You are currently viewing a new version of our website. To view the old version click .
Sustainability
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

12 November 2025

Interpretable and Calibrated XGBoost Framework for Risk-Informed Probabilistic Prediction of Slope Stability

Civil Engineering Department, College of Engineering, Shaqra University, Dawadmi, Riyadh 11911, Saudi Arabia
Sustainability2025, 17(22), 10122;https://doi.org/10.3390/su172210122 
(registering DOI)

Abstract

This study develops an interpretable and calibrated XGBoost framework for probabilistic slope stability assessment using a 627-case database of circular-mode failures. Six predictors, namely, unit weight (γ), cohesion (c), friction angle (φ), slope angle (β), slope height (H), and pore-pressure ratio (rᵤ), were used to train a gradient-boosted tree model optimized through Bayesian hyperparameter search with five-fold stratified cross-validation. Physically based monotone constraints ensured that failure probability (Pf) decreases as c and φ increase and increases with β, H, and rᵤ. The final model achieved strong performance (AUC = 0.88, Accuracy = 0.80, MCC = 0.61) and reliable calibration, confirmed by a Brier score of 0.14 and ECE/MCE of 0.10/0.19. A 1000-iteration bootstrap quantified both epistemic and aleatoric uncertainties, providing 95% confidence bands for Pf-feature curves. SHAP analysis validated physically consistent influence rankings (φ > H ≈ c > β > γ > rᵤ). Predicted probabilities were classified into Low (Pf < 0.01), Medium (0.01 ≤ Pf ≤ 0.10), and High (Pf > 0.10) risk levels according to geotechnical reliability practices. The proposed framework integrates calibration, uncertainty quantification, and interpretability into a comprehensive, auditable workflow, supporting transparent and risk-informed slope management for infrastructure, mining, and renewable energy projects.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.