From Crude to Green: The Environmental Benefits of Bio-Oil in Flexible Polyurethane Foams
Abstract
1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
- (1)
- Conventional flexible PUF—using 100% fossil-polyol mix;
- (2)
- Bio-based flexible PUF—incorporating 15% bio-polyol and 85% fossil-polyol mix.
2.2. System Description
2.3. Inventory Analysis
2.4. Impact Assessment
2.5. Sensitivity Analysis
3. Results and Discussion
3.1. General Environmental Impacts
3.2. Hotspots Analysis
3.3. Sensitivity Analysis
3.4. Comparison with Other Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CAGR | Compound annual growth rate |
| CH4 | Methane |
| CO | Carbon monoxide |
| CO2 | Carbon dioxide |
| ECHA | European Chemicals Agency |
| EEA | European Environment Agency |
| EMEA | Europe, the Middle East and Africa |
| EMEP | European Monitoring and Evaluation Programme |
| EoL | End-of-life |
| EPD | Environmental Product Declaration |
| FE | Freshwater eutrophication |
| FU | Functional unit |
| FRS | Fossil resource scarcity |
| GHG | Greenhouse gas |
| GW | Global warming |
| HDPE | High-Density Polyethylene |
| IBC | Intermediate bulk container |
| IFD | Indentation force deflection |
| LCA | Life Cycle Assessment |
| ME | Marine eutrophication |
| MRS | Mineral resource scarcity |
| NH3 | Ammonia |
| NIPUF | Non-isocyanate polyurethane foam |
| NMVOC | Non-methane volatile organic compounds |
| N2O | Nitrous oxide or dinitrogen monoxide |
| NOx | Nitrogen oxides |
| OF-HH | ozone formation related to human health |
| PM10 | Particulate matter with a diameter of ≤10 micrometer |
| PM2.5 | Particulate matter with a diameter of ≤2.5 micrometer |
| PU | Polyurethane |
| PUF | Polyurethane foam |
| REACH | Registration, Evaluation, Authorisation and Restriction of Chemicals |
| SAN | Styrene-acrylonitrile |
| SO2 | Sulfur oxide |
| SOx | Sulfur oxides |
| TA | Terrestrial acidification |
| TDI | Toluene diisocyanate |
References
- Markets and Markets Flexible Foam Market. Available online: https://www.marketsandmarkets.com/Market-Reports/flexible-foam-market-162971324.html (accessed on 17 November 2024).
- IAL Consultants DATA: EMEA Flexible Foam Market. 2023. Available online: https://www.utech-polyurethane.com/information/data-flexible-slabstock-and-moulded-foam-sales-emea-market-2023 (accessed on 16 November 2024).
- Europur. The End-of-Life of Flexible Polyurethane Foam from Mattresses and Furniture: An Overview of Regulatory Drivers; Recycling Technologies and Remaining Challenges; Europur: Brussels, Belgium, 2021. [Google Scholar]
- EU 2020/1149; Commission Regulation (EU) 2020/1149 of 3 August 2020 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Diisocyanates. Official Journal of the European Union, L252/24. 2020. Available online: https://eur-lex.europa.eu/eli/reg/2020/1149/oj/eng (accessed on 16 November 2024).
- Vieira, F.R.; Magina, S.; Evtuguin, D.V.; Barros-Timmons, A. Lignin as a Renewable Building Block for Sustainable Polyurethanes. Materials 2022, 15, 6182. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.C.N.D.; Ong, M.J.H.; Wu, M.; Lee, C.K.; Choong, P. Sen Emerging Trends in Nonisocyanate Polyurethane Foams: A Review. ACS Eng. Au J. 2024, 4, 493–518. [Google Scholar] [CrossRef]
- ISO 14040: 2006; Environmental Management–Life Cycle Assessment–Principles and Frameworks. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management–Life Cycle Assessment–Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Silva, R.; Barros-Timmons, A.; Quinteiro, P. Life Cycle Assessment of Fossil- and Bio-Based Polyurethane Foams: A Review. J. Clean. Prod. 2023, 430, 139697. [Google Scholar] [CrossRef]
- Europur. Eco-Profile of Flexible Polyurethane (PU) Foam; Europur: Brussels, Belgium, 2025. [Google Scholar]
- Lanoë, T.; Simões, C.L.; Simoes, R. Improving the Environmental Performance of Bedding Products by Using Life Cycle Assessment at the Design Stage. J. Clean. Prod. 2013, 52, 155–164. [Google Scholar] [CrossRef]
- PFA Polyurethane Foam Association-Industry Standards-InTouch Density. Available online: https://www.pfa.org/industry-standards/ (accessed on 29 March 2025).
- Sonnenschein, M.F. Polyurethanes: Science, Technology, Markets, and Trends; John Wiley & Sons: Hoboken, NJ, USA, 2021; ISBN 9781119669418. [Google Scholar]
- ISO 845:2006; Cellular Plastics and Rubbers—Determination of Apparent Density. International Organization for Standardization: Geneva, Switzerland, 2006.
- ASTM D3574-17; ASTM International Standard Test Methods for Flexible Cellular Materials—Slab; Bonded and Molded Urethane Foams. ASTM International: West Conshohocken, PA, USA, 2017.
- ISO 2439:2008; Flexible Cellular Polymeric Materials—Determination of Hardness (Indentation Technique). International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 3386-1:1986; Polymeric Materials, Cellular Flexible—Determination of Stress-Strain Characteristics in Compression — Part 1: Low-Density Materials. International Organization for Standardization: Geneva, Switzerland, 1986.
- ISO 1798:2008; Flexible Cellular Polymeric Materials—Determination of Tensile Strength and Elongation at Break. International Organization for Standardization: Geneva, Switzerland, 2008.
- ISO 9237:1995; Textiles—Determination of the Permeability of Fabrics to Air. International Organization for Standardization: Geneva, Switzerland, 1995.
- ISO 3385:2014; Flexible Cellular Polymeric Materials—Determination of Fatigue by Constant-Load Pounding. International Organization for Standardization: Geneva, Switzerland, 2014.
- PFA Polyurethane Foam Association—Foam Performance. Available online: https://www.pfa.org/foam-performance/ (accessed on 28 December 2024).
- Quinteiro, P.; Gama, N.V.; Ferreira, A.; Dias, A.C.; Barros-Timmons, A. Environmental Assessment of Different Strategies to Produce Rigid Polyurethane Foams Using Unrefined Crude Glycerol. J. Clean. Prod. 2022, 371, 133554. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Carbon Minds cm.chemicals-Carbon Footprint and LCA Data. Available online: https://www.carbon-minds.com/products/data/carbon-footprint-and-lca-data/?nab=0 (accessed on 28 November 2024).
- EMEP/EEA EMEP/EEA Air Pollutant Emission Inventory Guidebook 2023: Part B: Sectoral Guidance Chapters/1. Energy/1.A Combus-tion; European Monitoring and Evaluation Programme/European Environment Agency: Copenhagen, Denmark, 2023.
- APA. European Union Emissions Trading System: Lower Calorific Value, Emission Factor, and Oxidation Factor (Comércio Europeu de Licenças de Emissão (CELE): Poder Calorífico Inferior, Fator de Emissão e Fator de Oxidação; in Portuguese); APA: Lisbon, Portugal, 2023. [Google Scholar]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- European Commission The European Green Deal. Available online: https://ec.europa.eu/clima/eu-action/european-green-deal_en (accessed on 28 November 2024).
- ISOPA. Eco-Profile of Long and Short Chain Polyether Polyols for Polyurethane Products April 2021; ISOPA: Brussels, Belgium, 2021. [Google Scholar]





| Raw Materials | Unit | PUF Formulation | |
|---|---|---|---|
| Conventional | Bio-Based | ||
| Polyol mix | g | 645.0 | 584.0 |
| Bio-polyol | g | - | 103.0 |
| TDI—isocyanate | g | 321.0 | 271.0 |
| Water—blowing agent | g | 26.0 | 21.9 |
| Silicones—surfactants | g | 6.4 | 7.5 |
| Tertiary amines and tin salt—catalysts | g | 1.8 | 2.1 |
| Pigments | g | 0.20 | 10.3 |
| Property | Method | Unit | Flexible PUF | |
|---|---|---|---|---|
| Conventional | Bio-Based | |||
| Density | ISO 845:2006 [14] | kg/m3 | 22.8–26.0 | 29.3–31.8 |
| Resilience | ASTM D3574-17 [15] | % | 42.3–49.9 | 43.3–55.0 |
| IFD 25% | ISO 2439:2008 [16] | N | 118.0–156.0 | 93.0–112.0 |
| IFD 40% | ISO 2439:2008 [16] | N | 150.0–192.0 | 117.0–140.0 |
| IFD 65% | ISO 2439:2008 [16] | N | 277.0–369.0 | 215.0–269.0 |
| Sag factor | - | - | 2.35–2.37 | 2.31–2.40 |
| Compression hardness [strain 40%] | ISO 3386:1986 [17] | kPa | 3.5–4.7 | 2.8–3.4 |
| Elongation at break | ISO 1798:2008 [18] | % | 112.0–263.0 | 180.0–209.0 |
| Tensile strength | ISO 1798:2008 [18] | kPa | 107.0–166.0 | 114.0–118.0 |
| Air permeability | ISO 9237:1995 [19] | L/m2/min | 636.0–1320.0 | 666.0–1030.0 |
| Fatigue—hardness loss | ISO 3385:1989 [20] | % | 24.4–32.0 | 26.6–27.7 |
| Fatigue—thickness loss | ISO 3385:1989 [20] | % | 2.0–4.0 | 2.2–3.4 |
| Parameter | Unit | Flexible PUF | |
|---|---|---|---|
| Conventional | Bio-Based | ||
| Inputs | |||
| Raw materials | |||
| Polyol mix | g | 645 | 584 |
| 584Bio-polyol | g | - | 103 |
| TDI | g | 321 | 271 |
| Water | g | 260 | 21.9 |
| Catalysts | g | 1.84 | 2.09 |
| Silicones | g | 6.44 | 7.54 |
| Pigments | g | 0.20 | 10.3 |
| Ancillary materials | |||
| Kraft paper | g | 9.27 | 9.43 |
| Lubricating oils | g | 0.0006 | 0.0007 |
| Mesamoll | g | 0.0038 | 0.0039 |
| Solvent | g | 0.034 | 0.035 |
| Acetone | g | 0.023 | 0.023 |
| Nitrogen | g | 4.50 | 4.60 |
| IBC | g | 0.705 | 0.722 |
| Metallic drums | g | 0.237 | 0.243 |
| Wooden pallets | g | 0.784 | 0.803 |
| Energy | |||
| Electricity | kWh | 0.0244 | 0.0250 |
| Diesel | g | 0.049 | 0.049 |
| Natural gas | MJ | 0.0159 | 0.0159 |
| Outputs | |||
| Flexible PUF | g | 1000 | 1000 |
| Air emissions | |||
| CH4 | mg | 0.000735 | 0.000735 |
| CO2 | mg | 1.090 | 1.090 |
| CO | mg | 0.712 | 0.712 |
| NOx | mg | 1.790 | 1.790 |
| NMVOC | mg | 0.0366 | 0.0366 |
| SOx | mg | 0.0231 | 0.0231 |
| PM10 | mg | 0.0122 | 0.0122 |
| PM2.5 | mg | 0.0122 | 0.0122 |
| N2O | mg | 0.00671 | 0.00671 |
| NH3 | mg | 0.000392 | 0.000392 |
| Wastes | |||
| Aqueous suspension | g | 0.221 | 0.226 |
| Amines | g | 0.136 | 0.140 |
| Pigment | g | 0.0237 | 0.0243 |
| Waste oil | g | 0.0006 | 0.0007 |
| Polyol mix | g | 1.51 | 1.55 |
| Kraft paper | g | 9.27 | 9.49 |
| IBC | g | 0.705 | 0.722 |
| Metallic drums | g | 0.237 | 0.243 |
| Wooden pallets | g | 0.784 | 0.803 |
| Distance (km) | Transport Mode | |
|---|---|---|
| Raw and ancillary materials | ||
| Polyol mix | 324 | Lorry, Euro 5 (16–32 t) |
| 9691 | Sea, container ship | |
| Bio-polyol | 45 | Lorry, Euro 5 (16–32 t) |
| 4844 | Sea, container ship | |
| TDI | 230 | Lorry, Euro 5 (16–32 t) |
| 3849 | Sea, container ship | |
| Catalysts | 2564 | Lorry, Euro 5 (16–32 t) |
| 10,673 | Sea, container ship | |
| Silicones | 4222 | Lorry, Euro 5 (16–32 t) |
| Pigments | 90 | Lorry, Euro 5 (16–32 t) |
| 6930 | Sea, container ship | |
| Kraft paper | 210 | Lorry, Euro 5 (16–32 t) |
| Waste | ||
| Aqueous suspension | 288 | Lorry, Euro 5 (16–32 t) |
| Amines | 306 | |
| Pigment | 328 | |
| Waste oil | 60 | |
| Polyol mix | 275 | |
| Kraft paper | 17 | |
| IBC | 55 | |
| Metallic drums | 55 | |
| Wooden pallets | 3 |
| Impact Category | Unit | Flexible PUF | |
|---|---|---|---|
| Conventional | Bio-Based | ||
| GW | kg CO2 eq | 3.87 × 100 | 3.65 × 100 |
| FRS | kg oil eq | 1.75 × 100 | 1.60 × 100 |
| MRS | kg Cu eq | 6.85 × 10−3 | 6.44 × 10−3 |
| TA | kg SO2 eq | 1.15 × 10−2 | 1.07 × 10−2 |
| FE | kg P eq | 6.45 × 10−4 | 7.13 × 10−3 |
| ME | kg N eq | 1.26 × 10−4 | 1.56 × 10−4 |
| OF-HH | kg NOx eq | 6.86 × 10−3 | 6.75 × 10−3 |
| Source | System Description | Density (kg/m3) | Impact Assessment Method | GW (kg CO2-eq/kg Foam) | Hotspots |
|---|---|---|---|---|---|
| Europur [10] | Conventional flexible PUF (fossil polyol) | 18–25 | EF v3.1 | 3.44 | Polyol, TDI |
| Europur [10] | Conventional flexible PUF (fossil polyol) | 35–40 | EF v3.1 | 3.45 | Polyol, TDI |
| Present study | Conventional flexible PUF (fossil polyol, industrial data) | 22–26 | ReCiPe 2016 midpoint | 3.87 | Polyol, TDI |
| Present study | Bio-based flexible PUF (partial substitution with bio-polyol, industrial data) | 29–32 | ReCiPe 2016 midpoint | 3.65 | Bio-polyol, polyol, TDI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.; Barros-Timmons, A.; Quinteiro, P. From Crude to Green: The Environmental Benefits of Bio-Oil in Flexible Polyurethane Foams. Sustainability 2025, 17, 10268. https://doi.org/10.3390/su172210268
Silva R, Barros-Timmons A, Quinteiro P. From Crude to Green: The Environmental Benefits of Bio-Oil in Flexible Polyurethane Foams. Sustainability. 2025; 17(22):10268. https://doi.org/10.3390/su172210268
Chicago/Turabian StyleSilva, Raquel, Ana Barros-Timmons, and Paula Quinteiro. 2025. "From Crude to Green: The Environmental Benefits of Bio-Oil in Flexible Polyurethane Foams" Sustainability 17, no. 22: 10268. https://doi.org/10.3390/su172210268
APA StyleSilva, R., Barros-Timmons, A., & Quinteiro, P. (2025). From Crude to Green: The Environmental Benefits of Bio-Oil in Flexible Polyurethane Foams. Sustainability, 17(22), 10268. https://doi.org/10.3390/su172210268
