Phase-Dependent Effects of Photoperiod on Growth and Microcystin-LR Production in Two Microcystis Strains: Insights from Batch Culture for Bloom Management
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Cultivation Conditions for the Experiments
2.2. Experiment Design
2.3. Growth Observation
2.4. MC-LR Analysis
2.5. Statistical Analysis
3. Results
3.1. Short-Term Effects of Light Duration on the Growth of Microcystis Species
3.2. Effect of Different LD Cycles on Cellular MC-LR in Microcystis Species over Night Days
3.3. Long-Term Impacts of the LD Cycle on the Growth of Microcystis Species
3.4. Twenty-Seven-Day Effects of the LD Cycle on the MC-LR Production of Microcystis Species
4. Discussion
4.1. Short-Term Photoperiod Extension Promotes Microcystis Growth
4.2. Direct and Indirect Regulation of MC-LR Production by Light During the Initial Phase
4.3. Long-Term Impact of Extended Photoperiod on Microcystis Biomass
4.4. The Evolving Roles of Photoperiod and Biomass in Long-Term Toxin Accumulation
4.5. Insights from Controlled Cultures to Natural Contexts
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okello, W.; Kurmayer, R. Seasonal development of cyanobacteria and microcystin production in Ugandan freshwater lakes. Lakes Reserv. 2011, 16, 123–135. [Google Scholar] [CrossRef]
- Touati, H.; Guellati, F.Z.; Arif, S.; Belhaoues, S.; Seridi, L.; Djabourabi, A.; Djebari, N.; Bensouilah, M. Seasonal development of cyanobacteria and Microcystin production in a shallow freshwater lake (North-Eastern, Algeria). Egypt. J. Aquat. Biol. Fish. 2024, 28, 77–105. [Google Scholar] [CrossRef]
- Wei, N.; Hu, C.; Dittmann, E.; Song, L.; Gan, N. The biological functions of microcystins. Water Res. 2024, 262, 122119. [Google Scholar] [CrossRef]
- Moots, G.B.; Moorhead, D.L.; Suffety, C.E.; Kinzel, K.M.; Dwyer, D.F.; Sigler, V. Microcystin persistence in Lake Erie foreshore sands. J. Great Lakes Res. 2025, 51, 102601. [Google Scholar] [CrossRef]
- Mckay, R.M.L.; Tuttle, T.; Reitz, L.A.; Bullerjahn, G.S.; Cody, W.R.; Mcdowll, A.J.; Davis, T.W. Early onset of a microcystin-producing cyanobacterial bloom in an agriculturally-influenced Great Lakes tributary. J. Oceanol. Limnol. 2018, 36, 1112–1125. [Google Scholar] [CrossRef]
- Yousaf, M.; Wang, J.; Rehman, A.; Li, Z. Microcystins in transitional and marine ecosystems: Source categories, distribution patterns, and ecological impacts. Mar. Pollut. Bull. 2025, 220, 118432. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Yang, Y.; Liu, J.; Yang, F. Research progress of microcystin-LR toxicity to the intestine, liver, and kidney and its mechanism. Environ. Int. 2025, 201, 109547. [Google Scholar] [CrossRef]
- Melaram, R.; Newton, A.R.; Chafin, J. Microcystin contamination and toxicity: Implications for agriculture and public health. Toxins 2022, 14, 350. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Fan, X.; Cai, M.; Jiang, Y.; Wang, Y.; He, P.; Ni, J.; Mo, A.; Peng, C.; Liu, J. Advances in investigating microcystin-induced liver toxicity and underlying mechanisms. Sci. Total Environ. 2023, 905, 167167. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, X.; Valero, E.; Cancela, Á.; Sánchez, Á. Freshwater algae competition and correlation between their growth and microcystin production. Environ. Sci. Pollut. Res. 2016, 23, 21577–21583. [Google Scholar] [CrossRef]
- Zhou, J.; Qin, B.; Han, X.; Zhu, L. Turbulence increases the risk of microcystin exposure in a eutrophic lake (Lake Taihu) during cyanobacterial bloom periods. Harmful Algae 2016, 55, 213–220. [Google Scholar] [CrossRef]
- Li, J.; Murdock, J. Nutrient concentration, stoichiometry, and timing of delivery can regulate cyanobacterial dominance and microcystin production in rivers. J. Environ. Manag. 2025, 377, 124714. [Google Scholar] [CrossRef]
- Peng, G.; Martin, R.M.; Dearth, S.P.; Sun, X.; Boyer, G.L.; Campagna, S.R.; Lin, S.; Wilhelm, S.W. Seasonally relevant cool temperatures interact with N chemistry to increase microcystins produced in lab cultures of Microcystis aeruginosa NIES-843. Environ. Sci. Technol. 2018, 52, 4127–4136. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Bi, Y.; Ma, X.; Dong, W.; Wang, X.; Wang, S. Transcriptomic analysis dissects the regulatory strategy of toxic cyanobacterium Microcystis aeruginosa under differential nitrogen forms. J. Hazard. Mater. 2022, 428, 128276. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, E.; Martin-Luna, B.; Vela, L.; Bes, M.T.; Peleato, M.L.; Fillat, M.F. Microcystin-LR synthesis as response to nitrogen: Transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806. Ecotoxicology 2010, 19, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.M.; Lee, S.J.; Jang, M.H.; Yoon, B.D. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appl. Environ. Microbiol. 2000, 66, 176–179. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, Z. Effects of nitrogen and phosphorus on Microcystis aeruginosa growth and microcystin production. Green Process. Synth. 2022, 11, 64–70. [Google Scholar] [CrossRef]
- Jafarzadeh, A.; Phan, D.; Kapoor, V. Impact of nitrogen and phosphorus on the growth and microcystin-related gene expression of Microcystis aeruginosa PCC 7806. AWWA Water Sci. 2023, 5, e1343. [Google Scholar] [CrossRef]
- Fujii, M.; Dang, T.C.; Rose, A.L.; Omura, T.; Waite, T.D. Effect of light on iron uptake by the freshwater cyanobacterium Microcystis aeruginosa. Environ. Sci. Technol. 2011, 45, 1391–1398. [Google Scholar] [CrossRef]
- Halac, S.R.; Ruibal-Conti, A.L.; Mengo, L.d.V.; Ullmer, F.; Cativa, A.; Bazan, R.; Rodriguez, M.I. Effect of iron availability on the growth and microcystin content of natural populations of Microcystis spp. from reservoirs in central argentina: A microcosm experiment approach. Phycology 2023, 3, 168–185. [Google Scholar] [CrossRef]
- do Nascimento, E.L.; Koschek, P.R.; dos Santos, M.E.V.; Pacheco, A.B.; Gomes, A.; de Souza, C.D.; Bastos, W.; Azevedo, S.M.F. Influence of iron on physiological parameters and intracellular microcystin in Microcystis Panniformis strain isolated from a reservoir in the Amazon. Curr. Microbiol. 2021, 78, 2345–2354. [Google Scholar] [CrossRef]
- Meng, H.; Guo, Y.; Zhang, L.; Qi, Y.; Liu, J.; He, H.; Wang, G.; Li, S.; Zhang, L. Effects of elevated overwinter temperature on the growth strategies of Microcystis aeruginosa. Freshwater Biol. 2025, 70, e14370. [Google Scholar] [CrossRef]
- Roy, S.; Guljamow, A.; Dittmann, E. Impact of temperature on the temporal dynamics of microcystin in Microcystis aeruginosa PCC7806. Front. Microbiol. 2023, 14, 1200816. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Yang, N.; Cui, H.; Yang, Q.; Wu, Z.; Shao, B.; Zhao, Y.; Tong, Y. Interspecific competition enhances microcystin production by Microcystis aeruginosa under the interactive influences of temperature and nutrients. Water Res. 2024, 265, 122308. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Pan, H.; Liu, H.; Xi, Y.; Ren, D. Characteristics of growth and microcystin production of Microcystis aeruginosa exposed to low concentrations of naphthalene and phenanthrene under different pH values. Toxicon 2019, 169, 103–108. [Google Scholar] [CrossRef]
- Taranu, Z.E.; Pick, F.R.; Creed, I.F.; Zastepa, A.; Watson, S.B. Meteorological and nutrient conditions influence microcystin congeners in freshwaters. Toxins 2019, 11, 620. [Google Scholar] [CrossRef]
- González-Piana, M.; Piccardo, A.; Ferrer, C.; Brena, B.; Pírez, M.; Fabián, D.; Chalar, G. Effects of wind mixing in a stratified water column on toxic cyanobacteria and microcystin-LR distribution in a subtropical reservoir. Bull. Environ. Contam. Toxicol. 2018, 101, 611–616. [Google Scholar] [CrossRef]
- Wu, T.; Qin, B.; Brookes, J.D.; Shi, K.; Zhu, G.; Zhu, M.; Yan, W.; Wang, Z. The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China. Sci. Total. Environ. 2015, 518–519, 24–30. [Google Scholar] [CrossRef]
- Gonzales Ferraz, M.E.; Agasild, H.; Piirsoo, K.; Saat, M.; Nges, T.; Panksep, K. Seasonal dynamics of toxigenic Microcystis in a large, shallow Lake Peipsi (Estonia) using microcystin mcyE gene abundance. Environ. Monit. Assess. 2024, 196, 747. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, L.; Gan, N.; Zheng, L.; Ma, H.; Shan, K.; Jin, L.; Xiao, B.; Song, L. Seasonal dynamics of water bloom-forming Microcystis morphospecies and the associated extracellular microcystin concentrations in large, shallow, eutrophic Dianchi Lake. J. Environ. Sci. 2014, 26, 1921–1929. [Google Scholar] [CrossRef]
- Mohamed, Z.A.; Deyab, M.A.; Abou-Dobara, M.I.; El-Sayed, A.K.; El-Raghi, W.M. Occurrence of cyanobacteria and microcystin toxins in raw and treated waters of the Nile River, Egypt: Implication for water treatment and human health. Environ. Sci. Pollut. Res. 2015, 22, 11716–11727. [Google Scholar] [CrossRef]
- Liu, H.; Xiao, S.; Guan, Y.; Ding, P.; Fang, Y. Role of illumination intensity in microcystin development using Microcystis aeruginosa as the model algae. Environ. Sci. Pollut. Res. Int. 2017, 24, 23261–23272. [Google Scholar] [CrossRef]
- Deblois, C.P.; Juneau, P. Relationship between photosynthetic processes and microcystin in Microcystis aeruginosa grown under different photon irradiances. Harmful Algae 2010, 9, 18–24. [Google Scholar] [CrossRef]
- Wiedner, C.; Visser, P.M.; Fastner, J.; Metcalf, J.S.; Codd, G.A.; Mur, L.R. Effects of light on the microcystin content of Microcystis strain PCC 7806. Appl. Environ. Microbiol. 2003, 69, 1475–1481. [Google Scholar] [CrossRef]
- Kaebernick, M.; Neilan, B.A.; Börner, T.; Dittmann, E. Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl. Environ. Microbiol. 2000, 66, 3387–3392. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt-Oliveira, M.C.; Kujbida, P.; Cardozo, K.H.M.; Carvalho, V.M.; Moura, A.N.; Colepicolo, P.; Pinto, E. A novel rhythm of microcystin biosynthesis is described in the cyanobacterium Microcystis panniformis Komarek et al. Biochem. Biophys. Res. Commun. 2005, 326, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Straub, C.; Quillardet, P.; Vergalli, J.; Tandeau de Marsac, N.; Humber, J.F. A day in the life of Microcystis aeruginosa strain PCC 7806 as revealed by a transcriptomic analysis. PLoS ONE 2011, 6, e16208. [Google Scholar] [CrossRef]
- Yan, H.; Senavirathna, M.D.H.J.; Fujino, T. Effect of lighting setup on Microcystis aeruginosa in a shallow water column and classification of results using random forest model. Hydrobiologia 2025, 852, 3327–3347. [Google Scholar] [CrossRef]
- Salvador, D.; Churro, C.; Valério, E. Evaluating the influence of light intensity in mcyA gene expression and microcystin production in toxic strains of Planktothrix agardhii and Microcystis aeruginosa. J. Microbiol. Meth. 2016, 123, 4–12. [Google Scholar] [CrossRef]
- Yuan, L.; Song, W.; Xiao, L.; Wang, Q.; Yang, L.; Jiang, L. Effects of duration of light irradiation on growth and phosphorus metabolism of Microcystis aeruginosa in the presence of adnascent Pseudomonas sp. J. Ecol. Rural Environ. 2006, 22, 85–87. [Google Scholar]
- Qian, H.; Wei, Y.; Bao, G.; Huang, B.; Fu, Z. Atrazine affects the circadian rhythm of Microcystis aeruginosa. Chronobiol. Int. 2014, 31, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Hu, B.; Yu, S.; Pan, X.; Wu, T.; Fu, Z.; Brett, N. The effects of hydrogen peroxide on the circadian rhythms of Microcystis aeruginosa. PLoS ONE 2012, 7, e33347. [Google Scholar] [CrossRef]
- Schiraldi, A. The “growth curve”: An autocorrelation effect. Appl. Microbiol. 2024, 4, 1257–1267. [Google Scholar] [CrossRef]
- Krüger, G.H.; Eloff, J.N. The interaction between cell density of Microcystis batch cultures and light induced stress conditions. Z. Pflanzenphysiol. 1979, 95, 441–447. [Google Scholar] [CrossRef]
- Jaishankar, J.; Srivastava, P. Molecular basis of stationary phase survival and applications. Front. Microbiol. 2017, 8, 2000. [Google Scholar] [CrossRef]
- Kumakura, D.; Yamaguchi, R.; Hara, A.; Nakaoka, S. Disentangling the growth curve of microbial culture. J. Theor. Biol. 2023, 573, 111597. [Google Scholar] [CrossRef]
- Sevilla, E.; Martin-Luna, B.; Vela, L.; Bes, M.T.; Fillat, M.F.; Peleato, M.L. Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environ. Microbiol. 2008, 10, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Mendoza, R.; Zúiga, G.; Martínez-Jerónimo, F. Microcystin production in Microcystis aeruginosa: Effect of type of strain, environmental factors, nutrient concentrations, and N:P ratio on mcyA gene expression. Aquat. Ecol. 2016, 50, 103–119. [Google Scholar] [CrossRef]
- Zhou, B.; Xing, W. Effects of copper and zinc on Microcystic aeruginosa growth and microcystins production. Arch. Environ. Prot. 2024, 50, 85–92. [Google Scholar] [CrossRef]
- Li, B.; Zhang, X.; Wu, G.; Qin, B.; Tefsen, B.; Wells, M. Toxins from harmful algal blooms: How copper and iron render chalkophore a predictor of microcystin production. Water Res. 2023, 244, 120490. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yin, J.; Wei, J.; Zhang, X. FurA-dependent microcystin synthesis Under copper stress in Microcystis aeruginosa. Microorganisms 2020, 8, E832. [Google Scholar] [CrossRef] [PubMed]



| Microcystis Strain | Time (Day) | Light (L)–Dark (D) Cycles in 24 h | ||||
|---|---|---|---|---|---|---|
| 8L:16D | 10L:14D | 12L:12D | 14L:10D | 16L:8D | ||
| Microcystis sp. DH | 3 | 1.70 ± 0.218 | 1.71 ± 0.473 | 1.53 ± 0.179 | 1.61 ± 0.314 | 1.49 ± 0.074 A |
| 5 | 2.05 ± 0.349 | 1.83 ± 0.971 | 2.06 ± 0.431 | 2.38 ± 0.583 | 2.95 ± 0.277 C | |
| 7 | 1.71 ± 0.286 a | 2.31 ± 0.213 ab | 2.85 ± 0.254 ab | 3.80 ± 0.449 b | 4.23 ± 0.670 bB | |
| 9 | 3.15 ± 0.522 a | 4.09 ± 0.128 ab | 4.84 ± 0.341 b | 4.57 ± 0.670 b | 4.89 ± 0.378 bB | |
| Microcystis aeruginosa FACHB-905 | 3 | 6.02 ± 0.162 | 7.42 ± 0.971 | 7.64 ± 2.137 | 8.09 ± 0.730 | 7.07 ± 1.177 X |
| 5 | 5.20 ± 1.374 | 5.96 ± 0.376 | 7.47 ± 0.586 | 7.43 ± 2.944 | 8.71 ± 1.810 X | |
| 7 | 8.70 ± 0.079 | 7.24 ± 0.933 | 6.73 ± 0.852 | 10.52 ± 1.605 | 9.50 ± 1.286 X | |
| 9 | 5.74 ± 1.315 x | 6.62 ± 0.240 xy | 9.16 ± 0.761 xy | 11.82 ± 3.447 y | 14.17 ± 0.776 yY | |
| Fixed Effects | Model with Cell Density | Model without Cell Density |
|---|---|---|
| Strain | F(1, 78.8) = 104.21, p < 0.001 | F(1, 80) = 720.57, p < 0.001 |
| Photoperiod | F(4, 24.11) = 7.36, p = 0.001 | F(4, 80) = 21.26, p < 0.001 |
| Day | F(3, 63.94) = 7.64, p < 0.001 | F(3, 80) = 34.34, p < 0.001 |
| Cell density | F(1, 76.65) = 10.99, p = 0.001 | \ |
| Strain × Photoperiod | F(4, 24.42) = 6.85, p = 0.001 | F(4, 80) = 6.11, p < 0.001 |
| Strain × Day | F(3, 63.8) = 4.70, p = 0.005 | F(3, 80) = 1.19, p = 0.320 |
| Photoperiod × Day | F(12, 60.24) = 3.55, p = 0.001 | F(12, 80) = 4.19, p < 0.001 |
| Strain × Photoperiod × Day | F(12, 60.24) = 4.61, p < 0.001 | F(12, 80) = 3.31, p = 0.001 |
| marginal R2/conditional R2 | 0.906/0.909 | 0.894/0.894 |
| Light–Dark (L:D) | Microcystis sp. DH | Microcystis aeruginosa FACHB-905 |
|---|---|---|
| 8L:16D | 7.67 ± 0.971 aA | 15.31 ± 1.251 xX |
| 10L:14D | 9.57 ± 1.415 aAC | 15.55 ± 0.803 xXZ |
| 12L:12D | 9.36 ± 1.421 aAC | 17.06 ± 0.897 xXZ |
| 14L:10D | 10.37 ± 1.828 abBC | 17.56 ± 0.842 xyYZ |
| 16L:8D | 13.53 ± 3.056 bB | 19.26 ± 1.632 yY |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, W.; Wang, X.; Wang, L. Phase-Dependent Effects of Photoperiod on Growth and Microcystin-LR Production in Two Microcystis Strains: Insights from Batch Culture for Bloom Management. Sustainability 2025, 17, 10156. https://doi.org/10.3390/su172210156
Xiao W, Wang X, Wang L. Phase-Dependent Effects of Photoperiod on Growth and Microcystin-LR Production in Two Microcystis Strains: Insights from Batch Culture for Bloom Management. Sustainability. 2025; 17(22):10156. https://doi.org/10.3390/su172210156
Chicago/Turabian StyleXiao, Wenqing, Xiaojing Wang, and Long Wang. 2025. "Phase-Dependent Effects of Photoperiod on Growth and Microcystin-LR Production in Two Microcystis Strains: Insights from Batch Culture for Bloom Management" Sustainability 17, no. 22: 10156. https://doi.org/10.3390/su172210156
APA StyleXiao, W., Wang, X., & Wang, L. (2025). Phase-Dependent Effects of Photoperiod on Growth and Microcystin-LR Production in Two Microcystis Strains: Insights from Batch Culture for Bloom Management. Sustainability, 17(22), 10156. https://doi.org/10.3390/su172210156

