Economic Sustainability of Selected Individual On-Site Systems of Rural Sanitation Under Conditions in Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Object Description
2.2. Studied Variants
2.3. Economic Profitability and Cost-Efficiency Analysis
2.4. Sensitivity Analysis
2.5. Weighted Sum Model
3. Results
4. Discussion
5. Conclusions
- All the proposed devices for on-site household sewage management presented significant economic profitability and cost-efficiency in relation to the use of septic tanks and sewage transport by slurry vehicles.
- In most cases, the proposed bioreactors, which allowed for a very high pollutant reduction inside the tank, before introducing the treated sewage to the soil, were more economically profitable and cost-efficient than the standard septic tank equipped with drainage filters that introduced partly treated sewage to the soil.
- In all tested cases, the application of drainage packages instead of traditional drainage pipes allowed for higher economic- and cost-effectiveness.
- Drainage packages installed in embankments should be recommended for treated wastewater infiltration, especially in cases of locally available soils with poor permeability.
- The observed economic- and cost-effectiveness of the discussed on-site household wastewater treatment plants, in relation to the septic tank, could be sustained even on poorly permeable soils, but with higher investment and O&M costs.
- According to the weighted sum model assessment, most of the studied on-site devices presented relatively comparable economic feasibility and cost-efficiency.
- Even devices with lower determined performance values, according to the assessment, presented a high degree of economic profitability and cost-efficiency in relation to septic tanks and sewage transport by slurry wagons, presenting additional advantages, such as a reduced required area, allowing for application on small plots with dense development or unfavorable shape, in the case of treatment plants with vertical tanks.
- The sensitivity analysis showed that the profitability and cost-efficiency assessment results of the studied bioreactors are related to variable energy costs and the process of sewage and sludge transport by slurry vehicles.
- Taking into account the economic feasibility and cost-efficiency, the discussed on-site household bioreactor wastewater treatment plants should be encouraged, not only instead of traditional septic tanks but also instead of septic tanks equipped with drainage soil filters.
- To encourage the application of rural on-site sanitation systems, especially in locations with poorly permeable soils, an increase in social acceptance using municipal or governmental subsidies seems to be required.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Velis, M.; Conti, K.I.; Biermann, F. Groundwater and Human Development: Synergies and Trade-Offs Within the Context of the Sustainable Development Goals. Sustain. Sci. 2017, 12, 1007–1017. [Google Scholar] [CrossRef]
- Howard, G.; Calow, R.; Macdonald, A.; Bartram, J. Climate Change and Water and Sanitation: Likely Impacts and Emerging Trends for Action. Annu. Rev. Environ. Resour. 2016, 41, 253–276. [Google Scholar] [CrossRef]
- Guppy, L.; Uyttendaele, P.; Villholth, K.G.; Smakhtin, V. Groundwater and Sustainable Development Goals: Analysis of Interlinkages; UNU-INWEH Report Series, Issue 04; United Nations University Institute for Water, Environment and Health: Hamilton, ON, Canada, 2018; Available online: https://cgspace.cgiar.org/handle/10568/98576 (accessed on 15 September 2025).
- Kiryluk, A.; Kostecka, J. Sustainable Development in Rural Areas in the Perspective of a Decade of Ecosystem Restoration. Econ. Environ. 2023, 83, 117–148. [Google Scholar] [CrossRef]
- Sun, B.; Luo, Y.; Yang, D.; Yang, J.; Zhao, Y.; Zhang, J. Coordinative Management of Soil Resources and Agricultural Farmland Environment for Food Security and Sustainable Development in China. Int. J. Environ. Res. Public Health 2023, 20, 3233. [Google Scholar] [CrossRef] [PubMed]
- Chathuranika, I.M.; Sachinthanie, E.; Zam, P.; Gunathilake, M.B.; Denkar, D.; Muttil, N.; Abeynayaka, A.; Kantamaneni, K.; Rathnayake, U. Assessing the Water Quality and Status of Water Resources in Urban and Rural Areas of Bhutan. J. Hazard. Mater. Adv. 2023, 12, 100377. [Google Scholar] [CrossRef]
- Chinyama, A.; Chipato, P.T.; Mangore, E. Sustainable Sanitation Systems for Low-Income Urban Areas—A Case of City of Bulawayo, Zimbabwe. Phys. Chem. Earth, Parts A/B/C 2012, 50–52, 233–238. [Google Scholar] [CrossRef]
- Benzerra, A.; Cherrared, M.; Chocat, B.; Cherqui, F.; Zekiok, T. Decision Support for Sustainable Urban Drainage System Management: A Case Study of Jijel, Algeria. J. Environ. Manag. 2012, 101, 46–53. [Google Scholar] [CrossRef]
- Istenic, D.; Bodík, I.; Bulc, T. Status of Decentralised Wastewater Treatment Systems and Barriers for Implementation of Nature-Based Systems in Central and Eastern Europe. Environ. Sci. Pollut. Res. 2015, 22, 12879–12884. [Google Scholar] [CrossRef] [PubMed]
- Pryszcz, M.; Mrowiec, B.M. Operation of the Household Sewage Treatment Plants in Poland. Ecol. Eng. 2015, 41, 133–141. [Google Scholar] [CrossRef]
- Piasecki, A. Water and Sewage Management Issues in Rural Poland. Water 2019, 11, 625. [Google Scholar] [CrossRef]
- Vinti, G.; Vaccari, M. Solid Waste Management in Rural Communities of Developing Countries: An Overview of Challenges and Opportunities. Clean Technol. 2022, 4, 1138–1151. [Google Scholar] [CrossRef]
- Brzusek, A.; Widomski, M.K.; Musz-Pomorska, A. Socio-Economic Aspects of Centralized Wastewater System for Rural Settlement under Conditions of Eastern Poland. Water 2022, 14, 1667. [Google Scholar] [CrossRef]
- Boguniewicz-Zabłocka, J.; Capodaglio, A.G. Sustainable Wastewater Treatment Solutions for Rural Communities: Public (Centralized) or Individual (On-Site)—Case Study. Econ. Environ. Stud. 2017, 17, 1103–1119. [Google Scholar] [CrossRef]
- Yang, C.; Wu, A.; Zhao, X.; He, G.; Zhao, S.; He, L.; Wu, F. Challenges and Solutions for Rural Domestic Sewage Treatment at the Grassroots Level in Developing Countries. Process Saf. Environ. Prot. 2025, 201, 107480. [Google Scholar] [CrossRef]
- GQM, (2021) Groundwater Quality Monitoring, The Polish Geological Institute—National Research Institute. Available online: https://mjwp.gios.gov.pl (accessed on 12 September 2025). (In Polish)
- Regulation no 2148/2019 of the Minister for Maritime Economy and Inland Navigation on the Criteria and Method of Assessing the Condition of Groundwater Bodies. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190002148 (accessed on 15 September 2025). (In Polish)
- Wiech, A.K.; Marciniewicz-Mykieta, M.; Toczko, B. (Eds.) State of the Environment in Poland; Biblioteka Monitoringu Środowiska: Warszawa, Poland, 2018. (In Polish) [Google Scholar]
- Jiménez, A.; Jawara, D.; LeDeunff, H.; Naylor, K.A.; Scharp, C. Sustainability in Practice: Experiences from Rural Water and Sanitation Services in West Africa. Sustainability 2017, 9, 403. [Google Scholar] [CrossRef]
- Jiménez, A.; Mtango, F.; Cairncross, S. What Role for Local Government in Sanitation Promotion? Lessons from Tanzania. Water Policy 2014, 16, 1104–1120. [Google Scholar] [CrossRef]
- Jiménez, A.; Pérez-Foguet, A. The Relationship between Technology and Functionality of Rural Water Points: Evidence from Tanzania. Water Sci. Technol. 2011, 63, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Zapasa, A.; Musz-Pomorska, A.; Gołębiowska, J.; Widomski, M.K. Financial, Environmental and Social Sustainability of Rural Sanitary Wastewater System: Case Study. Appl. Water Sci. 2022, 12, 277. [Google Scholar] [CrossRef]
- Sharma, M.K.; Tyagi, V.K.; Singh, N.K.; Singh, S.P.; Kazmi, A.A. Sustainable Technologies for On-Site Domestic Wastewater Treatment: A Review with Technical Approach. Environ. Dev. Sustain. 2022, 24, 3039–3090. [Google Scholar] [CrossRef]
- Jóźwiakowski, K.; Marzec, M.; Listosz, A.; Gizińska-Górna, M.; Micek, A.; Pytka-Woszczyło, A.; Pochwatka, P.; Rybczyńska-Tkaczyk, K. The Influence of Household Wastewater Treatment Plants with Drainage System on the Quality of Groundwater in the Lublin Province, Poland. J. Ecol. Eng. 2021, 22, 18–39. [Google Scholar] [CrossRef]
- UNDESA. World Urbanization Prospects Revision; United Nations Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2015. Available online: https://www.un.org/en/development/desa/publications/world-population-prospects-2015-revision.html (accessed on 10 September 2025).
- Hutton, G.; Chase, C. The Knowledge Base for Achieving the Sustainable Development Goal Targets on Water Supply, Sanitation and Hygiene. Int. J. Environ. Res. Public Health 2016, 13, 536. [Google Scholar] [CrossRef]
- Wear, S.L.; Acuña, V.; McDonald, R.; Font, C. Sewage Pollution, Declining Ecosystem Health, and Cross-Sector Collaboration. Biol. Conserv. 2021, 255, 109010. [Google Scholar] [CrossRef]
- Burch, T.R.; Stokdyk, J.P.; Firnstahl, A.D.; Kieke, B.A., Jr.; Cook, R.M.; Opelt, S.A.; Spencer, S.K.; Durso, L.M.; Borchardt, M.A. Microbial Source Tracking and Land Use Associations for Antibiotic Resistance Genes in Private Wells Influenced by Human and Livestock Fecal Sources. J. Environ. Qual. 2023, 52, 270–286. [Google Scholar] [CrossRef]
- Gyimah, R.; Lebu, S.; Owusu-Frimpong, I.; Semiyaga, S.; Salzberg, A.; Manga, M. Effluents from Septic Systems and Impact on Groundwater Contamination: A Systematic Review. Environ. Sci. Pollut. Res. 2024, 31, 62655–62675. [Google Scholar] [CrossRef]
- Singh, P.K.; Kumar, U.; Kumar, I.; Dwivedi, A.; Singh, P.; Mishra, S.; Seth, C.S.; Sharma, R.K. Critical Review on Toxic Contaminants in Surface Water Ecosystem: Sources, Monitoring, and Its Impact on Human Health. Environ. Sci. Pollut. Res. Int. 2024, 31, 56428–56462. [Google Scholar] [CrossRef] [PubMed]
- Murphy, H.M.; McGinnis, S.; Blunt, R.; Stokdyk, J.; Wu, J.; Cagle, A.; Denno, D.M.; Spencer, S.; Firnstahl, A.; Borchardt, M.A. Septic Systems and Rainfall Influence Human Fecal Marker and Indicator Organism Occurrence in Private Wells in Southeastern Pennsylvania. Environ. Sci. Technol. 2020, 54, 3159–3168. [Google Scholar] [CrossRef]
- Vymazal, J. Long-Term Performance of Constructed Wetlands with Horizontal Sub-Surface Flow: Ten Case Studies from the Czech Republic. Ecol. Eng. 2011, 37, 54–63. [Google Scholar] [CrossRef]
- Paruch, A.M.; Maehlum, T.; Obarska-Pempkowiak, H.; Gajewska, M.; Wojciechowska, E.; Ostojski, A. Rural Domestic Wastewater Treatment in Norway and Poland: Experiences, Cooperation and Concepts on the Improvement of Constructed Wetland Technology. Water Sci. Technol. 2011, 63, 776–781. [Google Scholar] [CrossRef]
- Bodík, I.; Boscornea, C.; Istenic, D.; Zakharchenko, M. GWP CEE Regional Study. Natural Processes of Wastewater Treatment—Actual Status in CEE Countries; Global Water Partnership Central and Eastern Europe, 2012; Available online: https://www.gwp.org/globalassets/global/gwp-cee_files/regional/q-study-report-cee.pdf (accessed on 11 March 2024).
- Widomski, M.; Gleń, P.; Łagód, G.; Jaromin-Gleń, K. Sustainable Development of One of the Poorest Provinces of the European Union: Lublin Voivodeship, Poland—Attempt of Assessment. Probl. Sustain. Dev. 2015, 10, 137–149. Available online: https://ssrn.com/abstract=2660792 (accessed on 12 September 2024).
- Nansubuga, I.; Banadda, N.; Verstraete, W.; Rabaey, K. A Review of Sustainable Sanitation Systems in Africa. Rev. Environ. Sci. Biotechnol. 2016, 15, 465–478. [Google Scholar] [CrossRef]
- Pereira, M.A.; Marques, R.C. Sustainable Water and Sanitation for All: Are We There Yet? Water Res. 2021, 207, 117765. [Google Scholar] [CrossRef] [PubMed]
- Bose, D.; Bhattacharya, R.; Kaur, T.; Banerjee, R.; Bhatia, T.; Ray, A.; Batra, B.; Mondal, A.; Ghosh, P.; Mondal, S. Overcoming Water, Sanitation, and Hygiene Challenges in Critical Regions of the Global Community. Water-Energy Nexus 2024, 7, 277–296. [Google Scholar] [CrossRef]
- Marks, S.J.; Clair-Caliot, G.; Taing, L.; Bamwenda, J.T.; Kanyesigye, C.; Rwendeire, N.E.; Kemerink-Seyoum, J.S.; Kansiime, F.; Batega, D.W.; Ferrero, G. Water Supply and Sanitation Services in Small Towns in Rural–Urban Transition Zones: The Case of Bushenyi-Ishaka Municipality, Uganda. Clean Water 2020, 3, 21. [Google Scholar] [CrossRef]
- Murei, A.; Mogane, B.; Mothiba, D.P.; Mochware, O.T.W.; Sekgobela, J.M.; Mudau, M.; Musumuvhi, N.; Khabo-Mmekoa, C.M.; Moropeng, R.C.; Momba, M.N.B. Barriers to Water and Sanitation Safety Plans in Rural Areas of South Africa—A Case Study in the Vhembe District, Limpopo Province. Water 2022, 14, 1244. [Google Scholar] [CrossRef]
- Barska, A.; Jędrzejczak-Gas, J.; Wyrwa, J. Poland on the Path towards Sustainable Development—A Multidimensional Comparative Analysis of the Socio-Economic Development of Polish Regions. Sustainability 2022, 14, 10319. [Google Scholar] [CrossRef]
- Siudek, T.; Czarnecki, E.; Vashchyk, M. Assessment of the Sustainability of Rural Development in the European Union Member States. Acta Sci. Pol. Oeconomia 2016, 15, 101–113. Available online: http://acta_oeconomia.sggw.pl/wp-content/uploads/Acta_Oeconomia_15_3_2016.pdf (accessed on 12 September 2025).
- Widomski, M.K.; Musz-Pomorska, A. Sustainable Development of Rural Areas in Poland since 2004 in the Light of Sustainability Indicators. Land 2023, 12, 508. [Google Scholar] [CrossRef]
- Gorączko, M.; Pasela, R. Causes and Effects of the Water Consumption Drop by the Population of Cities in Poland—Selected Aspects. In Bulletin of Geography. Socio-Economic Series; Szymańska, D., Rogatka, K., Eds.; Nicolaus Copernicus University: Toruń, Poland, 2015; Volume 27, pp. 67–79. [Google Scholar] [CrossRef]
- Heidrich, Z.; Jędrzejkiewicz, J. Analysis of Water Consumption in Polish Cities in the Time Span of 1995–2005. Environ. Prot. 2007, 29, 29–34. Available online: http://www.os.not.pl/docs/czasopismo/2007/Heidrich_4-2007.pdf (accessed on 10 September 2025). (In Polish).
- Hotloś, H. Variations in Water Consumption Observed in Some Municipalities in the Time Span of 1990 to 2008. Environ. Prot. 2010, 32, 39–42. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPOB-0031-0007/c/Hotlos_3-2010.pdf (accessed on 11 September 2025). (In Polish).
- Statistics Poland (GUS). Available online: https://bdl.stat.gov.pl/bdl/dane/podgrup/tablica (accessed on 11 March 2024).
- Starkl, M.; Brunner, N.; Feil, M.; Hauser, A. Ensuring Sustainability of Non-Networked Sanitation Technologies: An Approach to Standardization. Environ. Sci. Technol. 2015, 49, 6411–6418. [Google Scholar] [CrossRef]
- Oladoja, N.A. Appropriate Technology for Domestic Wastewater Management in Under-Resourced Regions of the World. Appl. Water Sci. 2017, 7, 3391–3406. [Google Scholar] [CrossRef]
- Eggimann, S.; Truffer, B.; Maurer, M. Economies of Density for On-Site Waste Water Treatment. Water Res. 2016, 101, 476–489. [Google Scholar] [CrossRef]
- Suchorab, P.; Iwanek, M.; Głowacka, A. Evaluation of Economical Effectiveness of Selected Sewerage Systems. J. Civ. Eng. Environ. Archit. 2015, 62, 447–456. (In Polish) [Google Scholar] [CrossRef]
- Ekologia24.biz. The Essence of Drainage Treatment Plants. Available online: https://www.ekologia24.biz (accessed on 10 September 2025). (In Polish).
- Rauba, K.; Szerenos, K. Social Evaluation of the Implementation of Household-Level Sewage Treatment Plants on the Example of the Municipality of Juchnowiec Kościelny. Econ. Environ. 2020, 74, 16. [Google Scholar] [CrossRef]
- Rauba, K. Value of the Sewage Management Devices in Rural Areas in the Opinion of Local Communities on the Example of the Wyszki Commune. Econ. Environ. 2021, 77, 40–55. [Google Scholar] [CrossRef]
- Merchán-Sanmartín, B.; Aguilar-Aguilar, M.; Morante-Carballo, F.; Carrión-Mero, P.; Guambaña-Palma, J.; Mestanza-Solano, D.; Berrezueta, E. Design of Sewerage System and Wastewater Treatment in a Rural Sector: A Case Study. Int. J. Sustain. Dev. Plan. 2022, 17, 51–61. [Google Scholar] [CrossRef]
- Byambadorj, A.; Lee, H.S. Household Willingness to Pay for Wastewater Treatment and Water Supply System Improvement in a Ger Area in Ulaanbaatar City, Mongolia. Water 2019, 11, 1856. [Google Scholar] [CrossRef]
- Osman, K.K.; Claveria, J.B.; Faust, K.M.; Hernandez, S. Temporal Dynamics of Willingness to Pay for Alternatives That Increase the Reliability of Water and Wastewater Service. J. Constr. Eng. Manag. 2019, 145, 04019041. [Google Scholar] [CrossRef]
- Saadatinavaz, F.; Alomari, M.A.; Ali, M.; Saikaly, P.E. Striking a Balance: Decentralized and Centralized Wastewater Treatment Systems for Advancing Sustainable Development Goal 6. Adv. Energy Sustain. Res. 2024, 5, 2400097. [Google Scholar] [CrossRef]
- Nawrot, T.; Matz, R.; Błażejewski, R.; Spychała, M. A Case Study of a Small Diameter Gravity Sewerage System in Zolkiewka Commune, Poland. Water 2018, 10, 1358. [Google Scholar] [CrossRef]
- Frone, S.; Frone, D.F. Economic Risk to a Regional Water Supply and Sanitation Project in Romania. Procedia Econ. Financ. 2015, 32, 550–557. [Google Scholar] [CrossRef]
- Elawwad, A.; Ragab, M.; Abdel-Halim, H. An Economical, Environmental, and Social Comparison between Vacuum and Gravity Sewers in Decentralized Sanitation Systems, with Egypt as a Case Study. J. Water Sanit. Hyg. Dev. 2015, 5, 614–619. [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Bus, A.; Baryła, A. Assessment of the Efficiency, Environmental and Economic Effects of Compact Type On-Site Wastewater Treatment Plants—Results from Random Testing. Sustainability 2021, 13, 982. [Google Scholar] [CrossRef]
- Domínguez, I.; Oviedo-Ocaña, E.R.; Hurtado, K.; Barón, A.; Hall, R.P. Assessing Sustainability in Rural Water Supply Systems in Developing Countries Using a Novel Tool Based on Multi-Criteria Analysis. Sustainability 2019, 11, 5363. [Google Scholar] [CrossRef]
- Metcalfe, P.J.; Sen, A. Sensitivity to Scope of Water and Wastewater Service Valuations: A Meta-Analysis of Findings from Water Price Reviews in Great Britain. J. Environ. Econ. Policy 2021, 11, 21–38. [Google Scholar] [CrossRef]
- Mester, T.; Szabó, G.; Kiss, E.; Balla, D. Towards Environmental Sustainability: Wastewater Management and Sewer Networks for Protecting Groundwater in Rural Settlements. Urban Sci. 2025, 9, 80. [Google Scholar] [CrossRef]
- Le, T.T.P.; Aramaki, T. Factors Affecting Households’ Willingness to Pay for Improved Wastewater Services in Ho Chi Minh City, Vietnam. J. Water Environ. Technol. 2019, 17, 163–173. [Google Scholar] [CrossRef]
- Willis, K.; Sheldon, R. Research on Customers’ Willingness-to-Pay for Service Changes in UK Water Company Price Reviews 1994–2019. J. Environ. Econ. Policy 2021, 11, 4–20. [Google Scholar] [CrossRef]
- Tudela-Mamani, J.W. Willingness to Pay for Improvements in Wastewater Treatment: Application of the Contingent Valuation Method in Puno, Peru. Rev. Chapingo Ser. Cienc. For. Ambiente 2017, 23, 341–352. [Google Scholar] [CrossRef]
- Regulation No 75 (Item 690)/2002 of the Minister of Infrastructure on the Technical Conditions to Be Met by Buildings and Their Location. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20020750690 (accessed on 12 September 2025). (In Polish)
- Pawlita-Posmyk, M.; Wzorek, M. Domestic Sewage Treatment Plant or Ecological Septic Tank. Tech. Trans. 2017, 5, 81–94. [Google Scholar] [CrossRef]
- Jóźwiakowski, K.; Steszuk, A.; Pieńko, A.; Marzec, M.; Pytka, A.; Gizińska, M.; Sosnowska, B.; Ozonek, J. Evaluation of the Impact of Wastewater Treatment Plants with Drainage System on the Quality of Groundwater in Dug and Deep Wells. Ecol. Eng. 2014, 39, 74–84. [Google Scholar]
- Obarska-Pempkowiak, H.; Gajewska, M.; Wojciechowska, E.; Kołecka, K. Sewage Gardens—Constructed Wetlands for Single Family Households. Environ. Prot. Eng. 2015, 41, 71–82. [Google Scholar] [CrossRef]
- Thomas, B.D.; Marks, A.; Smerigan, B.; Aburto-Vazquez, G.; Uludag-Demirer, S.; Dusenbury, J.S.; Liao, W. Life cycle impact and economic assessment of decentralized strategies to treat source-separated wastewater. J. Water Process Eng. 2024, 64, 105550. [Google Scholar] [CrossRef]
- Arias, A.; Rama, M.; González-García, S.; Feijoo, G.; Moreira, M.T. Environmental analysis of servicing centralised and decentralised wastewater treatment for population living in neighbourhoods. J. Water Process Eng. 2020, 37, 101469. [Google Scholar] [CrossRef]
- Karolinczak, B.; Miłaszewski, R.; Sztuk, A. Cost-Effectiveness Analysis of Different Technological Variants of Single-House Sewage Treatment Plants. Annu. Set Environ. Prot. 2015, 17, 726–746. Available online: http://ros.edu.pl/images/roczniki/2015/044_ROS_V17_R2015.pdf (accessed on 12 September 2025). (In Polish).
- Bogon, B.; Cupak, A.; Walega, A. Concept of Improvement of Municipal Sewage Management in Baranów Sandomierski Commune. Infrastruct. Ecol. Rural Areas 2011, 2, 83–97. Available online: http://yadda.icm.edu.pl/agro/element/bwmeta1.element.dl-catalog-bea48829-b3f5-48e1-b40a-3b1959f90a27/c/Bogon.pdf (accessed on 12 September 2025). (In Polish).
- Kundziewicz, A.; Miłaszewski, R. Costs-Effectiveness Analysis of Individual Wastewater Disposal and Treatment Systems. Ecol. Eng. Environ. Technol. 2011, 24, 174–183. Available online: https://journals.indexcopernicus.com/search/journal/issue?issueId=109221&journalId=24428 (accessed on 11 September 2025).
- Vale, G.B.; Scalize, P.S.; Tonetti, A.L.; Junior, H.C.R. Cost-Effectiveness Study of Septic Tank Management in Rural Communities. Int. J. Environ. Sci. Technol. 2024, 21, 4599–4610. [Google Scholar] [CrossRef]
- Rafie, R.; Hardy, A.; Mohamad Zain, N.; Gödeke, S.; Abas, P.E. The Future of Septic Tanks: Uncovering Technological Trends through Patent Analysis. Inventions 2024, 9, 77. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Z.; Cao, Z.; Rousseau, D.P.L.; Van Hulle, S. Addressing the rural wastewater treatment dilemma: A techno-environmental-economic analysis. Chem. Eng. J. 2025, 504, 158905. [Google Scholar] [CrossRef]
- Dubber, D.; Gill, L. Application of On-Site Wastewater Treatment in Ireland and Perspectives on Its Sustainability. Sustainability 2014, 6, 1623–1642. [Google Scholar] [CrossRef]
- Obarska-Pempkowiak, H.; Kołecka, K.; Gajewska, M.; Wojciechowska, E.; Ostojski, A. Sustainable Wastewater Management Based on the Example of Rural Areas. Annu. Set Environ. Prot. 2015, 17, 585–602. Available online: http://ros.edu.pl/images/roczniki/2015/036_ROS_V17_R2015.pdf (accessed on 12 September 2025).
- Digaletos, M.; Ptacek, C.J.; Thomas, J.; Liu, Y.Y. Chemical and Biological Tracers to Identify Source and Transport Pathways of Septic System Contamination to Streams in Areas with Low Permeability Soils. Sci. Total Environ. 2023, 870, 161866. [Google Scholar] [CrossRef] [PubMed]
- Mester, T.; Szabó, G.; Sajtos, Z.; Baranyai, E.; Kiss, E.; Balla, D. Assessment of Groundwater Decontamination Processes around a Dismantled Septic Tank Using GIS and Statistical Analysis. Water 2023, 15, 884. [Google Scholar] [CrossRef]
- Mattioli, M.C.; Benedict, K.M.; Murphy, J.; Kahler, A.; Kline, K.E.; Longenberger, A.; Mitchell, P.K.; Watkins, S.; Berger, P.; Shanks, O.C.; et al. Identifying Septic Pollution Exposure Routes during a Waterborne Norovirus Outbreak—A New Application for Human-Associated Microbial Source Tracking qPCR. J. Microbiol. Methods 2021, 180, 106091. [Google Scholar] [CrossRef]
- Kruszelnicka, I.; Ginter-Kramarczyk, D.; Komorowska-Kaufaman, M. Przydomówki—Bezobsługowo, Tanio, Ekologicznie? Wodociągi Kanaliz. 2013, 1, 30–33. Available online: https://portalkomunalny.pl/plus/artykul/przydomowki-bezobslugowo-tanio-ekologicznie/ (accessed on 12 September 2025). (In Polish).
- Van Cuyk, S.; Siegrist, R.; Logan, A.; Masson, S.; Fisher, E.; Figueroa, L. Hydraulic and Purification Behaviors and Their Interaction during Wastewater Treatment in Soil Infiltration Systems. Water Res. 2001, 35, 953–964. [Google Scholar] [CrossRef]
- Regulation No1311/2019 of the Minister of Maritime Economy and Inland Navigation on Substances Particularly Harmful to the Aquatic Environment and the Conditions to Be Met When Discharging Sewage into Water or Land, as Well as When Discharging Rainwater or Meltwater into Water or Facilities Water. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001311 (accessed on 12 September 2025). (In Polish)
- Regulation No 1566/2017. Water Law. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001566 (accessed on 12 September 2025). (In Polish)
- Sha, C.; Shen, S.; Zhang, J.; Zhou, C.; Lu, X.; Zhang, H. A Review of Strategies and Technologies for Sustainable Decentralized Wastewater Treatment. Water 2024, 16, 3003. [Google Scholar] [CrossRef]
- Abdallah, M.; Shanableh, A.; Elshazly, D.; Feroz, S. Techno-economic and environmental assessment of wastewater management systems: Life cycle approach. Environ. Impact Assess. Rev. 2020, 82, 106378. [Google Scholar] [CrossRef]
- Garrido-Baserba, M.; Vinardell, S.; Molinos-Senante, M.; Rosso, D.; Poch, M. The economics of wastewater treatment decentralization: A techno-economic evaluation. Environ. Sci. Technol. 2018, 52, 8965–8976. [Google Scholar] [CrossRef]
- Bioeden. Available online: https://www.bioeden.eu (accessed on 12 September 2025). (In Polish).
- Bioires. Available online: https://bioires.pl (accessed on 12 September 2025). (In Polish).
- Ecopol. Available online: https://www.ekopol.pl (accessed on 12 September 2025). (In Polish).
- Ekodren. Available online: https://ekodren.pl (accessed on 12 September 2025). (In Polish).
- Ekohouse. Available online: https://ekohouse-oczyszczalnie.pl (accessed on 12 September 2025). (In Polish).
- Haba. Available online: https://haba.pl (accessed on 12 September 2025). (In Polish).
- Sedyment. Available online: http://www.sedyment.com.pl (accessed on 12 September 2025). (In Polish).
- Directive (EU) 2024/3019 of the European Parliament and of the Council of 27 November 2024 Concerning Urban Wastewater Treatment (Recast) (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/eli/dir/2024/3019/oj/eng (accessed on 12 September 2025).
- Bugajski, P.M.; Kurek, K.; Młyński, D.; Operacz, A. Designed and Real Hydraulic Load of Household Wastewater Treatment Plants. J. Water Land Dev. 2019, 40, 155–160. [Google Scholar] [CrossRef]
- Adhikari, S.; Halden, R.U. Opportunities and limits of wastewater-based epidemiology for tracking global health and attainment of UN sustainable development goals. Environ. Int. 2022, 163, 107217. [Google Scholar] [CrossRef]
- Janković, M.; Bartula, M.; Šekler, I.; Kosanović, N.; Milunović, I. Multi-criteria evaluation: A tool for selecting sustainable wastewater management options in rural areas. Environ. Eng. Manag. J. 2024, 23, 2267–2274. [Google Scholar] [CrossRef]
- Regulation No 8 (Item70)/2002 of the Minister of Infrastructure on Determining Average Water Consumption Standards. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20020080070 (accessed on 12 September 2025). (In Polish)
- Daudey, L. The cost of urban sanitation solutions: A literature review. J. Water Sanit. Hyg. Dev. 2018, 8, 176–195. [Google Scholar] [CrossRef]
- IRPOL. ‘Concrete Septic Tanks’. Available online: https://szambabetonowe.expert (accessed on 12 September 2025). (In Polish).
- Mamut. Available online: https://szambamamut.pl (accessed on 12 September 2025). (In Polish).
- Septic. Two-Chamber Septic Tank. Available online: https://szamba-septic.pl (accessed on 12 September 2025). (In Polish).
- Pazdro, Z.; Kozerski, B. General Hydrogeology; Wydawnictwa Geologiczne: Warszawa, Poland, 1990; ISBN 83-220-0357-9. (In Polish) [Google Scholar]
- kb.pl (2024) ‘Price List for Septic Tank Removal 2024 in Various Regions of Poland’. Available online: https://kb.pl/budownictwo/szamba-i-oczyszczalnie/cennik-wywozu-szamba-w-roznych-regionach-polski/ (accessed on 12 September 2025). (In Polish).
- Extradom.pl. (2024) ‘How Much Does Septic Tank Removal Cost? Available online: https://www.extradom.pl/porady/artykul-ile-kosztuje-wywoz-szamba-cena-za-rok-2022 (accessed on 12 September 2025). (In Polish).
- Home Sewage Treatment Plants—Types and Construction Costs. Available online: https://www.morizon.pl/blog/przydomowe-oczyszczalnie-sciekow-rodzaje-i-koszty-budowy/ (accessed on 12 September 2025). (In Polish).
- Mishan, E.J.; Quah, E. Cost-Benefit Analysis; Praeger: New York, NY, USA, 1976. [Google Scholar]
- Griffin, R.C. The Fundamental Principles of Cost-Benefit Analysis. Water Resour. Res. 1998, 34, 2063–2071. Available online: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/98WR01335 (accessed on 12 September 2025). [CrossRef]
- Musz-Pomorska, A.; Widomski, M.K.; Gołębiowska, J. Financial sustainability of selected rain water harvesting systems for single-family house under conditions of Eastern Poland. Sustainability 2020, 12, 4853. [Google Scholar] [CrossRef]
- McPherson, E.G.; Simpson, J.R.; Peper, P.J.; Gardner, S.L.; Vargas, K.E.; Xiao, Q. Northeast Community Tree Guide: Benefits, Costs, and Strategic Planting; Gen. Tech. Rep. PSW-GTR-202; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2010.
- Coleman, A.; Grimes, A. Betterment taxes, capital gains and benefit cost ratios. Econ. Lett. 2010, 109, 54–56. [Google Scholar] [CrossRef]
- McEwan, P.J. Cost-effectiveness analysis of education and health interventions in developing countries. J. Dev. Eff. 2012, 4, 189–213. [Google Scholar] [CrossRef]
- Weingartner, H.M. Some new views on the payback period and capital budgeting decisions. Manag. Sci. 1969, 15, B594. [Google Scholar] [CrossRef]
- Boardman, C.M.; Reinhart, W.J.; Celec, S.E. The role of the payback period in the theory and application of duration to capital budgeting. J. Bus. Financ. Account. 1982, 9, 511–522. [Google Scholar] [CrossRef]
- Berry, K.; Charnley, G.; Eberstadt, N.; Glantz, M.; Loewen, E.; Moore, T.; Opie, J.; Rutherford, F.; Seitz, F.; Sedjo, R.; et al. Environmental Economics Volume 1: The Essentials; Environmental Literacy Council: Washington, DC, USA, 2007. [Google Scholar]
- Locatelli, L.; Guerrero, M.; Russo, B.; Martínez-Gomariz, E.; Sunyer, D.; Martínez, M. Socio-economic assessment of green infrastructure for climate change adaptation in the context of urban drainage planning. Sustainability 2020, 12, 3792. [Google Scholar] [CrossRef]
- Rączka, J. The cost-effectiveness analysis—A superior alternative to the cost-benefit analysis of environmental infrastructure investments. In Proceedings of the Fifth European Conference on Evaluation of the Structural Funds: Challenges for Evaluation in an Enlarged Europe, Budapest, Hungary, 26–27 June 2003. [Google Scholar]
- Widomski, M.K.; Ładziak, E.; Łagód, G. Economic aspects of sustainable sanitation in rural settlements. Archit. Civ. Eng. Environ. 2017, 10, 153–162. [Google Scholar] [CrossRef]
- Tuominen, P.; Reda, F.; Dawoud, W.; Elboshy, B.; Elshafei, G.; Negm, A. Economic appraisal of energy efficiency in buildings using cost-effectiveness assessment. Procedia Econ. Financ. 2015, 21, 422–430. [Google Scholar] [CrossRef]
- Vouk, D.; Malus, D.; Halkijevic, I. Neural networks in economic analyses of wastewater systems. Expert Syst. Appl. 2011, 38, 10031–10035. [Google Scholar] [CrossRef]
- Commission Delegated Regulation No 480/2014. Supplementing Regulation (EU) No 1303/2013 of the European Parliament and of the Council Laying down Common Provisions on the European Regional Development Fund, the European Social Fund, the Cohesion Fund, the European Agricultural Fund for Rural Development and the European Maritime and Fisheries Fund and Laying down General Provisions on the European Regional Development Fund, the European Social Fund, the Cohesion Fund and the European Maritime and Fisheries Fund. Available online: https://www.funduszeeuropejskie.gov.pl/media/5190/NOWE_RD_480_2014.pdf (accessed on 12 September 2025). (In Polish)
- European Funds Portal. Guidelines on Issues Related to the Preparation of Investment Projects (Including Hybrid Ones) for the Years 2021–2027. Available online: https://www.funduszeeuropejskie.gov.pl/ (accessed on 30 October 2025). (In Polish)
- Wasiluk, J.; Hołota, E. Economic efficiency assessment of expanding sewage system in a rural area located in a mountainous region. Gaz Woda I Tech. Sanit. 2024, 11, 9–13. (In Polish) [Google Scholar] [CrossRef]
- Janicka, K.; Iwanek, M. Economic profitability analysis of selected sanitary sewage systems for suburban conditions. Gaz Woda I Tech. Sanit. 2021, 7–8, 18–21. (In Polish) [Google Scholar]
- Jin, Y.; Lee, S.; Kang, T.; Park, J.; Kim, Y. Capacity Optimization of Rainwater Harvesting Systems Based on a Cost–Benefit Analysis: A Financial Support Program Review and Parametric Sensitivity Analysis. Water 2023, 15, 186. [Google Scholar] [CrossRef]
- James, D.; Francisco, H.A. (Eds.) Cost-Benefit Studies of Natural Resource Management in Southeast Asia; Springer: Singapore, 2015. [Google Scholar] [CrossRef]
- Castillo, J.G.; Zhangallimbay, D. The Social Discount Rate in the Evaluation of Investment Projects: An Application for Ecuador. CEPAL Rev. 2021, 134, 75–95. [Google Scholar] [CrossRef]
- Zhuang, J.; Liang, Z.; Lin, T.; De Guzman, F. Theory and Practice in the Choice of Social Discount Rate for Cost-Benefit Analysis: A Survey; Technical Report; ERD Working Paper Series No. 94; Asian Development Bank (ADB): Metro Manila, Philippines, 2007. (In Polish) [Google Scholar]
- PGE. Tariff Offer. Available online: https://www.gkpge.pl/dla-domu/oferta/oferta-taryfowa (accessed on 30 October 2025). (In Polish).
- Mehri, M.; Shahdany, S.M.H.; Javadi, S.; Movahedinia, M.; Berndtsson, R. Block-scale use of bioretention cells to restore the urban water balance: A case study in Tehran metropolis. J. Hydrol. Reg. Stud. 2024, 51, 101621. [Google Scholar] [CrossRef]
- Yazdi, M.N.; Ketabchy, M.; Sample, D.J.; Scott, D.; Liao, H. An evaluation of HSPF and SWMM for simulating streamflow regimes in an urban watershed. Environ. Model. Softw. 2019, 118, 211–225. [Google Scholar] [CrossRef]
- Lewicka, A.; Widomski, M.K.; Łagód, G. Economic analyses in sewage system designing for rural settlements—Case study. Archit. Civ. Eng. Environ. 2016, 2, 145–152. [Google Scholar] [CrossRef]
- Peter, G.; Nkambule, S.E. Factors affecting sustainability of rural water schemes in Swaziland. Phys. Chem. Earth A/B/C 2012, 50–52, 196–204. [Google Scholar] [CrossRef]
- William, F.; Mozumder, V.P.; Hernández-Arce, J.; Berrens, R.P. Willingness to pay for safe drinking water: Evidence from Parral, Mexico. J. Environ. Manag. 2009, 90, 3391–3400. [Google Scholar] [CrossRef] [PubMed]
- Kwangware, J.; Mayo, A.; Hoko, Z. Sustainability of donor-founded rural water supply and sanitation projects in Mbire district, Zimbabwe. Phys. Chem. Earth A/B/C 2014, 76–78, 134–139. [Google Scholar] [CrossRef]
- POIiŚ (2016) ‘Feasibility Study. Priority Axis 2.3. Construction of a Sanitary Sewage System with Connections in the Town of Radków. Stage V, VI, VII’. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi_ovG3guv0AhVJxIsKHVX8CXkQFnoECAIQAQ&url=https%3A%2F%2Fwww.prawomiejscowe.pl%2Fapi%2Ffile%2FGetZipxAttachment%2F8%2F35207%2Fpreview&usg=AOvVaw054GP5a7tDUqAfCiBP3qx5 (accessed on 12 September 2025). (In Polish).
- Li, W.; Liu, Z. A method of SVM with normalization in intrusion detection. Procedia Environ. Sci. 2011, 11, 256–262. [Google Scholar] [CrossRef]
- Balaha, H.M.; Hassan, A.E. Framework for segmentation, optimization, and recognition of multivariate brain tumors. In Advances in Neural Engineering, Signal Processing Strategies; El-Baz, A.S., Suri, J.S., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 1–32. [Google Scholar] [CrossRef]
- Wu, S.; He, B.-J. Assessment of Economic, Environmental, and Technological Sustainability of Rural Sanitation and Toilet Infrastructure and Decision Support Model for Improvement. Sustainability 2024, 16, 4384. [Google Scholar] [CrossRef]
- Lourenço, N.; Nunes, L.M. Review of Dry and Wet Decentralized Sanitation Technologies for Rural Areas: Applicability, Challenges and Opportunities. Environ. Manag. 2020, 65, 642–664. [Google Scholar] [CrossRef]
- Tomczuk, B.; Ochrymiuk, D. Effectiveness of Vertical Flow Constructed Wetlands Based on Results of the Annual Research Project. Inż. Ekol. 2012, 28, 57–67. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BPWR-0003-0055 (accessed on 11 September 2025). (In Polish).
- Jóźwiakowski, K.; Mucha, Z.; Generowicz, A.; Baran, S.; Bielińska, J. The Use of Multi-Criteria Analysis for Selection of Technology for a Household WWTP Compatible with Sustainable Development. Arch. Environ. Prot. 2015, 41, 76–82. [Google Scholar] [CrossRef]
- Perks, A.; Johnson, T. Review of On-Site and Communal Water and Sanitation Systems for Remote Communities. WIT Trans. Ecol. Environ. 2008, 108, 275–283. [Google Scholar] [CrossRef]
- Mucha, Z.; Mikosz, J. Rational Application of Small Wastewater Treatment Plants According to Sustainability Criteria. Czas. Tech. Politech. Krak. 2009, 2, 92–100. Available online: https://repozytorium.biblos.pk.edu.pl/redo/resources/33404/file/suwFiles/MuchaZ_RacjonalneStosowanie.pdf (accessed on 12 September 2025). (In Polish).
- Watabe, S.; Lohman, H.A.C.; Li, Y.; Morgan, V.L.; Rowles, L.S.; Stephen, T.; Shyu, H.-Y.; Bair, R.A.; Castro, C.J.; Cusick, R.D.; et al. Advancing the Economic and Environmental Sustainability of the NEWgenerator Nonsewered Sanitation System. ACS Environ. Au 2023, 3, 209–222. [Google Scholar] [CrossRef]
- Schwetschenau, S.E.; Kovankaya, Y.; Elliott, M.A.; Allaire, M.; White, K.D.; Lall, U. Optimizing Scale for Decentralized Wastewater Treatment: A Tool to Address Failing Wastewater Infrastructure in the United States. ACS EST Eng. 2023, 3, 1–14. [Google Scholar] [CrossRef]
- Hughes, J.; Cowper-Heays, K.; Olesson, E.; Bell, R.; Stroombergen, A. Impacts and implications of climate change on wastewater systems: A New Zealand perspective. Clim. Risk Manag. 2021, 31, 100262. [Google Scholar] [CrossRef]









| Variant | Description | Investment Costs (Euro) | Annual Mean O&M Costs (Euro) |
|---|---|---|---|
| 1 | Single-chamber tank, aerated trickling filter, length 2.15 m, width 1.24 m, earthworks volume 19.68 m3 Energy consumption 0.72 kWh/day Sludge transport once per 24 months | a 5178.98 b 5644.09 c 4788.44 d 5329.14 | a and c 119.26 b and d 209.49 |
| 2 | Three-chamber tank, active sludge and aerated trickling filter, volume 2.3 m3, length 1.8 m, width 1.6 m, height 1.45 m, earthworks volume 20.75 m3 Energy consumption 0.69 kWh/day Sludge transport once per 6 months | a 4135.12 b 4704.88 c 3744.58 d 4389.93 | a and c 213.91 b and d 304.13 |
| 3 | Five-chamber tank, active sludge and aerated trickling filter, length 2.46 m, width 1.42 m, height 1.7 m, earthworks volume 22.63 m3 Energy consumption 0.9 kWh/day Sludge transport once per 12 months | a 4335.58 b 4905.35 c 3945.05 d 4590.40 | a and c 131.07 b and d 221.30 |
| 4 | Three-chamber bioreactor tank, anaerobic treatment, aerated active sludge, secondary chambers, length 2.3 m, width 1.7 m, height 1.1 m, earthworks volume 18.71 m3 Energy consumption 0.60 kWh/day Sludge transport once per 9 months | a 4511.79 b 5081.56 c 4121.26 d 4766.61 | a and c 157.85 b and d 248.07 |
| 5 | Six-chamber vertical bioreactor tank, anaerobic treatment, aerated active sludge, secondary sludge and clarification chambers, length 1.8 m, diameter 1.41 m3, volume 1.79 m3, earthworks volume 10.07 m3 Energy consumption 0.60 kWh/day Sludge transport once per year | a 4405.16 b 4974.93 c 4014.63 d 4659.98 | a and c 173.11 b and d 263.34 |
| 6 | Six-chamber cylindrical vertical bioreactor, low-loaded activated sludge, dual recirculation and aeration systems, diameter 1.4 m, height 1.8 m, earthworks volume 14.77 m3 Energy consumption 0.90 kWh/day Sludge transport once per year | a 4610.79 b 5180.56 c 4220.26 d 4865.61 | a and c 173.11 b and d 263.34 |
| 7 | Conical two-chamber tank, active sludge and aerated trickling filter, diameter 1.7 m, height 2.85 m, earthworks volume 14.53 m3 Energy consumption 1.42 kWh/day Sludge transport once per 18 months | a 4821.79 b 5180.56 c 4447.14 d 5092.49 | a and c 298.34 b and d 388.57 |
| 8 | Single-chamber tank, volume 2.3 m3, length 1.61 m, width 1.91 m, height 1.5 m, earthworks volume 19.99 m3 Drainage filter and pipelines flushing once per 12 months Sludge transport once per 24 months Filtration layer exchange after 20 years | a 5157,00 b 5416.07 c 2898.56 d 3401.47 | a 202.29 b 345.32 c 154.78 d 297.80 |
| Reduction (%) | |||
|---|---|---|---|
| Variant | BOD5 | COD | TSS |
| Variant 1 | 99 | 97.4 | 94.6 |
| Variant 2 | 93 | 92 | 96 |
| Variant 3 | 97 | 86 | 92 |
| Variant 4 | 92.9 | 88 | 92.4 |
| Variant 5 | 98.2 | 94.4 | 97.2 |
| Variant 6 | 97 | 92 | 95 |
| Variant 7 | 92.4 | 84 | 91 |
| Variant 8 | 90 | 83.5 | 70 |
| Input Data | Initial Value | Minimal Value | Maximum Value |
|---|---|---|---|
| Discount rate (%) | 5 | 4 | 6 |
| Energy price (EUR/kWh) | 0.29 | 0.14 | 0.44 |
| System lifetime (years) | 30 | 20 | 40 |
| Mean price of sewage and sludge transport (EUR/m3) | 11.86 | 8.90 | 14.83 |
| Indicator | Weight Factor (%) |
|---|---|
| Profitability | 60 |
| Cost-efficiency | 40 |
| Variant | Sensitivity Coefficient for Variable Discount Rate | |||||||
|---|---|---|---|---|---|---|---|---|
| Profitability | Cost-Efficiency | |||||||
| a | b | c | d | a | b | c | d | |
| Variant 1 | −0.389 | −0.333 | −0.381 | −0.326 | 0.388 | 0.333 | 0.380 | 0.325 |
| Variant 2 | −0.290 | −0.260 | −0.276 | −0.251 | 0.289 | 0.260 | 0.276 | 0.250 |
| Variant 3 | −0.358 | −0.308 | −0.347 | −0.299 | 0.358 | 0.307 | 0.346 | 0.299 |
| Variant 4 | −0.341 | −0.297 | −0.329 | −0.289 | 0.340 | 0.297 | 0.329 | 0.289 |
| Variant 5 | −0.326 | −0.287 | −0.314 | −0.278 | 0.325 | 0.286 | 0.313 | 0.278 |
| Variant 6 | −0.337 | −0.296 | −0.325 | −0.287 | 0.336 | 0.295 | 0.325 | 0.287 |
| Variant 7 | −0.266 | −0.246 | −0.255 | −0.238 | 0.266 | 0.246 | 0.255 | 0.238 |
| Variant 8 | −0.326 | −0.262 | −0.286 | −0.220 | 0.326 | 0.262 | 0.285 | 0.220 |
| Variant | Sensitivity Coefficient for Variable Energy Prices | |||||||
|---|---|---|---|---|---|---|---|---|
| Profitability | Cost-Efficiency | |||||||
| a | b | c | d | a | b | c | d | |
| Variant 1 | −0.177 | −0.302 | −0.187 | −0.314 | 0.175 | 0.295 | 0.186 | 0.306 |
| Variant 2 | −0.158 | −0.277 | −0.167 | −0.286 | 0.157 | 0.271 | 0.165 | 0.319 |
| Variant 3 | −0.245 | −0.363 | −0.261 | −0.378 | 0.241 | 0.351 | 0.257 | 0.364 |
| Variant 4 | −0.148 | −0.276 | −0.156 | −0.286 | 0.145 | 0.270 | 0.153 | 0.280 |
| Variant 5 | −0.145 | −0.271 | −0.153 | −0.281 | 0.144 | 0.266 | 0.152 | 0.275 |
| Variant 6 | −0.216 | −0.328 | −0.228 | −0.340 | 0.213 | 0.319 | 0.225 | 0.330 |
| Variant 7 | −0.259 | −0.341 | −0.269 | −0.351 | 0.254 | 0.331 | 0.264 | 0.340 |
| Variant 8 | 0.000 | −0.130 | 0.000 | −0.174 | 0.000 | 0.129 | 0.000 | 0.173 |
| Variant | Sensitivity Coefficient for Variable System Lifetime | |||||||
|---|---|---|---|---|---|---|---|---|
| Profitability | Cost-Efficiency | |||||||
| a | b | c | d | a | b | c | d | |
| Variant 1 | 0.319 | 0.276 | 0.312 | 0.270 | −0.343 | −0.293 | −0.215 | −0.184 |
| Variant 2 | 0.242 | 0.218 | 0.231 | 0.210 | −0.255 | −0.229 | −0.156 | −0.142 |
| Variant 3 | 0.295 | 0.256 | 0.286 | 0.249 | −0.316 | −0.271 | −0.196 | −0.169 |
| Variant 4 | 0.281 | 0.248 | 0.272 | 0.241 | −0.206 | −0.262 | −0.186 | −0.163 |
| Variant 5 | 0.174 | 0.156 | 0.169 | 0.151 | −0.197 | −0.253 | −0.177 | −0.157 |
| Variant 6 | 0.278 | 0.246 | 0.270 | 0.240 | −0.204 | −0.261 | −0.184 | −0.162 |
| Variant 7 | 0.223 | 0.207 | 0.214 | 0.200 | −0.234 | −0.217 | −0.144 | −0.134 |
| Variant 8 | 0.270 | 0.219 | 0.238 | 0.186 | −0.287 | −0.231 | −0.161 | −0.124 |
| Variant | Sensitivity Coefficient for Variable Sewage and Sludge Transport Costs | |||||||
|---|---|---|---|---|---|---|---|---|
| Profitability | Cost-Efficiency | |||||||
| a | b | c | d | a | b | c | d | |
| Variant 1 | 0.920 | 0.937 | 0.916 | 0.935 | 0.111 | 0.141 | 0.105 | 0.136 |
| Variant 2 | 0.705 | 0.767 | 0.689 | 0.759 | 0.475 | 0.603 | 0.451 | 0.583 |
| Variant 3 | 0.941 | 0.955 | 0.938 | 0.954 | 0.067 | 0.088 | 0.063 | 0.085 |
| Variant 4 | 0.788 | 0.835 | 0.775 | 0.829 | 0.295 | 0.379 | 0.278 | 0.366 |
| Variant 5 | 0.844 | 0.878 | 0.835 | 0.874 | 0.225 | 0.289 | 0.213 | 0.279 |
| Variant 6 | 0.846 | 0.879 | 0.837 | 0.875 | 0.228 | 0.292 | 0.216 | 0.282 |
| Variant 7 | 0.825 | 0.856 | 0.818 | 0.852 | 0.453 | 0.550 | 0.436 | 0.535 |
| Variant 8 | 0.866 | 0.897 | 0.792 | 0.863 | 0.264 | 0.345 | 0.169 | 0.258 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widomski, M.K.; Musz-Pomorska, A. Economic Sustainability of Selected Individual On-Site Systems of Rural Sanitation Under Conditions in Poland. Sustainability 2025, 17, 10241. https://doi.org/10.3390/su172210241
Widomski MK, Musz-Pomorska A. Economic Sustainability of Selected Individual On-Site Systems of Rural Sanitation Under Conditions in Poland. Sustainability. 2025; 17(22):10241. https://doi.org/10.3390/su172210241
Chicago/Turabian StyleWidomski, Marcin K., and Anna Musz-Pomorska. 2025. "Economic Sustainability of Selected Individual On-Site Systems of Rural Sanitation Under Conditions in Poland" Sustainability 17, no. 22: 10241. https://doi.org/10.3390/su172210241
APA StyleWidomski, M. K., & Musz-Pomorska, A. (2025). Economic Sustainability of Selected Individual On-Site Systems of Rural Sanitation Under Conditions in Poland. Sustainability, 17(22), 10241. https://doi.org/10.3390/su172210241

