Evaluating Greenhouse Gas Reduction Efficiency Through Hydrogen Ecosystem Implementation from a Life-Cycle Perspective
Abstract
1. Introduction
2. Hydrogen Ecosystem Overview
2.1. Key Components
2.2. Korea Hydrogen Roadmap Framework
3. Methodology
3.1. Definition of GHG Reduction Efficiency
3.2. Scenario Design
3.2.1. Hydrogen Production
3.2.2. Hydrogen Distribution
3.2.3. Hydrogen Utilization
4. Results and Discussion
4.1. Hydrogen Production Phase
4.2. Hydrogen Utilization Phase
4.2.1. Power Generation Application
4.2.2. Mobility Application
5. Conclusions
- The use of average values for vehicle efficiency and distance traveled does not fully capture the variability among different vehicle types, such as heavy-duty trucks and public transit fleets.
- The analysis was limited to mobility and power applications. Broader assessments are needed to explore hydrogen use in residential and commercial energy systems, hydrogen-based feedstocks for chemical industries, and emerging sectors such as maritime and aviation transport.
- The environmental impact of hydrogen storage and distribution remains underexplored. In this study, the distribution phase was excluded due to heterogeneity in transport routes, infrastructure development, and the absence of reliable datasets. We acknowledge that this omission limits the comprehensiveness of the LCA. Future studies should employ scenario-based or sensitivity analyses comparing pipeline transport, liquefied hydrogen transport, and chemical carrier pathways to quantify distribution-phase emissions and enhance methodological robustness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Volume 2, p. 2391. [Google Scholar] [CrossRef]
- Bouckaert, S.; Pales, A.F.; McGlade, C.; Remme, U.; Wanner, B.; Varro, L.; D’Ambrosio, D.; Spencer, T.; International Energy Agency. Net Zero by 2050: A Roadmap for the Global Energy Sector. 2021. Available online: https://trid.trb.org/View/1856381 (accessed on 4 July 2025).
- Osman, A.I.; Al-Muhtaseb, A.H.; Al-Fatesh, A.S.; Rooney, D.W. Life cycle assessment of hydrogen production, storage, and utilization toward sustainability. WIREs Energy Environ. 2024, 13, e526. [Google Scholar] [CrossRef]
- Puig-Samper, G.; Bargiacchi, E.; Iribarren, D.; Dufour, J. Life-cycle assessment of hydrogen systems: A systematic review and meta-regression analysis. J. Clean. Prod. 2024, 470, 143330. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Yang, M.; Hunger, R.; Berrettoni, S.; Sprecher, B.; Wang, B. A review of hydrogen storage and transport technologies. Clean Energy 2023, 7, 190–216. [Google Scholar] [CrossRef]
- Hoschke, J.; Chowdhury, M.F.W.; Venezuela, J.; Atrens, A. A review of hydrogen embrittlement in gas transmission pipeline steels. Corros. Rev. 2023, 41, 277–317. [Google Scholar] [CrossRef]
- Martinez, G.E.; Degens, R.; Espadas-Aldana, G.; Costa, D.; Cardellini, G. Prospective Life Cycle Assessment of Hydrogen: A Systematic Review of Methodological Choices. Energies 2024, 17, 4297. [Google Scholar] [CrossRef]
- Maniscalco, M.P.; Longo, S.; Cellura, M.; Miccichè, G.; Ferraro, M. Critical review of life cycle assessment of hydrogen production pathways. Environments 2024, 11, 108. [Google Scholar] [CrossRef]
- Ocko, I.B.; Hamburg, S.P. Climate consequences of hydrogen emissions. Atmos. Chem. Phys. 2022, 22, 9349–9368. [Google Scholar] [CrossRef]
- Jeong, S.; Hyeon, H.; Lee, J.; Kim, Y. Vision and Strategic Planning for Hydrogen City Infrastructure and Hydrogen Grid Technology Development Toward a Future Hydrogen Society. Final Research Report. Korea Institute of Energy Research, Korea Agency for Infrastructure Technology Advancement, Ministry of Land, Infrastructure, and Transport, Republic of Korea. 2021. Available online: https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202100022805 (accessed on 25 October 2025).
- Ayca, S.; Dincer, I. Life cycle environmental impact assessment and review of hydrogen fuels obtained from various sources for vehicles. Int. J. Hydrog. Energy 2025, 127, 265–274. [Google Scholar] [CrossRef]
- Rinawati, D.I.; Permadi, D.A.; Siregar, M.R.; Hasibuan, R.; Nugroho, B.A. Life-cycle assessment of hydrogen utilization in power generation: A systematic review of technological and methodological choices. Front. Sustain. 2022, 3, 920876. [Google Scholar] [CrossRef]
- Yamane, F. Fukushima Hydrogen Energy Research Field in Japan ready for green hydrogen production. Fuel Cells Bull. 2020, 2020, 1. [Google Scholar] [CrossRef]
- Heaven Project. H2 Energy Applications in Valley Environments for Northern Netherlands. Heaven Project. Available online: https://heavenn.org (accessed on 4 July 2025).
- Choi, W.; Kang, S. Greenhouse gas reduction and economic cost of technologies using green hydrogen in the steel industry. J. Environ. Manag. 2023, 335, 117569. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Dickson, R.; Liu, J.J. Life cycle assessment of inland green hydrogen supply chain networks with current challenges and future prospects. ACS Sustain. Chem. Eng. 2021, 9, 17152–17163. [Google Scholar] [CrossRef]
- Elgowainy, A.; Han, J.; Wang, M.; Bafana, A.; Lee, U.; DiVita, V.; Cai, H.; Lohse-Busch, H. Environmental life-cycle analysis of hydrogen technology pathways in the United States. Front. Energy Res. 2024, 12, 1473383. [Google Scholar] [CrossRef]
- Sand, M.; Fuglestvedt, J.S.; Collins, W.J.; Smith, S.J.; O’Connor, F.M. A multi-model assessment of the global warming potential of hydrogen. Commun. Earth Environ. 2023, 4, 203. [Google Scholar] [CrossRef]
- Lee, H.C.; Kim, D.; Kang, M.; Kim, H. Recent advances in photoelectrochemical hydrogen production using I–III–VI quantum dots. Nanoscale 2024, 16, 9295–9310. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-M.; Kim, D. Life Cycle Assessment of Greenhouse Gas Emissions in Hydrogen Production via Water Electrolysis in South Korea. Sustainability 2024, 16, 11010. [Google Scholar] [CrossRef]
- Cooper, J.; Dubey, L.; Bakkaloglu, S.; Hawkes, A. Hydrogen emissions from the hydrogen value chain—emissions profile and impact to global warming. Sci. Total Environ. 2022, 830, 154624. [Google Scholar] [CrossRef] [PubMed]
- Halder, P.; Hasanuzzaman, M.; Rahim, N.A.; Pandey, A.K. Advancements in hydrogen production, storage, distribution and refuelling for a sustainable transport sector: Hydrogen fuel cell vehicles. Int. J. Hydrog. Energy 2024, 52, 973–1004. [Google Scholar] [CrossRef]
- Government of the Republic of Korea, Ministry of Trade, Industry and Energy (MOTIE). Hydrogen Economy Promotion Roadmap. 2019. Available online: https://www.motie.go.kr/kor/article/ATCLf724eb567/210222/view (accessed on 4 July 2025).
- Government of the Republic of Korea, Ministry of Trade, Industry and Energy (MOTIE). First Basic Plan for the Implementation of the Hydrogen Economy. 2021. Available online: https://h2hub.or.kr/main/yard/video.do?mode=view&articleNo=913&article.offset=0&articleLimit=10 (accessed on 4 July 2025).
- Government of the Republic of Korea, Ministry of Land, Infrastructure and Transport (MOLIT). Next-Level Hydrogen City 2.0 Strategy. 2024. Available online: https://www.korea.kr/briefing/pressReleaseView.do?newsId=156658162 (accessed on 4 July 2025).
- Goita, E.G.; Berrill, P.; Zeng, T. Effect of hydrogen leakage on the life cycle climate impacts of hydrogen supply chains. Commun. Earth Environ. 2025, 6, 160. [Google Scholar] [CrossRef]
- De Kleijne, K.; Gibon, T.; Hertwich, E.G. Worldwide greenhouse gas emissions of green hydrogen production and transport. Nat. Energy 2024, 9, 1139–1152. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport (MOLIT). Status of Hydrogen Vehicle Registrations in Korea. 2025. Available online: https://h2hub.or.kr/main/stat/stat_use_hCar_apply.do (accessed on 4 July 2025).
- Korea Transportation Safety Authority. Automobile Driving Distance Statistics. 2023. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=426&tblId=DT_42601_N003&conn_path=I2 (accessed on 4 July 2025).
- Korea Energy Economics Institute. Natural Gas Imports by Country. Korea Energy Statistics Information System (KESIS). 2025. Available online: https://kesis.keei.re.kr/statHtml/statHtml.do?orgId=339&tblId=DT_KITA_0004&conn_path=I2 (accessed on 30 September 2025).
- Ecoinvent Association. Life Cycle Inventory Dataset: Hydrogen Production, Steam Methane Reforming, Version 3.11; Cut-off System Model; Ecoinvent Database. 2025. Available online: https://ecoquery.ecoinvent.org/3.11/cutoff/dataset/26691/documentation (accessed on 18 August 2025).
- Ecoinvent Association. Life Cycle Inventory Dataset; Hydrogen Production, Gaseous, Petroleum Refinery Operation, Version 3.11; Cut-off System Model; Ecoinvent Database. 2025. Available online: https://ecoquery.ecoinvent.org/3.11/cutoff/dataset/20555/documentation (accessed on 18 August 2025).
- Gulraiz, A.; Liu, C.; Lee, C. Energy advancements and integration strategies in hydrogen and battery storage for renewable energy systems. iScience 2025, 28, 111945. [Google Scholar] [CrossRef] [PubMed]
- Kadhim, M.Q.; Oshchepkov, P.P. Comparative analysis of diesel fuel types on engine performance and emissions. Int. J. Low-Carbon Technol. 2024, 19, 2702–2708. [Google Scholar] [CrossRef]
- Korea Environmental Industry & Technology Institute. Life Cycle Inventory Dataset: Anthracite Coal; Production Mix, at Plant. Global LCA Data Access Network (GLAD). Available online: http://133.186.241.65/datasetdetail/process.xhtml?uuid=436d6928-9fe0-4846-9c99-03d3add503eb&version=00.00.001 (accessed on 18 August 2025).
- Korea Environmental Industry & Technology Institute. Life Cycle Inventory Dataset: Diesel, Mineral Oil; Production Mix, at Plant. Global LCA Data Access Network (GLAD). Available online: http://133.186.241.65/datasetdetail/process.xhtml?uuid=01e8bb45-c8eb-47ed-ba09-f1645372c6ab&version=00.00.001 (accessed on 18 August 2025).
- Korea Environmental Industry & Technology Institute. Life Cycle Inventory Dataset: Gasoline; Production Mix, at Plant. Global LCA Data Access Network (GLAD). Available online: http://133.186.241.65/datasetdetail/process.xhtml?uuid=c6a62851-83b8-41c5-8e5d-aba03b2b3332&version=00.00.001 (accessed on 18 August 2025).
- Korea Environmental Industry & Technology Institute. Life Cycle Inventory Dataset: Kerosene; Production Mix, at Plant. Global LCA Data Access Network (GLAD). Available online: http://133.186.241.65/datasetdetail/process.xhtml?uuid=596644e9-702f-44f7-b0e8-6d2751c07e3c&version=00.00.001 (accessed on 18 August 2025).
- Korea Environmental Industry & Technology Institute. Life Cycle Inventory Dataset: Liquefied Natural Gas, Natural Gas; Production Mix, at Plant. Global LCA Data Access Network (GLAD). Available online: http://133.186.241.65/datasetdetail/process.xhtml?uuid=68cd0f83-d623-4125-80b6-ec2e140f5d3f&version=00.00.001 (accessed on 18 August 2025).
- Hydrogen Council. Policy Toolbox for Low Carbon and Renewable Hydrogen. 2021. Available online: https://hydrogencouncil.com/wp-content/uploads/2021/11/Hydrogen-Council_Policy-Toolbox.pdf (accessed on 25 October 2025).
- Odenweller, A.; Ueckerdt, F. The green hydrogen ambition and implementation gap. Nat. Energy 2025, 10, 110–123. [Google Scholar] [CrossRef]
- Oh, H.; Kim, J.; Park, S.; Lee, M.; Jeong, H. Economic analysis of grey and blue hydrogen for carbon and tax credits. J. Korean Soc. Miner. Energy Resour. Eng. 2023, 60, 78–87. [Google Scholar] [CrossRef]
- IRENA, International Renewable Energy Agency. Green Hydrogen: A Guide to Policy Making. 2020. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Nov/IRENA_Green_hydrogen_policy_2020.pdf (accessed on 25 October 2025).





| Area | Type | Total | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Passenger Vehicle | Passenger Van | Freight Vehicle | Special-Purpose Vehicle | ||||||
| Private | Commercial | Private | Commercial | Private | Commercial | Private | Commercial | ||
| Seoul | 3041 | 63 | 19 | 78 | 5 | - | 1 | - | 3207 |
| Busan | 2122 | 44 | 8 | 136 | - | - | - | - | 2310 |
| Daegu | 675 | 25 | - | 29 | - | - | - | - | 729 |
| Incheon | 2046 | 182 | 26 | 380 | 5 | 7 | - | - | 2646 |
| Gwangju | 1245 | 5 | 1 | 42 | 4 | - | - | - | 1297 |
| Daejeon | 1870 | - | 1 | 70 | - | - | 1 | - | 1942 |
| Ulsan | 2902 | 58 | 8 | 66 | 1 | 2 | - | - | 3037 |
| Sejong | 468 | 5 | - | 65 | - | - | - | - | 538 |
| Gyeonggi | 7984 | 225 | 4 | 231 | 2 | 2 | - | - | 8448 |
| Gangwon | 2660 | 30 | 2 | 23 | 1 | 1 | - | - | 2717 |
| Chungbuk | 2218 | 18 | 1 | 66 | - | - | - | - | 2303 |
| Chungnam | 1744 | 7 | 4 | 45 | 4 | - | 1 | - | 1805 |
| Jeonbuk | 2407 | 29 | 4 | 259 | 2 | - | 1 | - | 2702 |
| Jeonnam | 1180 | 16 | - | 47 | - | - | - | - | 1243 |
| Gyeongbuk | 501 | 1 | 6 | 72 | - | - | - | - | 580 |
| Gyeongnam | 2879 | 18 | - | 147 | 1 | - | - | - | 3045 |
| Jeju | 51 | - | 1 | 20 | 1 | - | - | - | 73 |
| Total | 35,993 | 726 | 85 | 1776 | 26 | 12 | 4 | - | 38,622 |
| Area | Type | |||||||
|---|---|---|---|---|---|---|---|---|
| Passenger Vehicle | Passenger Van | Freight Vehicle | Special-Purpose Vehicle | |||||
| Private | Commercial | Private | Commercial | Private | Commercial | Private | Commercial | |
| Seoul | 29,969,055 | 1,963,773 | 219,840 | 4,797,195 | 68,438 | - | 7629 | - |
| Busan | 22,848,635 | 1,056,748 | 94,900 | 7,426,144 | - | - | - | - |
| Daegu | 7,465,163 | 809,388 | - | 1,915,885 | - | - | - | - |
| Incheon | 22,403,700 | 3,813,082 | 309,374 | 19,154,470 | 69,533 | 302,768 | - | - |
| Gwangju | 13,905,405 | 166,440 | 11,352 | 2,313,297 | 56,064 | - | - | - |
| Daejeon | 20,271,735 | - | 12,082 | 4,300,065 | - | - | 10,074 | - |
| Ulsan | 31,247,285 | 2,182,627 | 92,564 | 4,119,390 | 12,155 | 97,747 | - | - |
| Sejong | 5,910,372 | 113,698 | - | 4,887,350 | - | - | - | - |
| Gyeonggi | 90,630,376 | 6,799,950 | 50,954 | 14,797,283 | 28,908 | 92,491 | - | - |
| Gangwon | 30,777,530 | 1,042,440 | 24,893 | 1,463,249 | 11,461 | 42,851 | - | - |
| Chungbuk | 25,825,283 | 528,885 | 12,483 | 4,068,801 | - | - | - | - |
| Chungnam | 20,688,200 | 203,889 | 52,268 | 2,754,473 | 48,472 | - | 11,206 | - |
| Jeonbuk | 28,377,327 | 980,171 | 51,538 | 15,210,682 | 24,236 | - | 11,315 | - |
| Jeonnam | 14,299,240 | 345,144 | - | 2,013,997 | - | - | - | - |
| Gyeongbuk | 5,869,967 | 34,931 | 77,964 | 4,436,064 | - | - | - | - |
| Gyeongnam | 33,521,637 | 383,688 | - | 9,094,523 | 12,775 | - | - | - |
| Jeju | 532,389 | - | 10,768 | 620,500 | 11,826 | - | - | - |
| Total | 404,543,297 | 20,424,853 | 1,020,978 | 103,373,366 | 343,867 | 535,857 | 40,223 | - |
| Year | Production-Based Method (ton) | Share (%) | By-Product-Based Method (ton) | Share (%) | Total (ton) |
|---|---|---|---|---|---|
| 2023 | 1,068,387 | 43.0% | 1,416,050 | 57.0% | 2,484,437 |
| Fuel Type | Lower Heating Value, (MJ/kg) | Average Conversion Efficiency, (%) | Emission Factor | |
|---|---|---|---|---|
| Amount (kg CO2-eq/kg) | Geography | |||
| Hydrogen | 120.1 [34] | 60.0% [34] | 6.31 [32,33] | Republic of Korea |
| Anthracite | 19.4 [35] | 45.0% [35] | 3.33 [36] | Republic of Korea |
| Diesel | 35.3 [35] | 39.0% [35] | 0.42 [37] | Republic of Korea |
| Gasoline | 30.1 [35] | 33.0% [35] | 0.92 [38] | Republic of Korea |
| Kerosene | 34.1 [35] | 40.0% [35] | 0.42 [39] | Republic of Korea |
| LNG | 49.4 [35] | 50.0% [35] | 1.17 [40] | Republic of Korea (import mix) |
| Area | Internal Combustion Engine Vehicle | Fuel Cell Hydrogen Vehicle | ||||||
|---|---|---|---|---|---|---|---|---|
| Fuel Production | Vehicle Operation | Powertrain Manufacturing | Total | Fuel Production | Vehicle Operation | Powertrain Manufacturing | Total | |
| Seoul | 1333.0 | 3868.9 | 771.9 | 5973.9 | 2429.4 | - | 90.2 | 2519.6 |
| Busan | 1113.3 | 3504.5 | 556.0 | 5173.8 | 2062.0 | - | 65.0 | 2127.0 |
| Daegu | 364.0 | 1100.3 | 175.5 | 1639.8 | 668.6 | - | 20.5 | 689.1 |
| Incheon | 1577.2 | 5743.7 | 636.9 | 7957.8 | 3021.7 | - | 74.4 | 3096.2 |
| Gwangju | 591.5 | 1727.3 | 312.2 | 2630.9 | 1079.5 | - | 36.5 | 1116.0 |
| Daejeon | 880.3 | 2634.7 | 467.4 | 3982.4 | 1613.7 | - | 54.6 | 1668.3 |
| Ulsan | 1364.0 | 3884.6 | 731.0 | 5979.6 | 2477.0 | - | 85.4 | 2562.5 |
| Sejong | 373.3 | 1373.8 | 129.5 | 1876.6 | 715.9 | - | 15.1 | 731.1 |
| Gyeonggi | 4050.4 | 11,710.9 | 2033.5 | 17,794.8 | 7375.0 | - | 237.7 | 7612.7 |
| Gangwon | 1219.0 | 3275.9 | 654.0 | 5148.9 | 2189.0 | - | 76.4 | 2265.5 |
| Chungbuk | 1096.8 | 3173.0 | 554.3 | 4824.2 | 1997.0 | - | 64.8 | 2061.8 |
| Chungnam | 857.6 | 2454.8 | 434.5 | 3746.9 | 1558.9 | - | 50.8 | 1609.7 |
| Jeonbuk | 1554.8 | 5297.8 | 650.4 | 7503.0 | 2930.0 | - | 76.0 | 3006.0 |
| Jeonnam | 601.6 | 1721.5 | 299.2 | 2622.3 | 1093.0 | - | 35.0 | 1128.0 |
| Gyeongbuk | 357.3 | 1301.3 | 139.6 | 1798.2 | 683.6 | - | 16.3 | 699.9 |
| Gyeongnam | 1530.5 | 4714.6 | 732.9 | 6978.1 | 2822.2 | - | 85.7 | 2907.9 |
| Jeju | 39.4 | 156.0 | 17.6 | 213.1 | 77.1 | - | 2.1 | 79.2 |
| 85,844.1 | 35,880.5 | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, S.B.; Jung, I.; Lee, S.; Hwang, Y.W. Evaluating Greenhouse Gas Reduction Efficiency Through Hydrogen Ecosystem Implementation from a Life-Cycle Perspective. Sustainability 2025, 17, 9944. https://doi.org/10.3390/su17229944
Lee J, Kim SB, Jung I, Lee S, Hwang YW. Evaluating Greenhouse Gas Reduction Efficiency Through Hydrogen Ecosystem Implementation from a Life-Cycle Perspective. Sustainability. 2025; 17(22):9944. https://doi.org/10.3390/su17229944
Chicago/Turabian StyleLee, Jaeyoung, Sun Bin Kim, Inhong Jung, Seleen Lee, and Yong Woo Hwang. 2025. "Evaluating Greenhouse Gas Reduction Efficiency Through Hydrogen Ecosystem Implementation from a Life-Cycle Perspective" Sustainability 17, no. 22: 9944. https://doi.org/10.3390/su17229944
APA StyleLee, J., Kim, S. B., Jung, I., Lee, S., & Hwang, Y. W. (2025). Evaluating Greenhouse Gas Reduction Efficiency Through Hydrogen Ecosystem Implementation from a Life-Cycle Perspective. Sustainability, 17(22), 9944. https://doi.org/10.3390/su17229944

