 2022, 50, 1176–1197. [Google Scholar] [CrossRef]
- Whorf, B.L.; Carroll, J.B.; Chase, S. Language, Thought, and Reality; The MIT Press: Cambrige, MA, USA, 1964. [Google Scholar]
- Ocasio, W. Towards an Attention-based View of the Firm. Strateg. Manag. J. 1997, 18, 187–206. [Google Scholar] [CrossRef]
- McKenny, A.F.; Aguinis, H.; Short, J.C.; Anglin, A.H. What Doesn’t Get Measured Does Exist: Improving the Accuracy of Computer-Aided Text Analysis. J. Manag. 2018, 44, 2909–2933. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, J.; Li, J. How Do Family Firms Respond Strategically to the Digital Transformation Trend: Disclosing Symbolic Cues or Making Substantive Changes? J. Bus. Res. 2023, 155, 113395. [Google Scholar] [CrossRef]
- Hu, C.; Li, Y.; Zheng, X. Data Assets, Information Uses, and Operational Efficiency. Appl. Econ. 2022, 54, 6887–6900. [Google Scholar] [CrossRef]
- GB/T 36073-2018; China’s Data Management Capability Maturity Assessment Model (DCMM). Standardization Administration of China (SAC): Beijing, China, 2018.
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and Their Compositionality. In NIPS’13: Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2; Curran Associates Inc.: Red Hook, NY, USA, 2013; Volume 2, pp. 3111–3119. [Google Scholar]
- Altonji, J.G.; Elder, T.E.; Taber, C.R. Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools. J. Political Econ. 2005, 113, 151–184. [Google Scholar] [CrossRef]
- Loonam, J.; Eaves, S.; Kumar, V.; Parry, G. Towards Digital Transformation: Lessons Learned from Traditional Organizations. Strateg. Change 2018, 27, 101–109. [Google Scholar] [CrossRef]
- Chen, J.; Roth, J. Logs with Zeros? Some Problems and Solutions. Q. J. Econ. 2023, 139, 891–936. [Google Scholar] [CrossRef]
- Chen, C.-J.; Huang, Y.-F. Creative Workforce Density, Organizational Slack, and Innovation Performance. J. Bus. Res. 2010, 63, 411–417. [Google Scholar] [CrossRef]
- Nohria, N.; Gulati, R. Is Slack Good or Bad for Innovation? Acad. Manag. J. 1996, 39, 1245–1264. [Google Scholar] [CrossRef]

| Research Topic | Representative Studies | Key Findings |
|---|---|---|
| Factors Influencing Firms’ Ambidextrous Innovation | Oluwafemi et al., (2020) [26]; Waseel et al., (2024) [25] | Organizational characteristics such as leadership style, strategic orientation, and technological capabilities influence firms’ ambidextrous innovation performance. |
| Gao et al., (2021, 2023) [31,32]; Kim et al., (2025) [33]; Auh & Menguc, (2005) [34] | Favorable environments and situations, such as instances wherein governmental subsidies are received, foster firms’ ambidextrous innovation; severe competition weakens firms’ exploratory innovation practices. | |
| Influences of AI Application on Innovation | Brem et al., (2023) [49]; Gama & Magistretti, (2025) [5]; Kakatkar et al., (2020) [48]; Rammer et al., (2022) [50]; Sun et al., (2025) [51] | AI application fundamentally reshapes firms’ existing operation processes, business models, and labor structures in a positive way, boosting their capacity for knowledge integration and technology spillover. |
| Data in AI Application | Boussioux et al., (2024) [53]; Felin et al., (2024) [41]; Kemp, (2024) [43]; Lebovitz et al., (2022) [55] | Data constitute the fundamental factor of production and the capability boundary for modern AI technology, particularly machine learning and deep learning. Their scale, depth, quality, representativeness, and governance directly determine the effectiveness and sustainability of AI applications. |
| AI Application Keywords |
|---|
| pattern recognition, robotic process automation, predictive analytics, data pipelines, speech recognition, robotic, cognitive framework, OCR, robot, handwriting recognition, artificial intelligence, machine learning model, facial recognition, deep learning, machine learning framework, tensor, natural language processing, neural network, model training, tensor processing unit, natural language understanding, artificial neural network, customer segmentation, TPU, intent classification, convolutional neural network, personalization engines, cuda, slot filling, recurrent neural network, inferencing, dialogflow, entity recognition, generative adversarial network, embedding, Word2Vec, semantic translation, feedforward network, algorithm, Doc2Vec, machine translation, machine learning, automation, GloVe, Chatbot, supervised, machine learning, data science, universal sentence encoding, autonomous agent, unsupervised machine learning, data acquisition, embeddings from language models, language identification, supervised learning, data processing, neural network language model, named entity extraction, unsupervised learning, modelling, latent semantic analysis, named entity recognition, reinforcement learning, AI operations, vector space models, relationship extraction, Model registry, AIOps, deep averaging network, terminology extraction, model manifestation, machine learning, Ops, prediction, semantic web, model servicing, MLOps, clustering engine, computer vision, model monitoring, machine learning ontologies, topic modelling, object recognition, model validation, AI ethics, RapidMiner, intelligent word recognition, transfer learning, machine learning bias, KNIME, intelligent image analysis, oneshot learning, machine bias, Alteryx, image processing, pooling, training data, SAS (Version 9.4). |
| Seed Word | Extended Word |
|---|---|
| Data strategy | cloud, data infrastructure, data connection |
| Data governance | data management, data hub, data middleware, data middle platform, business intelligence, informatization, computility, algorithm |
| Data framework | parallel processing, data model, data sharing, data interflow, service-oriented architecture, database, AutoML, sampling, PyTorch, TensorFlow, visualization, open edge computing, metadata, product data management, distributed computation, data modeling |
| Data standard | data warehouse, data exchange, data fabric, data retrieval, data coding, security orchestration, automation and response, data closed loop, network video recorder, enterprise resource planning, DevOps, data model, decision support system |
| Data quality | internet safety, password, information safety, data validation, sensitive data, data provenance, data lineage, data monitoring, data reconciliation, data collection |
| Data safety | information security, local area network, private data, data protection |
| Data application | data analysis, data mining, intellectual algorithm, data business, software development, data silo, data modeling, data service, data sensing |
| Data life cycle | data maintenance, intelligent fault diagnose, data retire, data destruction |
| Variable Types | Variable | Description | Measurement |
|---|---|---|---|
| Dependent Variable | Exploit | Exploitative Innovation | Exploitative patent applications: A patent is classified as exploitative if the first four digits of the IPC code appeared at least once in the past five years. |
| Explore | Exploratory Innovation | Exploratory patent applications: A patent is classified as exploitative if the first four digits of the IPC code did not appear in the past five years. | |
| Independent Variable | AIapp | AI Application | The frequency of AI-related keywords in the MD&A part of the annual report. |
| Moderating Variable | Data | Data Resources | Information from the annual report obtained by using a keyword list (expanded via Word2Vec) based on the eight major building blocks of the DCMM. |
| Control Variables | Size | Firm Size | Natural logarithm of the total assets at the end of the year. |
| Age | Firm Age | Natural logarithm of the difference between the static year and the firm’s establishment year. | |
| Roa | Return on Assets | Ratio of net profit to total assets. | |
| Leverage | Debt Ratio | Ratio of total liabilities to total assets. | |
| R&D | Research and Development Intensity | Ratio of annual research and development expenses to total assets | |
| Board | Board Scale | Natural logarithm of the number of people on the board. | |
| Independent | Governance Structure | Proportion of independent directors on the board. | |
| Top5 | Ownership Concentration | HHI of the shareholding ratio of the top five shareholders. |
| Variable Name | Variable Expression | Obs | Mean | Std | Min | Max |
|---|---|---|---|---|---|---|
| Firms’ exploitative innovation performance | Exploit | 20,998 | 2.730 | 1.899 | 0.000 | 7.372 |
| Firms’ exploratory innovation performance | Explore | 20,998 | 1.461 | 1.133 | 0.000 | 4.060 |
| Firms’ AI application | AIapp | 20,998 | 0.739 | 0.966 | 0.000 | 3.989 |
| Firms’ size | Size | 20,998 | 22.589 | 1.309 | 17.641 | 28.644 |
| Firms’ age | Age | 20,998 | 3.090 | 0.261 | 1.792 | 4.290 |
| Return on firms’ total assets | Roa | 20,998 | 0.462 | 0.207 | 0.008 | 1.957 |
| Firms’ liability | Leverage | 20,998 | 0.023 | 0.089 | −2.646 | 0.786 |
| R&D investment intensity | R&D | 20,998 | 0.017 | 0.021 | 0.000 | 1.455 |
| Firms’ board scale | Board | 20,998 | 2.123 | 0.200 | 0.000 | 2.890 |
| Firms’ governance structure | Independent | 20,998 | 0.377 | 0.057 | 0.000 | 0.800 |
| Firms’ share concentrationTOP5 | Top5 | 20,998 | 0.145 | 0.110 | 0.001 | 0.810 |
| Variables | Exploit | Explore | AIapp | Size | Age | Leverage | Roa | R&D | Board | Independent | Top5 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Exploit | 1.000 | ||||||||||
| Explore | 0.705 *** | 1.000 | |||||||||
| AIapp | 0.176 *** | 0.106 *** | 1.000 | ||||||||
| Size | 0.357 *** | 0.301 *** | 0.082 *** | 1.000 | |||||||
| Age | −0.113 *** | −0.130 *** | 0.025 ** | 0.054 *** | 1.000 | ||||||
| Leverage | 0.067 *** | 0.055 *** | 0.018 * | 0.404 *** | 0.103 *** | 1.000 | |||||
| Roa | 0.103 *** | 0.095 *** | −0.011 | 0.147 *** | −0.010 | −0.288 *** | 1.000 | ||||
| R&D | 0.464 *** | 0.286 *** | 0.154 *** | −0.117 *** | −0.101 *** | −0.096 *** | 0.044 *** | 1.000 | |||
| Board | 0.111 *** | 0.108 *** | −0.037 *** | 0.241 *** | 0.009 | 0.101 *** | 0.043 *** | −0.042 *** | 1.000 | ||
| Independent | −0.005 | −0.018 * | 0.038 *** | 0.026 *** | −0.014 | −0.007 | 0.000 | −0.030 *** | −0.525 *** | 1.000 | |
| TOP5 | 0.075 *** | 0.093 *** | −0.026 *** | 0.324 *** | −0.091 *** | 0.059 *** | 0.148 *** | −0.090 *** | 0.096 *** | 0.041 *** | 1.000 |
| VIF | — | — | 1.087 | 1.525 | 1.028 | 1.456 | 1.240 | 1.119 | 1.558 | 1.451 | 1.131 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| Variables | Exploit | Explore | Exploit | Explore | Exploit | Explore |
| AIapp | 0.116 *** (0.015) | 0.058 *** (0.014) | 0.075 *** (0.015) | 0.033 ** (0.013) | 0.071 *** (0.015) | 0.047 *** (0.014) |
| Data | −0.031 (0.030) | 0.046 (0.030) | ||||
| AIapp×Data | 0.037 ** (0.018) | −0.051 *** (0.016) | ||||
| Size | 0.464 *** (0.032) | 0.293 *** (0.025) | 0.487 *** (0.033) | 0.312 *** (0.026) | ||
| Age | −0.378 (0.343) | −0.960 *** (0.278) | −0.437 (0.331) | −1.11 *** (0.280) | ||
| Roa | −0.170 ** (0.101) | −0.263 ** (0.084) | −0.189 * (0.101) | −0.254 *** (0.088) | ||
| Leverage | 0.050 (0.103) | 0.126 (0.097) | 0.010 (0.105) | 0.143 (0.102) | ||
| R&D | 4.814 * (2.672) | 1.891 (1.193) | 5.06 * (2.76) | 1.99 (1.23) | ||
| Board | 0.217 ** (0.103) | 0.030 (0.089) | 0.209 ** (0.103) | 0.038 (0.089) | ||
| Independent | 0.359 (0.292) | −0.312 (0.242) | 0.313 (0.292) | −0.461 * (0.247) | ||
| Top5 | 0.247 (0.269) | 0.299 (0.206) | 0.344 (0.283) | 0.617 *** (0.233) | ||
| Firm FE | Y | Y | Y | Y | Y | Y |
| Year FE | Y | Y | Y | Y | Y | Y |
| Observation | 20,998 | 20,998 | 20,998 | 20,998 | 20,998 | 20,998 |
| Adj.R square | 0.815 | 0.456 | 0.824 | 0.466 | 0.834 | 0.465 |
| Exploit | Explore | |||||
|---|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | (6) | |
| Groups of Controls | Coefficient of Limited Controls | Coefficient of All Controls | Ratio Difference | Coefficient of Limited Controls | Coefficient of All Controls | Ratio Difference |
| No Controls | 0.513 | 0.075 | 0.171 | 0.180 | 0.033 | 0.224 |
| Only Control Firm- and Year-Fixed Effects | 0.116 | 0.075 | 1.830 | 0.058 | 0.033 | 1.320 |
| Only Control Firm-Specific Variables | 0.099 | 0.075 | 3.125 | 0.059 | 0.033 | 1.270 |
| (1) | (2) | (3) | (4) | (5) | |
|---|---|---|---|---|---|
| Variables | Exploit | Explore | AIapp | Exploit | Explore |
| AIapp | 0.028 ** (0.013) | 0.069 ** (0.015) | |||
| IV | 0.038 *** (0.011) | ||||
| AI_IV | 2.10 *** (0.671) | 0.968 *** (0.338) | |||
| Controls | Y | Y | Y | Y | Y |
| Firm FE | Y | Y | Y | Y | Y |
| Year FE | Y | Y | Y | Y | Y |
| Observation | 19,884 | 19,884 | 18,788 | 18,788 | 18,788 |
| Adj.R square | 0.818 | 0.456 | 0.323 | 0.224 | 0.167 |
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
|---|---|---|---|---|---|---|---|---|
| Variables | Exploit | Explore | Exploit | Explore | Exploit | Explore | Exploit | Explore |
| AIapp | 0.079 *** (0.016) | 0.030 * (0.015) | 0.070 *** (0.015) | 0.042 *** (0.013) | 0.086 *** (0.023) | 0.051 ** (0.021) | ||
| Invest | 0.007 ** (0.003) | 0.006 *** (0.002) | ||||||
| Controls | Y | Y | Y | Y | Y | Y | Y | Y |
| Firm FE | Y | Y | Y | Y | Y | Y | Y | Y |
| Year FE | Y | Y | Y | Y | Y | Y | Y | Y |
| Year-Industry FE | N | N | N | N | Y | Y | N | N |
| Observation | 17,398 | 17,398 | 20,998 | 20,998 | 20,998 | 20,998 | 9942 | 9942 |
| Adj.R square | 0.840 | 0.474 | 0.822 | 0.466 | 0.834 | 0.482 | 0.835 | 0.490 |
| (1) | (2) | (3) | (4) | (5) | (6) | |
|---|---|---|---|---|---|---|
| Variables | Efficiency | Exploit | Explore | Graduate | Exploit | Explore |
| AIapp | 0.004 *** (0.001) | 0.041 *** (0.010) | 0.005 ** (0.002) | 0.382 *** (0.135) | 0.073 *** (0.015) | 0.031 ** (0.013) |
| Efficiency | 8.866 *** (0.189) | 7.188 *** (0.156) | ||||
| Graduate | 0.005 *** (0.001) | 0.004 *** (0.001) | ||||
| Controls | Y | Y | Y | Y | Y | Y |
| Firm FE | Y | Y | Y | Y | Y | Y |
| Year FE | Y | Y | Y | Y | Y | Y |
| Observation | 20,998 | 20,998 | 20,998 | 20,998 | 20,998 | 20,998 |
| Adj.R square | 0.730 | 0.897 | 0.602 | 0.836 | 0.824 | 0.467 |
| (1) | (2) | (3) | (4) | |
|---|---|---|---|---|
| Variables | High Slack Resource | Low Slack Resource | ||
| Exploit | Explore | Exploit | Explore | |
| AIapp | 0.072 *** (0.018) | 0.026 * (0.013) | 0.062 *** (0.023) | 0.034 (0.020) |
| Controls | Y | Y | Y | Y |
| Firm FE | Y | Y | Y | Y |
| Year FE | Y | Y | Y | Y |
| Observation | 10,453 | 10,453 | 10,545 | 10,545 |
| Adj.R square | 0.837 | 0.458 | 0.829 | 0.501 |
| (1) | (2) | (3) | (4) | |
|---|---|---|---|---|
| Variables | High AI Foundation | Low AI Foundation | ||
| Exploit | Explore | Exploit | Explore | |
| AIapp | 0.034 (0.021) | −0.041 (0.033) | 0.087 *** (0.016) | 0.041 ** (0.014) |
| Controls | Y | Y | Y | Y |
| Firm FE | Y | Y | Y | Y |
| Year FE | Y | Y | Y | Y |
| Observation | 2042 | 2042 | 18,956 | 18,956 |
| Adj.R square | 0.828 | 0.466 | 0.812 | 0.465 |
| (1) | (2) | (3) | (4) | |
|---|---|---|---|---|
| Variables | High Competition Intensity | Low Competition Intensity | ||
| Exploit | Explore | Exploit | Explore | |
| AIapp | 0.055 *** (0.019) | −0.001 (0.018) | 0.085 *** (0.02) | 0.056 ** (0.020) |
| Controls | Y | Y | Y | Y |
| Firm FE | Y | Y | Y | Y |
| Year FE | Y | Y | Y | Y |
| Observation | 10,459 | 10,459 | 10,539 | 10,539 |
| Adj.R square | 0.822 | 0.447 | 0.833 | 0.504 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Li, C. How Does Applying Artificial Intelligence Influence Firms’ Ambidextrous Innovation Performance? Evidence Obtained from Chinese A-Share Listed Firms. Sustainability 2025, 17, 10430. https://doi.org/10.3390/su172310430
Liu L, Li C. How Does Applying Artificial Intelligence Influence Firms’ Ambidextrous Innovation Performance? Evidence Obtained from Chinese A-Share Listed Firms. Sustainability. 2025; 17(23):10430. https://doi.org/10.3390/su172310430
Chicago/Turabian StyleLiu, Linqing, and Chengye Li. 2025. "How Does Applying Artificial Intelligence Influence Firms’ Ambidextrous Innovation Performance? Evidence Obtained from Chinese A-Share Listed Firms" Sustainability 17, no. 23: 10430. https://doi.org/10.3390/su172310430
APA StyleLiu, L., & Li, C. (2025). How Does Applying Artificial Intelligence Influence Firms’ Ambidextrous Innovation Performance? Evidence Obtained from Chinese A-Share Listed Firms. Sustainability, 17(23), 10430. https://doi.org/10.3390/su172310430
