Sustainable Production of Added-Value Metabolic Compounds Under Adverse Culture Conditions by Microorganisms: A Case Study of Yarrowia lipolytica Strain Cultivated on Agro-Industrial Residues
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganism, Growth Media, and Raw Materials
2.2. Culture Conditions
2.3. Biomass Determination
2.4. Quantification of Cellular Lipids and Characterization of Fatty Acid Profile
2.5. Analysis of Substrate Consumption and Product Formation
2.6. Quantification of Cumulative Phenolic Content
2.7. Decolorization
3. Results
3.1. Influence of Different pH Values in Growth of Yarrowia lipolytica Strain ACA-YC 5031 Cultivated on Blends of OMWS and Crude Glycerol (70.0 ± 5.0 g/L)
3.1.1. Biomass and IPS Accumulation
3.1.2. Biosynthesis of Extracellular Products
3.1.3. Determination of Cellular Lipids and Fatty Acid Profile
3.1.4. Decolorization—Reduction in Phenolic Content
3.2. Effect of Increasing NaCl Concentrations in Growth of Yarrowia lipolytica Strain ACA-YC 5031 Cultivated on Blends of OMWS and Crude Glycerol (70.0 ± 5.0 g/L) at pH = 3.0 in Aseptic and Non-Aseptic Conditions
3.2.1. Biomass and IPS Accumulation
3.2.2. Biosynthesis of Extracellular Products
3.2.3. Determination of Cellular Lipids and Fatty Acid Profile
3.2.4. Decolorization—Reduction in Phenolic Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| OMW | Olive mill wastewater |
| SCOs | Single-cell oils |
| BOD | Biological oxygen demand |
| COD | Chemical oxygen demand |
| FAMEs | Fatty acid methyl esters |
| pHØ | Total phenol compounds |
| X | Dry biomass (g/L) |
| L | Cellular lipids (g/L) |
| Glolcons | Consumed glycerol (g/L) |
| Cit | Citric acid (g/L) |
| Man | Mannitol (g/L) |
| Ery | Erythritol (g/L) |
| Ara | Arabitol (g/L) |
| YL/X % | Yield lipid in biomass (w/w) |
| YX/Glol | Yield of biomass on glycerol consumed (g/g) |
| YCit/Glol | Yield of citric acid on glycerol consumed (g/g) |
| YMan/Glol | Yield of mannitol on glycerol consumed (g/g) |
| YAra/Glol | Yield of arabitol on glycerol consumed (g/g) |
| YEry/Glol | Yield of erythritol on glycerol consumed (g/g) |
References
- Al-Qodah, Z.; Al-Zoubi, H.; Hudaib, B.; Omar, W.; Soleimani, M.; Abu-Romman, S.; Frontistis, Z. Sustainable vs. conventional approach for olive oil wastewater management: A review of the state of the art. Water 2022, 14, 1695. [Google Scholar] [CrossRef]
- Khalil, J.; Habib, H.; Alabboud, M.; Mohammed, S. Olive mill wastewater effects on durum wheat crop attributes and soil microbial activities: A pilot study in Syria. Energy Ecol. Environ. 2021, 6, 469–477. [Google Scholar] [CrossRef]
- Europa. 2023. Available online: https://agridata.ec.europa.eu/extensions/DashboardSTO/STO_Oliveoil.html (accessed on 4 February 2025).
- Nikolaou, A.; Kourkoutas, Y. Exploitation of olive oil mill wastewaters and molasses for ethanol production using immobilized cells of Saccharomyces cerevisiae. Environ. Sci. Pollut. Res. 2018, 25, 7401–7408. [Google Scholar] [CrossRef]
- Shabir, S.; Ilyas, N.; Saeed, M.; Bibi, F.; Sayyed, R.Z.; Almalki, W.H. Treatment technologies for olive mill wastewater with impacts on plants. Environ. Res. 2023, 216, 114399. [Google Scholar] [CrossRef]
- Shabir, S.; Ilyas, N.; Mashwani, Z.-u.-R.; Ahmad, M.S.; Al-Ansari, M.M.; Al-Humaid, L.; Reddy, M.S. Designing of pretreatment filter technique for reduction of phenolic constituents from olive-mill wastewater and testing its impact on wheat germination. Chemosphere 2022, 299, 134438. [Google Scholar] [CrossRef] [PubMed]
- Chatzistathis, T.; Koutsos, T. Olive mill wastewater as a source of organic matter, water and nutrients for restoration of degraded soils and for crops managed with sustainable systems. Agric. Water Manag. 2017, 190, 55–64. [Google Scholar] [CrossRef]
- Mantzavinos, D.; Kalogerakis, N. Treatment of olive mill effluents: Part, I. Organic matter degradation by chemical and biological processes—An overview. Environ. Intern. 2005, 31, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Sarris, D.; Rapti, A.; Papafotis, N.; Koutinas, A.A.; Papanikolaou, S. Production of added-value chemical compounds through bioconversions of olive-mill wastewaters blended with Crude glycerol by a Yarrowia lipolytica strain. Molecules 2019, 24, 222. [Google Scholar] [CrossRef]
- Lenzuni, M.; D’Agostino, G.; Perego, P.; Converti, A.; Casazza, A.A. Insights into the effects of phenolic compounds on the growth of Chlorella vulgaris: The case of olive mill wastewater. Sci. Total Environ. 2025, 958, 177944. [Google Scholar] [CrossRef]
- Crognale, S.; Federici, F.; Petruccioli, M. β-Glucan production by Botryosphaeria rhodina on undiluted olive-mill waste waters. Biotechnol. Lett. 2003, 25, 2013–2015. [Google Scholar] [CrossRef]
- Keskin, A.; Ünlü, A.E.; Takac, S. Utilization of olive mill wastewater for selective production of lipids and carotenoids by Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 2023, 107, 4973–4985. [Google Scholar] [CrossRef]
- Kothri, M.; Mavrommati, M.; Elazzazy, A.M.; Baeshen, M.N.; Moussa, T.A.A.; Aggelis, G. Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms. FEMS Microbiol. Lett. 2020, 367, fnaa028. [Google Scholar] [CrossRef]
- Sarris, D.; Galiotou-Panayotou, M.; Koutinas, A.A.; Komaitis, M.; Papanikolaou, S. Citric acid, biomass and cellular lipid production by Yarrowia lipolytica strains cultivated on olive mill wastewater-based media. J. Chem. Technol. Biotechnol. 2011, 86, 1439–1448. [Google Scholar] [CrossRef]
- Massadeh, M.I.; Fandi, K.; Al-Abeid, H.; Alsharafat, O.; Abu-Elteen, K. Production of citric acid by Aspergillus niger cultivated in olive mill wastewater using a two-stage packed column bioreactor. Fermentation 2022, 8, 153. [Google Scholar] [CrossRef]
- Sarris, D.; Stoforos, N.G.; Mallouchos, A.; Kookos, I.K.; Koutinas, A.A.; Aggelis, G.; Papanikolaou, S. Production of added-value metabolites by Yarrowia lipolytica growing in olive mill wastewater-based media under aseptic and non-aseptic conditions. Eng. Life Sci. 2017, 17, 695–709. [Google Scholar] [CrossRef] [PubMed]
- Tzirita, M.; Kremmyda, M.; Sarris, D.; Koutinas, A.A.; Papanikolaou, S. Effect of salt addition upon the production of metabolic compounds by Yarrowia lipolytica cultivated on biodiesel-derived glycerol diluted with olive-mill wastewaters. Energies 2019, 12, 3649. [Google Scholar] [CrossRef]
- Rywińska, A.; Marcinkiewicz, M.; Cibis, E.; Rymowicz, W. Optimization of medium composition for erythritol production from glycerol by Yarrowia lipolytica using response surface methodology. Prep. Biochem. Biotechnol. 2015, 45, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Ayadi, K.; Meziane, M.; Rouam, D.; Bouziane, M.N.; El-Miloudi, K. Olive mill wastewater for bioethanol production using immobilised cells. Kem. Ind. 2022, 71, 21–28. [Google Scholar] [CrossRef]
- Roukas, T.; Kotzekidou, P. From food industry wastes to second generation bioethanol: A review. Rev. Environ. Sci. Biotechnol. 2022, 21, 299–329. [Google Scholar] [CrossRef]
- Zerva, A.; Zervakis, G.I.; Christakopoulos, P.; Topakas, E. Degradation of olive mill wastewater by the induced extracellular ligninolytic enzymes of two wood-rot fungi. J. Environ. Manag. 2017, 203, 791–798. [Google Scholar] [CrossRef]
- Rywińska, A.; Juszczyk, P.; Wojtatowicz, M.; Robak, M.; Lazar, Z.; Tomaszewska, L.; Rymowicz, W. Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass Bioenergy 2013, 48, 148–166. [Google Scholar] [CrossRef]
- Russmayer, H.; Egermeier, M.; Kalemasi, D. Spotlight on biodiversity of microbial cell factories for glycerol conversion. Biotechnol. Adv. 2019, 37, 107395. [Google Scholar] [CrossRef]
- Kamzolova, S.V.; Fatykhova, A.R.; Dedyukhina, E.G.; Anastassiadis, S.G.; Golovchenko, N.P.; Morgunov, I.G. Citric acid production by yeast grown on glycerol-containing waste from biodiesel industry. Food Technol. Biotechnol. 2011, 49, 65–74. [Google Scholar]
- Liu, Y.; Wang, Y.; Tang, M.; Zhao, M.; Yang, X.; Li, L.; Liu, Y.; Zhou, W.; Gong, Z. Combined utilization of the blend of low-cost substrates facilitates mutual achievement for overproducing biodiesel feedstock by the oleaginous yeast Cutaneotrichosporon oleaginosum. Ind. Crop. Prod. 2022, 189, 115759. [Google Scholar] [CrossRef]
- Morgunov, I.G.; Kamzolova, S.V.; Lunina, J.N. The citric acid production from raw glycerol by Yarrowia lipolytica yeast and its regulation. Appl. Microbiol. Biotechnol. 2013, 97, 7387–7397. [Google Scholar] [CrossRef]
- Magdouli, S.; Guedri, T.; Tarek, R.; Brar, S.K.; Blais, J.F. Valorization of raw glycerol and crustacean waste into value added products by Yarrowia lipolytica. Bioresour. Technol. 2017, 243, 57–68. [Google Scholar] [CrossRef]
- Korozi, E.; Tsagou, V.; Kefalogianni, I.; Markou, G.; Antonopoulos, D.; Chakalis, L.; Kotzamanis, Y.; Chatzipavlidis, I. Continuous culture of Auxenochlorella protothecoides on biodiesel derived glycerol under mixotrophic and heterotrophic conditions: Growth parameters and biochemical composition. Microorganisms 2022, 10, 541. [Google Scholar] [CrossRef]
- Sittijunda, S.; Reungsang, A. Valorization of crude glycerol into hydrogen, 1,3-propanediol, and ethanol in an up-flow anaerobic sludge blanket (UASB) reactor under thermophilic conditions. Renew. Energy 2020, 161, 361–372. [Google Scholar] [CrossRef]
- Zambanini, T.; Hosseinpour Tehrani, H.; Geiser, E.; Merker, D.; Schleese, S.; Krabbe, J.; Buescher, J.M.; Meurer, G.; Wierckx, N.; Blank, L.M. Efficient itaconic acid production from glycerol with Ustilago vetiveriae TZ1. Biotechnol. Biofuels 2017, 10, 131. [Google Scholar] [CrossRef]
- Bouchedja, D.N.; Danthine, S.; Kar, T.; Fickers, P.; Boudjellal, A.; Delvigne, F. Online flow cytometry, an interesting investigation process for monitoring lipid accumulation, dimorphism, and cells’ growth in the oleaginous yeast Yarrowia lipolytica JMY 775. Bioresour. Bioprocess. 2017, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Cuamatzi-Flores, J.; Nava-Galicia, S.; Esquivel-Naranjo, E.U.; Munguia, A.L.; Arroyo-Becerra, A.; Villalobos-López, M.A.; Bibbins-Martínez, M. Regulation of dye-decolorizing peroxidase gene expression in Pleurotus ostreatus grown on glycerol as the carbon source. PeerJ 2024, 12, e17467. [Google Scholar] [CrossRef]
- Dahiya, S.; Rapoport, A.; Singh, B. Biotechnological potential of lignocellulosic biomass as substrates for fungal xylanases and its bioconversion into useful products: A review. Fermentation 2024, 10, 82. [Google Scholar] [CrossRef]
- Dedousi, M.; Melanouri, E.M.; Diamantis, I.; Papanikolaou, S.; Diamantopoulou, P. Biochemical, functional and antioxidant potential of higher fungi cultivated on agro-industrial residues. Part II: Cultures on mixtures of spent mushroom substrates and mushroom cropping by-products. Resour. Chem. Mater. 2024, 3, 175–187. [Google Scholar] [CrossRef]
- Koukoumaki, D.I.; Papanikolaou, S.; Ioannou, Z.; Mourtzinos, I.; Sarris, D. Single-cell protein and ethanol production of a newly isolated Kluyveromyces marxianus strain through cheese whey valorization. Foods 2024, 13, 1892. [Google Scholar] [CrossRef]
- Singha, S.; Mahmutovic, M.; Zamalloa, C.; Stragier, L.; Verstraete, W.; Svagan, A.J.; Das, O.; Hedenqvist, M.S. Novel bioplastic from single cell protein as a potential packaging material. ACS Sustain. Chem. Eng. 2021, 9, 6337–6346. [Google Scholar] [CrossRef]
- Gottardi, D.; Siroli, L.; Braschi, G.; Rossi, S.; Bains, N.; Vannini, L.; Patrignani, F.; Lanciotti, R. Selection of Yarrowia lipolytica strains as possible solution to valorize untreated cheese whey. Fermentation 2023, 9, 51. [Google Scholar] [CrossRef]
- Hamimed, S.; Gamraoui, A.; Landoulsi, A.; Chatti, A. Bio-nanocrystallization of NaCl using saline wastewaters through biological treatment by Yarrowia lipolytica. Environ. Technol. Innov. 2022, 26, 102338. [Google Scholar] [CrossRef]
- Kamzolova, S. A review on citric acid production by Yarrowia lipolytica yeast: Past and present challenges and developments. Processes 2023, 11, 3435. [Google Scholar] [CrossRef]
- Makri, A.; Fakas, S.; Aggelis, G. Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour. Technol. 2010, 101, 2351–2358. [Google Scholar] [CrossRef]
- Tsioulpas, A.; Dimou, D.; Iconomou, D.; Aggelis, G. Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Bioresour. Technol. 2002, 84, 251–257. [Google Scholar] [CrossRef]
- Laribi, A.; Zieniuk, B.; Bouchedja, D.N.; Hafid, K.; Elmechta, L.; Becila, S. Valorization of olive mill wastewater via Yarrowia lipolytica: Sustainable production of high-value metabolites and biocompounds—A review. Fermentation 2025, 11, 326. [Google Scholar] [CrossRef]
- Sarris, D.; Tsouko, E.; Kothri, M.; Anagnostou, M.; Karageorgiou, E.; Papanikolaou, S. Upgrading major waste streams derived from the biodiesel industry and olive mills via microbial bioprocessing with non-conventional Yarrowia lipolytica strains. Fermentation 2023, 9, 251. [Google Scholar] [CrossRef]
- Kamzolova, S.V. Continuous cultivation of Yarrowia lipolytica: Potential, challenges, and case studies. Fermentation 2024, 10, 619. [Google Scholar] [CrossRef]
- Tchakouteu, S.; Kopsahelis, N.; Chatzifragkou, A.; Kalantzi, O.; Stoforos, N.G.; Koutinas, A.A.; Aggelis, G.; Papanikolaou, S. Rhodosporidium toruloides cultivated in NaCl-enriched glucose-based media: Adaptation dynamics and lipid production. Eng. Life Sci. 2017, 17, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jagtap, S.S.; Deewan, A.; Rao, C.V. pH selectively regulates citric acid and lipid production in Yarrowia lipolytica W29 during nitrogen-limited growth on glucose. J. Biotechnol. 2019, 290, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Ratledge, C.; Wynn, J.P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 2002, 51, 1–52. [Google Scholar]
- Valdés, G.; Mendonça, R.T.; Aggelis, G. Lignocellulosic biomass as a substrate for oleaginous microorganisms: A review. Appl. Sci. 2020, 10, 7698. [Google Scholar] [CrossRef]
- Jagtap, S.S.; Bedekar, A.A.; Singh, V.; Jin, Y.S.; Rao, C.V. Metabolic engineering of the oleaginous yeast Yarrowia lipolytica PO1f for production of erythritol from glycerol. Biotechnol. Biofuels 2021, 14, 188. [Google Scholar] [CrossRef]
- Tomaszewska, L.; Rakicka, M.; Rymowicz, W.; Rywińska, A. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia Lipolytica yeast cells. FEMS Yeast Res. 2014, 14, 966–976. [Google Scholar] [CrossRef]
- Andreishcheva, E.N.; Isakova, E.P.; Sidorov, N.N.; Abramova, N.B.; Ushakova, N.A.; Shaposhnikov, G.L.; Soares, M.I.M.; Zvyagilskaya, R.A. Adaptation to salt stress in a salt-tolerant strain of the yeast Yarrowia lipolytica. Biochemistry 1999, 64, 1061–1067. [Google Scholar]
- Kissi, M.; Mountadar, M.; Assobhei, O.; Gargiulo, E.; Palmieri, G.; Giardina, P.; Sannia, G. Roles of two white-rot basidiomycete fungi in decolorisation and detoxification of olive mill waste water. Appl. Microbiol. Biotechnol. 2001, 57, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, M.S.; Dokianakis, S.N.; Kornaros, M.E.; Aggelis, G.G.; Lyberatos, G. Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus. Water Res. 2002, 36, 4735–4744. [Google Scholar] [CrossRef] [PubMed]

| pH | pHØ (g/L) | Time (h) | X | L | IPS | Glolcons | Cit | Man | Ara | Ery | YX/Glol | YL/X | YCit/Glol | YMan/Glol | YAra/Glol | YEry/Glol |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 6.0 (blank) | 0.0 | 164 e,f | 10.2 | 2.1 | 0.3 | 67.7 | 8.7 | 11.6 | 2.8 | 8.8 | 0.15 | 20.5 | 0.13 | 0.17 | 0.04 | 0.13 |
| 188 b,c,d | 10.0 | 2.4 | 0.5 | 68.7 | 10.5 | 13.4 | 2.4 | 5.6 | 0.15 | 23.9 | 0.15 | 0.20 | 0.03 | 0.08 | ||
| 260 a,g | 10.8 | 2.3 | 0.9 | 75.5 | 6.2 | 7.5 | 0.9 | 3.7 | 0.14 | 21.6 | 0.08 | 0.10 | 0.01 | 0.05 | ||
| 6.0 | 2.0 ± 0.2 | 140 c,d,f | 6.9 | 1.7 | 1.4 | 50.7 | 28.6 | 8.0 | 1.1 | 4.9 | 0.14 | 24.5 | 0.56 | 0.16 | 0.02 | 0.10 |
| 188 a,b | 8.7 | 2.5 | 1.5 | 67.5 | 23.7 | 4.5 | 2.4 | 3.7 | 0.13 | 28.3 | 0.36 | 0.07 | 0.02 | 0.06 | ||
| 5.0 | 2.0 ± 0.2 | 192 a,c,d,e,f | 9.1 | 2.6 | 2.1 | 58.1 | 30.5 | 16.7 | 0.0 | 15.1 | 0.16 | 28.0 | 0.53 | 0.29 | 0.0 | 0.26 |
| 242 b | 8.8 | 2.9 | 2.9 | 66.6 | 29.8 | 15.9 | 0.0 | 13.8 | 0.13 | 29.7 | 0.45 | 0.24 | 0.0 | 0.21 | ||
| 4.0 | 2.0 ± 0.2 | 187 a | 6.7 | 1.6 | 1.1 | 53.9 | 10.3 | 13.2 | 0.3 | 6.0 | 0.12 | 24.4 | 0.19 | 0.24 | 0.01 | 0.11 |
| 210 b,c,d,e,f | 6.2 | 1.7 | 0.8 | 57.5 | 17.8 | 19.4 | 1.9 | 17.1 | 0.11 | 28.1 | 0.31 | 0.34 | 0.03 | 0.30 | ||
| 3.0 | 2.0 ± 0.2 | 239 d,e,g | 10.3 | 3.9 | 0.6 | 72.6 | 5.6 | 3.8 | 1.9 | 18.3 | 0.14 | 37.8 | 0.10 | 0.05 | 0.03 | 0.25 |
| 262.5 a,b,e | 10.6 | 4.1 | 0.6 | 74.8 | 5.6 | 3.7 | 1.9 | 18.3 | 0.14 | 38.6 | 0.07 | 0.05 | 0.02 | 0.24 |
| pH | pHØ (g/L) | Hours | C16:0 | ∆9C16:1 | C18:0 | ∆9C18:1 | ∆9,12C18:2 | UI |
|---|---|---|---|---|---|---|---|---|
| 6.0 (blank) | 0.0 | 116 | 10.4 | 10.4 | 6.5 | 66.4 | 6.3 | 0.894 |
| 212 | 9.2 | 11.6 | 6.3 | 66.5 | 6.4 | 0.909 | ||
| 6.0 | 2.0 ± 0.2 | 50 | 13.0 | 3.5 | 6.6 | 65.4 | 11.6 | 0.921 |
| 212 | 11.7 | 10.6 | 6.5 | 62.9 | 8.6 | 0.907 | ||
| 5.0 | 2.0 ± 0.2 | 48 | 13.0 | 3.5 | 7.7 | 63.6 | 12.2 | 0.915 |
| 192 | 9.5 | 10.4 | 6.1 | 67.8 | 6.1 | 0.904 | ||
| 260 | 12.8 | 3.3 | 6.5 | 65.8 | 11.5 | 0.921 | ||
| 4.0 | 2.0 ± 0.2 | 47 | 14.5 | 5.1 | 10.7 | 59.2 | 10.6 | 0.855 |
| 3.0 | 2.0 ± 0.2 | 72 | 12.4 | 3.1 | 17.4 | 57.6 | 7.0 | 0.747 |
| 143 | 11.4 | 6.9 | 12.5 | 62.6 | 4.4 | 0.783 | ||
| 192 | 10.8 | 6.5 | 14.1 | 62.2 | 4.6 | 0.779 | ||
| 239 | 10.4 | 7.6 | 11.3 | 64.3 | 4.7 | 0.813 |
| NaCl (% w/v) | pHØ (g/L) | Time (h) | X | L | IPS | Glolcons | Cit | Man | Ara | Ery | YX/Glol | YL/X | YCit/Glol | YMan/Glol | YAra/Glol | YEry/Glol |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0 (blank) | 0.0 | 120 g | 9.4 | 2.4 | 0.7 | 54.1 | 5.0 | 4.4 | 2.4 | 6.2 | 0.17 | 25.5 | 0.09 | 0.08 | 0.04 | 0.11 |
| 144 a,b,c,d,e,f | 9.8 | 2.8 | 0.6 | 77.4 | 6.5 | 15.5 | 3.0 | 7.8 | 0.13 | 28.5 | 0.08 | 0.20 | 0.04 | 0.10 | ||
| 0.0 | 2.0 ± 0.2 | 192 b,g | 9.5 | 2.9 | 0.8 | 69.7 | 8.2 | 9.5 | 3.0 | 9.7 | 0.14 | 30.5 | 0.12 | 0.14 | 0.04 | 0.14 |
| 262.5 a,c,d,e,f | 11.3 | 2.7 | 0.8 | 76.3 | 15.1 | 10.7 | 3.1 | 10.5 | 0.15 | 24.0 | 0.20 | 0.14 | 0.04 | 0.14 | ||
| 3.0 | 2.0 ± 0.2 | 239 d,e,g | 10.3 | 3.9 | 0.6 | 72.6 | 5.6 | 3.8 | 1.9 | 18.3 | 0.14 | 37.8 | 0.10 | 0.05 | 0.03 | 0.25 |
| 262.5 a,b,e | 10.6 | 4.1 | 0.6 | 74.8 | 5.6 | 3.7 | 1.9 | 18.3 | 0.14 | 38.6 | 0.07 | 0.05 | 0.02 | 0.24 | ||
| 5.0 | 2.0 ± 0.2 | 164 d | 7.5 | 3.1 | 0.3 | 41.9 | 0.0 | 3.4 | 0.8 | 13.1 | 0.18 | 41.3 | 0.00 | 0.08 | 0.02 | 0.31 |
| 259 e,g | 10.1 | 4.1 | 0.4 | 56.7 | 0.0 | 3.3 | 1.4 | 24.2 | 0.18 | 40.6 | 0.00 | 0.06 | 0.02 | 0.43 | ||
| 283 a,b,f | 10.2 | 4.2 | 0.3 | 59.3 | 0.0 | 3.2 | 1.2 | 27.2 | 0.17 | 41.2 | 0.00 | 0.05 | 0.02 | 0.46 | ||
| 5.0 (non-aseptic) | 2.0 ± 0.2 | 164 d | 10.8 | 3.8 | 0.4 | 41.8 | 0.0 | 2.7 | 1.3 | 13.7 | 0.26 | 35.2 | 0.00 | 0.06 | 0.03 | 0.33 |
| 212 e | 9.7 | 3.5 | 0.4 | 54.8 | 0.0 | 2.5 | 1.6 | 20.1 | 0.17 | 36.1 | 0.00 | 0.05 | 0.03 | 0.37 | ||
| 283 a,b,f,g | 11.2 | 4.3 | 0.5 | 62.1 | 0.0 | 2.6 | 0.5 | 24.4 | 0.18 | 38.4 | 0.00 | 0.04 | 0.01 | 0.39 |
| NaCl (% w/v) | pHØ (g/L) | Hours | C16:0 | Δ9C16:1 | C18:0 | Δ9C18:1 | Δ9,12C18:2 | UI |
|---|---|---|---|---|---|---|---|---|
| 0.0 (blank) | 0.0 | 48 | 12.1 | 6.0 | 9.0 | 62.4 | 5.3 | 0.790 |
| 73 | 11.3 | 8.0 | 7.9 | 59.8 | 5.1 | 0.783 | ||
| 120 | 11.2 | 9.5 | 7.5 | 65.0 | 5.3 | 0.851 | ||
| 144 | 11.5 | 9.1 | 7.8 | 62.8 | 5.1 | 0.821 | ||
| 0.0 | 2.0 ± 0.2 | 72 | 12.3 | 3.9 | 11.1 | 62.6 | 8.0 | 0.825 |
| 143 | 11.6 | 6.6 | 9.0 | 64.0 | 5.8 | 0.822 | ||
| 192 | 12.3 | 7.7 | 8.2 | 63.7 | 6.4 | 0.842 | ||
| 239 | 10.7 | 7.1 | 7.8 | 66.2 | 7.4 | 0.883 | ||
| 3.0 | 2.0 ± 0.2 | 72 | 12.4 | 3.1 | 17.4 | 57.6 | 7.0 | 0.747 |
| 143 | 11.4 | 6.9 | 12.5 | 62.6 | 4.4 | 0.784 | ||
| 192 | 10.8 | 6.5 | 14.1 | 62.2 | 4.6 | 0.779 | ||
| 239 | 10.4 | 7.6 | 11.3 | 64.3 | 4.7 | 0.813 | ||
| 5.0 | 2.0 ± 0.2 | 68 | 12.4 | 4.9 | 13.6 | 61.2 | 7.8 | 0.817 |
| 141 | 10.7 | 7.7 | 11.8 | 63.2 | 5.0 | 0.810 | ||
| 212 | 11.0 | 7.8 | 12.4 | 63.4 | 4.4 | 0.800 | ||
| 283 | 9.0 | 8.0 | 10.4 | 62.7 | 4.5 | 0.798 | ||
| 5.0 (Non-aseptic) | 2.0 ± 0.2 | 68 | 11.6 | 5.6 | 15.8 | 57.9 | 6.3 | 0.761 |
| 116 | 11.6 | 5.9 | 15.7 | 60.1 | 4.1 | 0.743 | ||
| 164 | 11.6 | 5.9 | 15.7 | 60.1 | 4.1 | 0.745 | ||
| 259 | 10.4 | 7.7 | 13.2 | 62.9 | 3.3 | 0.772 |
| NaCl % w/v | Time (h) | Phenolic Content Before Fermentation (g/L) | Phenolic Content During/After Fermentation | Phenolic Content Removal % (w/w) | Decolorization % |
|---|---|---|---|---|---|
| 5.0 | 240.5 a | 2.0 ± 0.2 | 1.29 | 23.8 | 37.9 |
| 236 b | 1.40 | 17.8 | 44.2 | ||
| 5.0 (non-aseptic) | 164 b | 2.0 ± 0.2 | 1.84 | 2.1 | 58.9 |
| 236 a | 1.74 | 7.4 | 44.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koukoumaki, D.I.; Papanikolaou, S.; Rogka, C.; Sarris, D. Sustainable Production of Added-Value Metabolic Compounds Under Adverse Culture Conditions by Microorganisms: A Case Study of Yarrowia lipolytica Strain Cultivated on Agro-Industrial Residues. Sustainability 2025, 17, 10082. https://doi.org/10.3390/su172210082
Koukoumaki DI, Papanikolaou S, Rogka C, Sarris D. Sustainable Production of Added-Value Metabolic Compounds Under Adverse Culture Conditions by Microorganisms: A Case Study of Yarrowia lipolytica Strain Cultivated on Agro-Industrial Residues. Sustainability. 2025; 17(22):10082. https://doi.org/10.3390/su172210082
Chicago/Turabian StyleKoukoumaki, Danai Ioanna, Seraphim Papanikolaou, Christina Rogka, and Dimitris Sarris. 2025. "Sustainable Production of Added-Value Metabolic Compounds Under Adverse Culture Conditions by Microorganisms: A Case Study of Yarrowia lipolytica Strain Cultivated on Agro-Industrial Residues" Sustainability 17, no. 22: 10082. https://doi.org/10.3390/su172210082
APA StyleKoukoumaki, D. I., Papanikolaou, S., Rogka, C., & Sarris, D. (2025). Sustainable Production of Added-Value Metabolic Compounds Under Adverse Culture Conditions by Microorganisms: A Case Study of Yarrowia lipolytica Strain Cultivated on Agro-Industrial Residues. Sustainability, 17(22), 10082. https://doi.org/10.3390/su172210082

