How Digital-Economy Policy Boosts TFP: Evidence and Quadruple Mechanisms from China’s Manufacturing Sector
Abstract
1. Introduction
2. Institutional Background and Literature Review
2.1. China’s Digital-Economy Policy Landscape
2.2. Related Literature
2.3. Hypothesis Development
3. Data and Empirical Strategy
3.1. Data Sources and Sample Construction
3.2. Variables and Measurement
3.2.1. Dependent Variable
3.2.2. Core Explanatory Variable
3.2.3. Instrumental Variables
3.2.4. Mechanism Variables
3.2.5. Control Variables
3.3. Empirical Strategy
3.3.1. Baseline Model
3.3.2. Identification Strategy: 2SLS
3.3.3. Mechanism and Heterogeneity Analysis
4. Results
4.1. Baseline Two-Way Fixed-Effects Estimates
4.2. Addressing Endogeneity: 2SLS Results
4.3. Robustness Checks
4.4. Mechanism Analysis
4.4.1. (M1) Innovation Quality
4.4.2. (M2) Tax Incentives
4.4.3. (M3) Digital Subsidies
4.4.4. (M4) Knowledge Spillovers
4.5. Heterogeneity Analysis
5. Discussion
5.1. How Do the Findings Enrich the Digital-Productivity Debate?
5.2. Links to the Industrial-Policy Literature
5.3. Implications for Regional Development
5.4. Fiscal Design Matters
5.5. Knowledge Spillovers: Modest but Non-Trivial
5.6. Limitations and Avenues for Future Research
5.7. Concluding Perspective
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Supplementary Table
| Cat. ID | Category | English Keywords |
|---|---|---|
| I | Core AI Tech | AI, Artificial Intelligence, Generative AI, AIGC, Large Models (LLMs), Foundational Models, Reinforcement Learning, Computer Vision, OCR, Intelligent Quality Inspection, Digital Twin, Smart Manufacturing |
| II | Big-Data Tech | Big Data, Data Mining, Text Mining, Data Visualization, Data Middle Platform, Data Lake, Data Warehouse, Master Data Management, Knowledge Graph, Spatio-temporal Big Data, ETL/ELT, Federated Learning |
| III | Cloud/Edge Comp. | Cloud Computing, IaaS, PaaS, SaaS, Kubernetes, Microservices, Serverless, DevOps, CI/CD, Multi-cloud, Hybrid Cloud, Object Storage, API Gateway, Cloud-Edge Collaboration, Edge Computing, Cloud Platform |
| IV | Blockchain/Trusted | Blockchain, Digital Currency, Distributed Ledger (DLT), Alliance Chain, Cross-chain, Zero-Knowledge Proof (ZKP), Homomorphic Encryption, Decentralized Identity (DID), Traceability, Digital RMB (e-CNY), Smart Financial Contracts |
| V | Thematic/General | Digital Economy, Digital Transformation, Industry Digitalization, Digital Industrialization, Digital Technology, Smart City, Intelligentization, Intelligent Traffic, Intelligent Medical, E-commerce |
| VI | Industrial Apps | Industrial Internet, IIoT, MES/ERP/PLM/SCADA, Supply Chain Platform, Industry Internet Identification, Two-Wheel Integration, Intelligent Energy, Smart Wearables, Smart Agriculture, Unmanned Retail |
| Infrastructure, Governance, and Methodological Categories | ||
| VII | Network and Compute | 5G/5G Private Network, 6G, Gigabit Optical Network, IPv6, Compute Power, Compute Network/Hub, “East Data West Computing” (Dong Shu Xi Suan), Data Center (IDC/Green DC/Dual-Carbon DC) |
| VIII | Data Elements and Governance | Data Elements, Data Element Market, Data Licensing/Operation, Data De-identification, Data Classification/Grading, Cross-border Data Flow, Public Data Openness, Data Exchange Platform, Data Assetization, Data Rights Confirmation |
| IX | Security and Compliance | Network Security, Classified Protection, Data Security Law, PIPL (Personal Information Protection Law), Critical Information Infrastructure, Privacy Computing/Secure MPC, Trusted Computing, Zero Trust, Security Sandbox |
| X | Policy Tools (Inclusion) | Guidance/Implementation Document, Action Plan, Special Program/Plan, Management Measures, Funding/Subsidies/Grants, Innovation/Cloud Vouchers, Tax Incentives/Super Deduction, Pilot/Demonstration/Benchmark, Recognition, Procurement |
| XI | Exclusion Words | Interpretations/Explanations, News Releases, Dynamic Information, Summary/Overview, Speeches/Addresses, Interviews, Pictures, Reprints, Briefing, Meeting Minutes, Popular Science |
References
- Syverson, C. Challenges to mismeasurement explanations for the US productivity slowdown. J. Econ. Perspect. 2017, 31, 165–186. [Google Scholar] [CrossRef]
- Gordon, R.J. Perspectives on the rise and fall of American growth. Am. Econ. Rev. 2016, 106, 72–76. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; McAfee, A. The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies; WW Norton & company: New York, NY, USA, 2014. [Google Scholar]
- DeStefano, T.; Kneller, R.; Timmis, J. Cloud computing and firm growth. Rev. Econ. Stat. 2023, 1–47. [Google Scholar]
- Li, X.; Yue, S. Does the government digital attention improve China’s digital economy output efficiency: Accelerator or inhibitor. Econ. Anal. Policy 2025, 85, 607–625. [Google Scholar] [CrossRef]
- State Council of the People’s Republic of China. 14th Five-Year Plan for the Development of the Digital Economy; Guo Fa (2021) No. 29; The State Council of the People’s Republic of China: Beijing, China, 2021. [Google Scholar]
- Ministry of Industry and Information Technology. Three-Year Action Plan for the Digital Transformation of Manufacturing (2021–2023); Ministry of Industry and Information Technology: Beijing, China, 2021. [Google Scholar]
- Huppes, G.; Ishikawa, M. A framework for quantified eco-efficiency analysis. J. Ind. Ecol. 2005, 9, 25–41. [Google Scholar] [CrossRef]
- Jayal, A.D.; Badurdeen, F.; Dillon, O., Jr.; Jawahir, I.S. Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP J. Manuf. Sci. Technol. 2010, 2, 144–152. [Google Scholar] [CrossRef]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six transformations to achieve the sustainable development goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Atasu, A.; Corbett, C.J.; Huang, X.; Toktay, L.B. Sustainable operations management through the perspective of manufacturing & service operations management. Manuf. Serv. Oper. Manag. 2020, 22, 146–157. [Google Scholar] [CrossRef]
- Zhang, L.; Tao, Y.; Nie, C. Does broadband infrastructure boost firm productivity? Evidence from a quasi-natural experiment in China. Financ. Res. Lett. 2022, 48, 102886. [Google Scholar] [CrossRef]
- Mo, Z.; Liu, Y.; Lu, C.; Yu, J. Influences of industrial internet platform firms’ ESG performance and digital leadership on user firms’ innovation performance: The mediating role of inter-firm trust. J. Digit. Econ. 2023, 2, 204–220. [Google Scholar] [CrossRef]
- Wang, H.; Cao, W.; Wang, F. Digital transformation and manufacturing firm performance: Evidence from China. Sustainability 2022, 14, 10212. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, W.; Xiang, D. Strategic emerging industries and innovation: Evidence from China. Int. Rev. Econ. Financ. 2025, 98, 103858. [Google Scholar] [CrossRef]
- Chen, J.; Heng, C.S.; Tan, B.C.; Lin, Z. The distinct signaling effects of R&D subsidy and non-R&D subsidy on IPO performance of IT entrepreneurial firms in China. Res. Policy 2018, 47, 108–120. [Google Scholar]
- Rodrik, D. Industrial Policy for the Twenty-First Century; Centre for Economic Policy Research (CEPR): London, UK, 2004. [Google Scholar]
- Goldsmith-Pinkham, P.; Sorkin, I.; Swift, H. Bartik instruments: What, when, why, and how. Am. Econ. Rev. 2020, 110, 2586–2624. [Google Scholar] [CrossRef]
- Baldwin, R. The Globotics Upheaval: Globalisation, Robotics and the Future of Work; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- State Council of the People’s Republic of China. Guiding Opinions on Actively Promoting the “Internet Plus” Action Plan; Guo Fa (2015) No. 40; The State Council of the People’s Republic of China: Beijing, China, 2015. [Google Scholar]
- National Development and Reform Commission. 13th Five-Year Plan for the Development of the Digital Economy; Technical Report; National Development and Reform Commission: Beijing, China, 2017. [Google Scholar]
- Rwakihembo, J.; Oceng, P.; Aryatwijuka, W.; Kule, J.B. Attitude towards Electronic Tax System and Value-Added Tax Compliance, the Mediating Effect of Adoption of the Electronic Tax System among Small and Medium Enterprises (SMEs) in Fort Portal City, Western Uganda. Int. J. Bus. Strateg. 2024, 9, 1–20. [Google Scholar] [CrossRef]
- Zhang, Q.; She, J. Digital transformation and corporate tax avoidance: An analysis based on multiple perspectives and mechanisms. PLoS ONE 2024, 19, e0310241. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Yang, Z.; Liu, W.; Cui, J. Pre-Tax Deduction Policy for Employee Education Expenses and Corporate Digital Transformation: Evidence From China. SAGE Open 2025, 15, 21582440251342086. [Google Scholar] [CrossRef]
- National Development and Reform Commission. Notice on Launching Digital-Economy Innovation and Development Pilot Zones; Fa Gai Ban Gao Ji (2019) No. 841; National Development and Reform Commission: Beijing, China, 2019. [Google Scholar]
- Brynjolfsson, E.; Hitt, L. Computing Productivity: Firm-Level Evidence. Rev. Econ. Stat. 2003, 84, 793–808. [Google Scholar] [CrossRef]
- Basu, S.; Fernald, J.G.; Oulton, N.; Srinivasan, S. The case of the missing productivity growth, or does information technology explain why productivity accelerated in the United States but not in the United Kingdom? NBER Macroecon. Annu. 2003, 18, 9–63. [Google Scholar] [CrossRef]
- Rehman, N.U.; Nunziante, G. The effect of the digital economy on total factor productivity in European regions. Telecommun. Policy 2023, 47, 102650. [Google Scholar] [CrossRef]
- Giachino, C.; Cepel, M.; Truant, E.; Bargoni, A. Artificial intelligence-driven decision making and firm performance: A quantitative approach. Manag. Decis. 2024. [Google Scholar] [CrossRef]
- Imtiaz, Q.; Altaf, M.; Pérez Berlan, R.; Lee, M.; Ahmad, S.; Salman, H. Artificial intelligence: A double-edged sword for the education and environment of the global market. Educ. Adm. Theory Pract. 2024, 30, 3181–3193. [Google Scholar] [CrossRef]
- Yu, W.; Du, B.; Guo, X.; Marinova, D. Total factor productivity in Chinese manufacturing firms: The role of E-commerce adoption. Electron. Commer. Res. 2025, 25, 1005–1031. [Google Scholar] [CrossRef]
- Jin, X.; Ma, B.; Zhang, H. Impact of fast internet access on employment: Evidence from a broadband expansion in China. China Econ. Rev. 2023, 81, 102038. [Google Scholar] [CrossRef]
- Xu, J.; Yang, B.; Yuan, C. The impact of supply chain digitalization on urban resilience: Do industrial chain resilience, green total factor productivity and innovation matter? Energy Econ. 2025, 145, 108443. [Google Scholar] [CrossRef]
- Zhang, Q.; Du, A.M.; Lin, B. Driving total factor productivity: The spillover effect of digitalization in the new energy supply chain. Res. Int. Bus. Financ. 2025, 75, 102764. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Y. Digital regulation and firm productivity: Evidence from a quasi-natural experiment in China. Econ. Model. 2025, 107306. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Li, H.; Zhong, K. Digital economy development, industrial structure upgrading and green total factor productivity: Empirical evidence from China’s cities. Int. J. Environ. Res. Public Health 2022, 19, 2414. [Google Scholar] [CrossRef]
- Han, Z. Digital Transformation and Firm Total Factor Productivity: Tests on the moderating effect of ESG. Adv. Econ. Manag. Res. 2024, 11, 271. [Google Scholar] [CrossRef]
- Liu, H.; Liu, W.; Chen, G. Environmental information disclosure, digital transformation, and total factor productivity: Evidence from Chinese heavy polluting listed companies. Int. J. Environ. Res. Public Health 2022, 19, 9657. [Google Scholar] [CrossRef]
- Alkhatib, A.W.; Valeri, M. Can intellectual capital promote the competitive advantage? Service innovation and big data analytics capabilities in a moderated mediation model. Eur. J. Innov. Manag. 2024, 27, 263–289. [Google Scholar] [CrossRef]
- Chang, J.; Lan, Q.; Tang, W.; Chen, H.; Liu, J.; Duan, Y. Research on the impact of digital economy on manufacturing total factor productivity. Sustainability 2023, 15, 5683. [Google Scholar] [CrossRef]
- Tu, J.; Wei, X.; Razik, M.A.B. The impact of digital technology on total factor productivity in manufacturing enterprises. Sci. Rep. 2025, 15, 23543. [Google Scholar] [CrossRef] [PubMed]
- Zulu, S.L.; Saad, A.M.; Omotayo, T. The mediators of the relationship between digitalisation and construction productivity: A systematic literature review. Buildings 2023, 13, 839. [Google Scholar] [CrossRef]
- Shen, X.; Paluzzi, H.; Qiu, C.; Kohnke, E.J.; Chen, H. A meta-analysis of the relationships among digital transformation, innovation and firm performance: The moderating effects of country-specific factors. Int. J. Phys. Distrib. Logist. Manag. 2025, 55, 701–737. [Google Scholar] [CrossRef]
- Wei, S.J.; Xie, Z.; Zhang, X. From “made in China” to “innovated in China”: Necessity, prospect, and challenges. J. Econ. Perspect. 2017, 31, 49–70. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Y.; Qin, Q.; Jia, H. Digital Economy and Corporate Innovation: Evidence from China. Emerg. Mark. Financ. Trade 2025, 61, 4180–4205. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X. Digital Empowerment and High-Quality Economic Development in Chinese Cities: A Quasi-Natural Experiment Based on the National Big Data Comprehensive Pilot Zones. Front. Econ. China 2024, 19, 406–435. [Google Scholar]
- Chen, W.; Liang, S.; Zhang, L. Tax uncertainty and corporate innovation output: Evidence from China. Eur. J. Financ. 2024, 30, 1127–1163. [Google Scholar] [CrossRef]
- Mintz, J.M. Corporate tax holidays and investment. World Bank Econ. Rev. 1990, 4, 81–102. [Google Scholar] [CrossRef]
- Clark, P.K.; Sichel, D.E. Tax incentives and equipment investment. Brook. Pap. Econ. Act. 1993, 1993, 317–347. [Google Scholar] [CrossRef]
- Ohrn, E. The effect of corporate taxation on investment and financial policy: Evidence from the DPAD. Am. Econ. J. Econ. Policy 2018, 10, 272–301. [Google Scholar] [CrossRef]
- Li, N.; Feng, J.; Zhang, C. Macro tax incentives and corporate sustainable innovation: Evidence from Chinese Enterprises. Environ. Sci. Pollut. Res. 2023, 30, 101546. [Google Scholar] [CrossRef]
- Zeng, J.; Luo, G.; Chu, E.; He, Y. The Impact of R&D Tax Policy on Corporate Digital Transformation: Evidence from China. Emerg. Mark. Financ. Trade 2025, 1–19. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, L.; Sun, X.; Xing, Y. The incentive effect of government subsidies on the digital transformation of manufacturing enterprises. Int. J. Emerg. Mark. 2024, 19, 3892–3912. [Google Scholar] [CrossRef]
- Yoon, J.; Choi, K. Why do export subsidies still exist? R&D and output subsidies. Jpn. World Econ. 2018, 45, 30–38. [Google Scholar] [CrossRef]
- Criscuolo, C.; Gonne, N.; Kitazawa, K.; Lalanne, G. Are industrial policy instruments effective? In OECD Science, Technology and Industry Policy Papers; Organisation for Economic Cooperation and Development (OECD): Paris, France, 2022. [Google Scholar]
- Huang, X.; Wang, X.; Ge, P. Selective industrial policy and innovation resource misallocation. Econ. Anal. Policy 2024, 82, 124–146. [Google Scholar] [CrossRef]
- Qian, Y.; Xi, X. Evaluating the policy effect of the “Broadband China” strategy—From the perspective of urban entrepreneurship vitality. J. Knowl. Econ. 2025, 16, 10993–11019. [Google Scholar] [CrossRef]
- Wong, C.Y. Rent-seeking, industrial policies and national innovation systems in Southeast Asian economies. Technol. Soc. 2011, 33, 231–243. [Google Scholar] [CrossRef]
- Lyytinen, K.; Yoo, Y.; Boland, R.J., Jr. Digital product innovation within four classes of innovation networks. Inf. Syst. J. 2016, 26, 47–75. [Google Scholar]
- Chen, L.; Wang, J. Intellectual Property Protection, R&D Investment and Digital Technology Innovation: An Empirical Study Based on the Revision of the Patent Law. Int. Rev. Econ. Financ. 2025, 104320. [Google Scholar]
- Chen, W.; Zhang, L. Corporate digital transformation and tax uncertainty: Evidence from China. Int. J. Emerg. Mark. 2025. [Google Scholar] [CrossRef]
- Wen, H.; Zhong, Q.; Lee, C.C. Digitalization, competition strategy and corporate innovation: Evidence from Chinese manufacturing listed companies. Int. Rev. Financ. Anal. 2022, 82, 102166. [Google Scholar] [CrossRef]
- Nam, C.W. Corporate tax incentives for R&D investment in OECD countries. Int. Econ. J. 2012, 26, 69–84. [Google Scholar] [CrossRef]
- Makeeva, E.; Murashkina, I.; Mikhaleva, I. The impact of R&D tax incentive programs on the performance of innovative companies. Foresight 2019, 21, 545–562. [Google Scholar] [CrossRef]
- Ohrn, E. Corporate tax breaks and executive compensation. Am. Econ. J. Econ. Policy 2023, 15, 215–255. [Google Scholar] [CrossRef]
- Shan, H.; Ko, D.; Wang, L.; Wang, G. Managerial ability, digital transformation and innovation efficiency: Empirical evidence from Chinese manufacturing listed companies. Chin. Manag. Stud. 2025, 19, 526–548. [Google Scholar] [CrossRef]
- Howell, S. Financing Innovation: Evidence from R&D Grants. Am. Econ. Rev. 2017, 107, 1136–1164. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Liu, B.; Huang, Y.; Tai, Y. Mystery of special government subsidies: How does digital transformation promote enterprise innovation and development? Econ. Anal. Policy 2024, 83, 1–16. [Google Scholar] [CrossRef]
- Wei, M. Managerial Myopia and Digital Innovation: The Mechanism of Deviant Strategy. J. East Eur. Manag. Stud. 2025, 30, 38758. [Google Scholar] [CrossRef]
- Gilbert, B.A.; McDougall, P.P.; Audretsch, D.B. Clusters, knowledge spillovers and new venture performance: An empirical examination. J. Bus. Ventur. 2008, 23, 405–422. [Google Scholar] [CrossRef]
- Rodriguez, A.; Tosyali, A.; Kim, B.; Choi, J.; Lee, J.M.; Coh, B.Y.; Jeong, M.K. Patent clustering and outlier ranking methodologies for attributed patent citation networks for technology opportunity discovery. IEEE Trans. Eng. Manag. 2016, 63, 426–437. [Google Scholar] [CrossRef]
- Atkin, D.; Chen, M.K.; Popov, A. The Returns to Face-to-Face Interactions: Knowledge Spillovers in Silicon Valley; Technical Report; National Bureau of Economic Research: Cambridge, MA, USA, 2022. [Google Scholar]
- Ngo, T.A.N.; Thornton, S. How knowledge services clustered firms leverage different channels of local knowledge spillovers for service innovation. Manag. Organ. Rev. 2022, 18, 1116–1138. [Google Scholar] [CrossRef]
- Zou, S.; Liao, Z.; Fan, X. The impact of the digital economy on urban total factor productivity: Mechanisms and spatial spillover effects. Sci. Rep. 2024, 14, 396. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Zhang, Z. Impact of digital economy on inter-regional trade: An empirical analysis in China. Sustainability 2023, 15, 12086. [Google Scholar] [CrossRef]
- Abourokbah, S.H.; Mashat, R.M.; Salam, M.A. Role of absorptive capacity, digital capability, agility, and resilience in supply chain innovation performance. Sustainability 2023, 15, 3636. [Google Scholar] [CrossRef]
- Levinsohn, J.; Petrin, A. Estimating production functions using inputs to control for unobservables resilience in supply chain innovation performance. Rev. Econ. Stud. 2003, 70, 317–341. [Google Scholar] [CrossRef]
- Luo, Y.; Fang, M.; Li, A.; Chen, S. Opportunity or opportunism? Blockchain technology adoption and corporate default risk. Humanit. Soc. Sci. Commun. 2024, 11, 1360. [Google Scholar] [CrossRef]
- He, M.; Fan, Z.; Chen, Y. Impact of enhancing national autonomous innovation demonstration zones on cities’ efficiency in technological innovation. Sci. Rep. 2025, 15, 25077. [Google Scholar] [CrossRef]
- Restrepo, P. Automation: Theory, evidence, and outlook. Annu. Rev. Econ. 2024, 16, 1–25. [Google Scholar] [CrossRef]
- Dague, L.; DeLeire, T.; Leininger, L. The effect of public insurance coverage for childless adults on labor supply. Am. Econ. J. Econ. Policy 2017, 9, 124–154. [Google Scholar] [CrossRef]
- Brand, J.M.; Demirer, M.; Finucane, C.; Kreps, A.A. Firm Productivity and Learning in the Digital Economy: Evidence from Cloud Computing; Technical Report; National Bureau of Economic Research: Cambridge, MA, USA, 2024. [Google Scholar]
- Katz, R.; Jung, J. Economic spillovers from cloud computing: Evidence from OECD countries. Inf. Technol. Dev. 2024, 30, 173–194. [Google Scholar] [CrossRef]
- Zhou, J.; Lan, H.; Zhao, C.; Wang, W. The employment effects of digital infrastructure: Firm-level evidence from the ‘Broadband China’strategy. Technol. Anal. Strateg. Manag. 2024, 36, 2647–2661. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Klenow, P.J. Misallocation and manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef]
- Porter, M.E.; Linde, C.v.d. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Rennings, K. Redefining innovation—eco-innovation research and the contribution from ecological economics. Ecol. Econ. 2000, 32, 319–332. [Google Scholar] [CrossRef]
- Xu, B.; Sendra-García, J.; Gao, Y.; Chen, X. Driving total factor productivity: Capital and labor with tax allocation. Technol. Forecast. Soc. Change 2020, 150, 119782. [Google Scholar] [CrossRef]
- Dechezleprêtre, A.; Einiö, E.; Martin, R.; Nguyen, K.T.; Van Reenen, J. Do tax incentives increase firm innovation? An RD design for R&D, patents, and spillovers. Am. Econ. J. Econ. Policy 2023, 15, 486–521. [Google Scholar]
- Zhou, X.; Huang, L.; Zhang, Y.; Yu, M. A hybrid approach to detecting technological recombination based on text mining and patent network analysis. Scientometrics 2019, 121, 699–737. [Google Scholar] [CrossRef]
- Blind, K. The overall impact of economic, social and institutional regulation on innovation: An update. Handb. Innov. Regul. 2023, 230–262. [Google Scholar] [CrossRef]
- Hart, S.L.; Dowell, G. Invited editorial: A natural-resource-based view of the firm: Fifteen years after. J. Manag. 2011, 37, 1464–1479. [Google Scholar] [CrossRef]
- Romer, P. Endogenous Technological Change. J. Political Econ. 1990, 98, S71–S102. [Google Scholar] [CrossRef]
- Atkinson, R. Innovation economics: The race for global advantage. In Practicing Sustainability; Springer: Berlin/Heidelberg, Germany, 2012; pp. 123–126. [Google Scholar]
- Glaeser, E.L. Agglomeration Economics; University of Chicago Press: Chicago, IL, USA, 2010. [Google Scholar]
- Autor, D.H. Why are there still so many jobs? The history and future of workplace automation. J. Econ. Perspect. 2015, 29, 3–30. [Google Scholar] [CrossRef]
- Ghobakhloo, M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 2020, 252, 119869. [Google Scholar] [CrossRef]
- Ching, N.T.; Ghobakhloo, M.; Iranmanesh, M.; Maroufkhani, P.; Asadi, S. Industry 4.0 applications for sustainable manufacturing: A systematic literature review and a roadmap to sustainable development. J. Clean. Prod. 2022, 334, 130133. [Google Scholar] [CrossRef]
- Feng, S. Do market-based environmental policies encourage innovation in energy storage? Environ. Econ. Policy Stud. 2024, 26, 673–713. [Google Scholar] [CrossRef]
- Arginelli, P. Innovation through R&D tax incentives: Some ideas for a fair and transparent tax policy. World Tax J. 2015, 7, 3–71. [Google Scholar] [CrossRef]
- Choi, B. Productivity and misallocation of energy resources: Evidence from Korea’s manufacturing Sector. Resour. Energy Econ. 2020, 61, 101184. [Google Scholar] [CrossRef]
- Asker, J.; Collard-Wexler, A.; De Loecker, J. (Mis) allocation, market power, and global oil extraction. Am. Econ. Rev. 2019, 109, 1568–1615. [Google Scholar] [CrossRef]
- Bakija, J.; Slemrod, J. Evidence on the Impact of Progressive State Taxes on the Locations and Estates of the Rich. Williams Coll. Unpubl. Manuscr. 2002. [Google Scholar]
- Ambec, S.; Lanoie, P. Does it pay to be green? A systematic overview. Acad. Manag. Perspect. 2008, 22, 45–62. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Jiao, S.; Zhang, T. Evaluating the impact of citations of articles based on knowledge flow patterns hidden in the citations. PLoS ONE 2019, 14, e0225276. [Google Scholar] [CrossRef]
- Bhupatiraju, S.; Nomaler, Ö.; Triulzi, G.; Verspagen, B. Knowledge flows–Analyzing the core literature of innovation, entrepreneurship and science and technology studies. Res. Policy 2012, 41, 1205–1218. [Google Scholar] [CrossRef]
- Smojver, V.; Štorga, M.; Zovak, G. Exploring knowledge flow within a technology domain by conducting a dynamic analysis of a patent co-citation network. J. Knowl. Econ. 2021, 25, 433–453. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Automation and new tasks: How technology displaces and reinstates labor. J. Econ. Perspect. 2019, 33, 3–30. [Google Scholar] [CrossRef]
| Variable | Definition and Measurement | Source |
|---|---|---|
| Panel A: Dependent Variable | ||
| TFP | Total factor productivity, estimated using the Levinsohn–Petrin (2003) [77] method. | CSMAR, author’s calc. |
| Panel B: Core Explanatory and Instrumental Variables | ||
| Policy | of provincial digital-economy policies. | Lawdata, author’s calc. |
| Post Office IV | Interaction of log post offices (1984) and log national S&T expenditure. | Historical records, CSY |
| Governor IV | Interaction of central government attention and governor’s STEM-weighted education level. | State council, Governor CVs |
| Panel C: Mechanism Variables | ||
| Innovation Quality | . | IncoPat (CNIPA) |
| Tax Incentives | . | CSMAR |
| Digital Subsidies | . | CSMAR |
| Knowledge Spillovers | . | IncoPat, author’s calc. |
| Panel D: Control Variables | ||
| Firm Size | Log of total assets. | CSMAR |
| Leverage | Total liabilities divided by total assets. | CSMAR |
| Firm Age | Log of (current year - founding year + 1). | CSMAR |
| Ownership Conc. | Shareholding ratio of the largest shareholder. | CSMAR |
| GDP per capita | Log of provincial GDP per capita. | CSY |
| Industry Structure | Share of tertiary industry in provincial GDP. | CSY |
| Education Exp. | Share of education spending in provincial fiscal expenditure. | CSY |
| (1) Basic | (2) + Controls | (3) + Ind × Year FE | |
|---|---|---|---|
| Policy | 0.0409 *** | 0.0282 ** | 0.0265 ** |
| (0.0141) | (0.0117) | (0.0129) | |
| Controls | No | Yes | Yes |
| Firm FE | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes |
| Industry×Year FE | No | No | Yes |
| Observations | 17,300 | 17,300 | 17,300 |
| R-squared | 0.2781 | 0.3156 | 0.3056 |
| (1) Post Office IV Component | (2) Governor IV Component | |
|---|---|---|
| Pre-treatment covariates | ||
| GDP per capita | 0.0437 | 0.0274 |
| (0.0993) | (0.0715) | |
| Industry Structure | 0.0011 | |
| (0.0039) | (0.0031) | |
| Education Exp. | 0.0013 | |
| (0.0062) | (0.0047) | |
| Constant | 0.2138 | 0.4526 |
| (0.4061) | (0.3394) | |
| Observations | 31 | 31 |
| 0.0473 | 0.0361 | |
| Joint F-test (all covariates ): p-value | 0.7421 | 0.8647 |
| (1) IV1 Only | (2) IV2 Only | (3) Both IVs | |
|---|---|---|---|
| Dependent Variable: Policypt | |||
| IV1: Post Offices1984×Nat. S&T | 0.3874 *** | 0.2289 *** | |
| (0.0321) | (0.0410) | ||
| IV2: Central DE Attention×Governor STEM | 0.4152 *** | 0.2431 *** | |
| (0.0355) | (0.0442) | ||
| Controls | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes |
| Observations | 17,300 | 17,300 | 17,300 |
| Angrist–Pischke partial (excluded IVs) | 0.1183 | 0.1027 | 0.1842 |
| Kleibergen–Paap F (excluded IVs, joint) | 5255.7800 | 4952.3300 | 3987.4160 |
| Instrument-specific F (AP, robust) | 1845.1230 | 1622.4870 |
| (1) | (2) | (3) | |
|---|---|---|---|
| Dependent Variable: TFP | IV1Only | IV2Only | IV1and IV2 |
| Panel A — Second-stage (2SLS) coefficients | |||
| Policy | 0.0482 *** | 0.0515 *** | 0.0502 *** |
| (0.0151) | (0.0154) | (0.0153) | |
| Controls | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes |
| Panel B — Instrument diagnostics and weak-IV-robust inference | |||
| Anderson–Rubin LM p-value | 0.0000 | 0.0000 | 0.0000 |
| AR 95% CI for Policy | [0.0235,0.0764] | [0.0251,0.0793] | [0.0242,0.0778] |
| Kleibergen–Paap F | 5255.7800 | 4952.3300 | 3987.4160 |
| Number of instruments | 1 | 1 | 2 |
| Hansen J (over-ID) p-value | n/a | n/a | 0.4321 |
| Observations | 17,300 | 17,300 | 17,300 |
| (1) RF: IV1 Post Office IV | (2) RF: IV2 Governor IV | (3) 2SLS: Policy (IV1 and IV2) | |
|---|---|---|---|
| Dependent Variable: | |||
| Post Office IV | 0.0008 (0.0016) | ||
| Governor IV | −0.0003 (0.0012) | ||
| Policy (instrumented) | 0.0041 (0.0087) | ||
| Controls | Yes | Yes | Yes |
| Firm FE | No | No | No |
| Year FE | No | No | No |
| Province FE | No | No | No |
| Observations | 1108 | 1108 | 1108 |
| 0.0127 | 0.0114 | 0.0102 | |
| First-stage/weak-IV diagnostics for col. (3) | |||
| Kleibergen–Paap rk F | 8.4321 | ||
| Anderson–Rubin LM p-value | 0.5912 | ||
| (1) L1.Policy | (2) ln(TFP) | (3) Winsorized | (4) Competitiveness | |
|---|---|---|---|---|
| L1.policy | 0.0300 *** (0.0123) | |||
| Policy | 0.0032 ** (0.0013) | 0.3120 *** (0.0579) | ||
| Wpolicy | 0.0272 *** (0.0109) | |||
| Controls | Yes | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes | Yes |
| Observations | 14,198 | 17,200 | 17,200 | 17,300 |
| R-squared | 0.2992 | 0.2906 | 0.3035 | 0.0384 |
| TFP (LP) | TFP (OP) | TFP (ACF) | |
|---|---|---|---|
| TFP (LP) | 1.0000 | 0.9234 | 0.9056 |
| TFP (OP) | 0.9234 | 1.0000 | 0.9378 |
| TFP (ACF) | 0.9056 | 0.9378 | 1.0000 |
| (1) TFP (LP) | (2) TFP (OP) | (3) TFP (ACF) | |
|---|---|---|---|
| Policy | 0.0265 ** (0.0129) | 0.0287 ** (0.0124) | 0.0251 ** (0.0118) |
| Controls | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes |
| Observations | 17,300 | 16,948 | 17,112 |
| R-squared | 0.3056 | 0.3021 | 0.3042 |
| Dep. Var. | M1: Innov. Quality | M2: Tax Incentives | M3: Digital Subsidies | M4: Know. Spillovers | ||||
|---|---|---|---|---|---|---|---|---|
| (1) Innov. | (2) TFP | (3) Tax | (4) TFP | (5) Subs. | (6) TFP | (7) Spill. | (8) TFP | |
| Policy | 0.5250 *** (0.1650) | 0.0180 ** (0.0091) | 0.8100 *** (0.2700) | 0.0200 *** (0.0077) | 0.4500 *** (0.1650) | 0.0210 *** (0.0081) | 0.0750 *** (0.0220) | 0.0240 *** (0.0091) |
| Innovation Quality | 0.0170 *** (0.0054) | |||||||
| Tax Incentives | 0.0080 *** (0.0022) | |||||||
| Digital Subsidies | 0.0120 *** (0.0044) | |||||||
| Knowledge Spillovers | 0.0450 ** (0.0220) | |||||||
| Controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Observations | 17,300 | 17,300 | 17,300 | 17,300 | 17,300 | 17,300 | 17,300 | 17,300 |
| R-squared | 0.2392 | 0.3057 | 0.4059 | 0.3057 | 0.3285 | 0.3056 | 0.2738 | 0.3056 |
| Fiscal Self-Sufficiency | Education Expenditure | |||
|---|---|---|---|---|
| (1) High | (2) Low | (3) High | (4) Low | |
| Policy | 0.0414 *** (0.0153) | −0.0216 (0.0170) | 0.0429 *** (0.0138) | −0.0077 (0.0240) |
| Controls | Yes | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes | Yes |
| Observations | 8427 | 8519 | 8264 | 8334 |
| R-squared | 0.3192 | 0.2936 | 0.3163 | 0.2856 |
| Firm Size | Digital Intensity | Geographic Region | ||||
|---|---|---|---|---|---|---|
| (1) Large | (2) Small | (3) High | (4) Low | (5) East | (6) Non-East | |
| Policy | 0.0401 *** (0.0135) | 0.0384 *** (0.0129) | 0.0315 ** (0.0153) | 0.0138 (0.0170) | 0.0465 * (0.0241) | 0.0191 (0.0132) |
| Controls | Yes | Yes | Yes | Yes | Yes | Yes |
| Firm FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
| Observations | 8453 | 8360 | 8884 | 8182 | 3347 | 13,679 |
| R-squared | 0.1912 | 0.2199 | 0.3003 | 0.3192 | 0.3171 | 0.3098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Fan, Q.; Liu, J. How Digital-Economy Policy Boosts TFP: Evidence and Quadruple Mechanisms from China’s Manufacturing Sector. Sustainability 2025, 17, 10164. https://doi.org/10.3390/su172210164
Yu W, Fan Q, Liu J. How Digital-Economy Policy Boosts TFP: Evidence and Quadruple Mechanisms from China’s Manufacturing Sector. Sustainability. 2025; 17(22):10164. https://doi.org/10.3390/su172210164
Chicago/Turabian StyleYu, Wenwen, Qiyuan Fan, and Jiajun Liu. 2025. "How Digital-Economy Policy Boosts TFP: Evidence and Quadruple Mechanisms from China’s Manufacturing Sector" Sustainability 17, no. 22: 10164. https://doi.org/10.3390/su172210164
APA StyleYu, W., Fan, Q., & Liu, J. (2025). How Digital-Economy Policy Boosts TFP: Evidence and Quadruple Mechanisms from China’s Manufacturing Sector. Sustainability, 17(22), 10164. https://doi.org/10.3390/su172210164

