Impact of Traffic Calming Zones (TCZs) in Cities on Public Transport Operations
Abstract
1. Introduction
- Stage 1—Review of the available literature and regulations on TCZs and speed management [9]. In total, 229 sources were reviewed, including scientific articles in Polish (40 pieces) and English (41), materials from conferences (18), trainings (15), Polish and EU regulations (22), guidelines and standards from Poland (22), and other countries, including the UK and USA (29), programmes for traffic calming (24), and other sources (18).
- Stage 2—Development of a catalogue of good practices—guidelines for introducing traffic calming zones in Warsaw, and a set of typical solutions was prepared [8]. The guidelines were consulted with city hall clerks responsible for roads, safety, and PT, as well as traffic engineers designing traffic organisation projects.
- Stage 3—A GIS map of the target implementation of traffic calming zones in Warsaw, along with a technical description for the map, was made [10]. The map of the traffic calming zones was subject to public consultations in the city, allowing a socially acceptable solution to be developed.
2. Literature Review
2.1. Objectives of Traffic Calming Zones
2.2. Methods of Introducing Traffic Calming Zones
2.3. Traffic Calming Zones Influence the Operations of Public Transport
3. Materials and Methods
- Streets of class Z or higher delineate borders of TCZs;
- Streets of county category or higher delineate borders of TCZs;
- A combination of the two above delineation criteria.
- Surface area;
- Diameter of the inscribed circle;
- Diameter of the circumscribed circle;
- Shape coefficient is the ratio of surface area (in km2) to the diameter of the circumscribed circle (in km).
- Regular lines (marked in black);
- Accelerated, fast, and express lines (marked in red);
- Suburban and zone lines (marked in green);
- Night lines (marked in blue).
- Download data from the BDOT10k database, unpack it, and select the roadway layer (SKJZ). Download city administrative boundaries from the National Register of Boundaries.
- Create road network layers in three variants: roads with class Z and higher, roads with the district category and higher, or roads with class Z and higher and also with the district category and higher.
- Merge the selected road layer created in step 2 with the city boundary.
- Convert the line layers obtained in step 3 into a polygon layer, then reduce the polygons by 30 m using the buffer function. Remove empty polygons.
- Determine polygon parameters: area, perimeter, circumscribed circle diameter, inscribed circle diameter, and area-to-circle diameter ratio.
- Remove small and very narrow polygons (e.g., wide median on multi-lane roads).
- Load route data into the GTFS structure.
- Load trip information from GTFS data.
- Select timetable data for a specific day and limit the data scope to buses (removing tram, metro, and rail routes and trips).
- Manually assign line numbers to line types.
- Determine the route length of lines in the TCZ and the share of routes. Due to the variants in some lines, the average route length across all trips during the day was taken into account.
- Perform steps 5–11 for all three layers of the TCZs determined in step 2.
- Calculate descriptive statistics for the TCZs and bus lines for all variants.
- Perform comparisons using statistical tests.
- Generate tables with results, graphs, and maps.
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AHP | Analytic Hierarchy Process |
| AVL | Automatic Vehicle Location |
| EU | European Union |
| GIS | Geographical Information System |
| GTFS | General Transit Feed Specification |
| PT | Public Transport |
| SUMP | Sustainable Urban Mobility Plan |
| TC | Traffic calming |
| TCM | Traffic calming measure |
| TCZ | Traffic calming zone |
| WHO | World Health Organisation |
| UK | United Kingdom |
| USA | United States of America |
Appendix A
| TCZ Area Parameter | Białystok N = 70 | Wrocław N = 97 | Bydgoszcz N = 67 | Gdańsk N = 66 | Kraków N = 87 | Lublin N = 77 | Łódź N = 210 | Poznań N = 133 | Szczecin N = 136 | Warsaw N = 430 | p-Value 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| surface area [km2] | <0.001 | ||||||||||
| Mean | 1.31 | 2.80 | 2.43 | 3.77 | 3.50 | 1.75 | 1.26 | 1.81 | 2.06 | 1.06 | |
| Median | 0.78 | 0.80 | 0.53 | 1.05 | 1.34 | 0.90 | 0.40 | 0.45 | 0.28 | 0.31 | |
| SD | 1.63 | 5.25 | 4.83 | 10.90 | 6.61 | 2.68 | 2.37 | 3.55 | 9.45 | 2.14 | |
| Min | 0.02 | 0.02 | 0.02 | 0.02 | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | |
| Max | 8.58 | 33.22 | 27.67 | 82.98 | 41.41 | 14.97 | 16.52 | 22.09 | 103.93 | 18.22 | |
| diameter—circumscribed circle [m] | <0.001 | ||||||||||
| Mean | 1753 | 2262 | 2159 | 2716 | 2723 | 1924 | 1559 | 1814 | 1579 | 1385 | |
| Median | 1483 | 1542 | 1350 | 1864 | 1975 | 1518 | 1120 | 1222 | 916 | 929 | |
| SD | 1077 | 2017 | 2234 | 3694 | 2206 | 1474 | 1394 | 1621 | 1987 | 1178 | |
| Min | 339 | 236 | 268 | 215 | 279 | 347 | 216 | 252 | 221 | 208 | |
| Max | 4869 | 9363 | 9580 | 28,205 | 11,406 | 9098 | 7560 | 9192 | 16,432 | 7349 | |
| shape | <0.001 | ||||||||||
| Mean | 5.7 | 6.9 | 6.2 | 7.1 | 8.1 | 6.4 | 4.9 | 5.8 | 4.9 | 4.7 | |
| Median | 5.1 | 4.8 | 4.5 | 5.0 | 6.3 | 5.5 | 3.6 | 4.1 | 2.9 | 3.4 | |
| SD | 3.7 | 6.7 | 5.4 | 6.5 | 6.6 | 4.2 | 4.1 | 5.1 | 6.9 | 4.0 | |
| Min | 0.7 | 0.6 | 0.6 | 0.8 | 0.8 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | |
| Max | 18.6 | 37.1 | 28.9 | 29.4 | 36.3 | 21.2 | 26.3 | 31.1 | 63.2 | 26.4 | |
| diameter—inscribed circle [m] | <0.001 | ||||||||||
| Mean | 778 | 856 | 799 | 929 | 1027 | 828 | 643 | 771 | 631 | 608 | |
| Median | 670 | 652 | 579 | 726 | 853 | 730 | 502 | 545 | 391 | 447 | |
| SD | 484 | 740 | 677 | 825 | 703 | 540 | 536 | 669 | 820 | 498 | |
| Min | 124 | 91 | 101 | 112 | 130 | 109 | 100 | 111 | 75 | 89 | |
| Max | 2355 | 4723 | 3544 | 4166 | 3896 | 2720 | 3014 | 4339 | 7959 | 3070 | |
| circuit [m] | <0.001 | ||||||||||
| Mean | 4843 | 7269 | 6567 | 8688 | 8115 | 5464 | 4285 | 5288 | 5056 | 3806 | |
| Median | 3851 | 3898 | 3443 | 5121 | 5381 | 4195 | 2916 | 2997 | 2495 | 2436 | |
| SD | 3322 | 8552 | 8236 | 18,279 | 8126 | 4600 | 4316 | 5728 | 8222 | 3677 | |
| Min | 784 | 630 | 692 | 552 | 747 | 815 | 599 | 659 | 603 | 576 | |
| Max | 17,095 | 42,829 | 40,469 | 145,312 | 38,821 | 26,418 | 29,302 | 36,821 | 62,372 | 26,210 | |
| circuit—surface area [m/km2] | <0.001 | ||||||||||
| Mean | 6805 | 8610 | 8131 | 7329 | 5777 | 6896 | 9220 | 8386 | 11,818 | 9333 | |
| Median | 5220 | 5767 | 6617 | 5693 | 4248 | 5129 | 7091 | 6581 | 9280 | 7757 | |
| SD | 4943 | 7544 | 7264 | 6419 | 5314 | 6213 | 6554 | 7115 | 8764 | 6028 | |
| Min | 1532 | 1087 | 1305 | 888 | 938 | 1539 | 1426 | 984 | 600 | 1256 | |
| Max | 32,318 | 39,515 | 35,336 | 29,919 | 31,717 | 39,477 | 39,582 | 41,910 | 39,739 | 32,638 |
| TCZ Area Parameter | Białystok N = 58 | Wrocław N = 29 | Bydgoszcz N = 73 | Gdańsk N = 83 | Kraków N = 131 | Lublin N = 85 | Łódź N = 261 | Poznań N = 143 | Szczecin N = 132 | Warsaw N = 431 | p-Value 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| surface area [km2] | <0.001 | ||||||||||
| Mean | 1.60 | 9.75 | 2.23 | 2.98 | 2.30 | 1.59 | 1.00 | 1.67 | 2.13 | 1.06 | |
| Median | 0.83 | 3.36 | 0.55 | 0.50 | 0.88 | 0.67 | 0.31 | 0.45 | 0.29 | 0.32 | |
| SD | 2.15 | 20.62 | 4.48 | 9.36 | 4.59 | 2.64 | 1.92 | 3.15 | 9.49 | 2.07 | |
| Min | 0.04 | 0.04 | 0.02 | 0.02 | 0.02 | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 | |
| Max | 10.56 | 103.94 | 26.39 | 79.49 | 35.63 | 14.97 | 15.64 | 20.26 | 103.93 | 18.22 | |
| diameter—circumscribed circle [m] | <0.001 | ||||||||||
| Mean | 1902 | 4173 | 2077 | 2355 | 2266 | 1812 | 1360 | 1794 | 1628 | 1382 | |
| Median | 1599 | 3623 | 1351 | 1235 | 1629 | 1446 | 965 | 1222 | 916 | 944 | |
| SD | 1267 | 3237 | 2133 | 3381 | 1947 | 1391 | 1212 | 1548 | 2090 | 1148 | |
| Min | 380 | 450 | 268 | 215 | 237 | 352 | 209 | 252 | 221 | 208 | |
| Max | 5420 | 14,531 | 9580 | 28,205 | 11,406 | 9098 | 7007 | 9192 | 16,432 | 7349 | |
| shape | <0.001 | ||||||||||
| Mean | 6.1 | 13.4 | 5.9 | 6.1 | 6.4 | 6.0 | 4.4 | 5.6 | 5.0 | 4.7 | |
| Median | 5.3 | 9.7 | 4.5 | 3.9 | 5.2 | 5.2 | 3.2 | 4.0 | 3.0 | 3.5 | |
| SD | 4.3 | 14.5 | 5.2 | 6.0 | 5.0 | 4.4 | 3.8 | 4.7 | 6.9 | 4.0 | |
| Min | 0.6 | 0.9 | 0.6 | 0.6 | 0.7 | 0.8 | 0.6 | 0.6 | 0.6 | 0.7 | |
| Max | 21.7 | 71.5 | 27.5 | 29.1 | 31.2 | 24.5 | 26.5 | 26.2 | 63.2 | 26.4 | |
| diameter—inscribed circle [m] | <0.001 | ||||||||||
| Mean | 803 | 1689 | 778 | 800 | 865 | 782 | 572 | 744 | 641 | 625 | |
| Median | 717 | 1411 | 593 | 541 | 712 | 615 | 428 | 538 | 403 | 451 | |
| SD | 541 | 1367 | 666 | 731 | 645 | 548 | 475 | 602 | 833 | 511 | |
| Min | 88 | 168 | 101 | 62 | 86 | 133 | 91 | 111 | 75 | 89 | |
| Max | 2906 | 5844 | 3544 | 3900 | 3763 | 2720 | 3014 | 3279 | 7959 | 3070 | |
| circuit [m] | <0.001 | ||||||||||
| Mean | 5562 | 13,136 | 6112 | 7602 | 6069 | 4984 | 3860 | 5220 | 5210 | 3720 | |
| Median | 4318 | 9443 | 3570 | 3410 | 4303 | 4113 | 2570 | 2997 | 2560 | 2496 | |
| SD | 4634 | 14,524 | 7405 | 16,764 | 5590 | 4080 | 4006 | 5550 | 8636 | 3321 | |
| Min | 934 | 1058 | 692 | 552 | 646 | 1022 | 582 | 659 | 603 | 576 | |
| Max | 24,792 | 72,373 | 34,461 | 145,721 | 37,835 | 24,286 | 29,632 | 36,821 | 62,372 | 22,881 | |
| circuit—surface area [m/km2] | <0.001 | ||||||||||
| Mean | 7188 | 4805 | 8813 | 9064 | 7258 | 7015 | 10,526 | 8478 | 11,929 | 9263 | |
| Median | 4929 | 2690 | 5578 | 6826 | 5145 | 5470 | 8195 | 6722 | 8957 | 7509 | |
| SD | 6183 | 5496 | 7822 | 7577 | 6519 | 5034 | 7240 | 7077 | 9029 | 6288 | |
| Min | 1436 | 696 | 1305 | 966 | 960 | 1483 | 1535 | 1228 | 600 | 1256 | |
| Max | 35,105 | 24,825 | 35,336 | 37,091 | 34,664 | 26,369 | 39,582 | 41,910 | 39,739 | 32,638 |
| TCZ Area Parameter | Białystok N = 86 | Wrocław N = 101 | Bydgoszcz N = 80 | Gdańsk N = 99 | Kraków N = 137 | Lublin N = 93 | Łódź N = 291 | Poznań N = 145 | Szczecin N = 140 | Warsaw N = 457 | p-Value 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| surface area [km2] | <0.001 | ||||||||||
| Mean | 1.06 | 2.69 | 2.03 | 2.48 | 2.20 | 1.44 | 0.89 | 1.65 | 2.00 | 1.00 | |
| Median | 0.57 | 0.80 | 0.48 | 0.39 | 0.83 | 0.63 | 0.27 | 0.45 | 0.29 | 0.30 | |
| SD | 1.52 | 4.99 | 4.30 | 8.53 | 4.47 | 2.47 | 1.81 | 3.10 | 9.16 | 1.96 | |
| Min | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | |
| Max | 8.58 | 33.22 | 26.37 | 79.13 | 35.63 | 14.97 | 15.64 | 20.26 | 103.93 | 18.22 | |
| diameter—circumscribed circle [m] | <0.001 | ||||||||||
| Mean | 1527 | 2243 | 1943 | 2110 | 2215 | 1712 | 1265 | 1793 | 1597 | 1348 | |
| Median | 1304 | 1542 | 1171 | 1232 | 1546 | 1354 | 902 | 1232 | 998 | 925 | |
| SD | 1045 | 1952 | 2049 | 3098 | 1911 | 1364 | 1175 | 1527 | 1932 | 1115 | |
| Min | 326 | 236 | 268 | 215 | 237 | 347 | 209 | 252 | 221 | 208 | |
| Max | 4869 | 8951 | 9580 | 28,205 | 11,406 | 9098 | 7007 | 9192 | 16,432 | 7349 | |
| shape | <0.001 | ||||||||||
| Mean | 5.0 | 6.9 | 5.6 | 5.6 | 6.2 | 5.7 | 4.1 | 5.6 | 4.9 | 4.6 | |
| Median | 4.3 | 4.8 | 4.0 | 3.2 | 5.2 | 4.7 | 2.9 | 4.0 | 3.0 | 3.4 | |
| SD | 3.6 | 6.5 | 5.0 | 5.5 | 4.9 | 4.1 | 3.7 | 4.7 | 6.7 | 3.9 | |
| Min | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | |
| Max | 18.6 | 37.1 | 27.5 | 29.1 | 31.2 | 21.2 | 26.5 | 26.2 | 63.2 | 26.4 | |
| diameter—inscribed circle [m] | <0.001 | ||||||||||
| Mean | 667 | 857 | 736 | 732 | 846 | 737 | 536 | 739 | 640 | 598 | |
| Median | 576 | 659 | 548 | 483 | 704 | 599 | 377 | 538 | 403 | 443 | |
| SD | 467 | 730 | 647 | 687 | 635 | 515 | 458 | 596 | 814 | 485 | |
| Min | 88 | 91 | 101 | 62 | 86 | 109 | 91 | 111 | 75 | 89 | |
| Max | 2355 | 4723 | 3544 | 3900 | 3763 | 2720 | 3014 | 3279 | 7959 | 3070 | |
| circuit [m] | <0.001 | ||||||||||
| Mean | 4214 | 7042 | 5692 | 6707 | 5970 | 4808 | 3529 | 5185 | 4983 | 3665 | |
| Median | 3523 | 3898 | 3216 | 3345 | 4062 | 3642 | 2300 | 3063 | 2560 | 2366 | |
| SD | 3226 | 7902 | 7150 | 15,727 | 5538 | 4255 | 3761 | 5433 | 7576 | 3331 | |
| Min | 784 | 630 | 692 | 552 | 646 | 815 | 582 | 659 | 603 | 576 | |
| Max | 17,095 | 42,829 | 34,707 | 149,224 | 37,835 | 26,418 | 29,632 | 36,821 | 62,372 | 22,881 | |
| circuit—surface area [m/km2] | <0.001 | ||||||||||
| Mean | 8676 | 8484 | 8919 | 9340 | 7446 | 7678 | 11,262 | 8451 | 11,760 | 9568 | |
| Median | 6156 | 5408 | 6656 | 7681 | 5295 | 5590 | 8874 | 6722 | 8957 | 7845 | |
| SD | 6955 | 7439 | 7466 | 7253 | 6506 | 6171 | 7578 | 7038 | 8865 | 6292 | |
| Min | 1532 | 1087 | 1305 | 966 | 960 | 1539 | 1535 | 1228 | 600 | 1256 | |
| Max | 35,105 | 39,516 | 35,336 | 37,091 | 34,664 | 39,477 | 41,336 | 41,911 | 39,739 | 32,638 |
| Line Parameter | Białystok N = 46 1 | Gdańsk N = 133 1 | Kraków N = 172 1 | Poznań N = 149 1 | Szczecin N = 78 1 | Warsaw N = 287 1 | Wrocław N = 101 1 | p-Value 2 |
|---|---|---|---|---|---|---|---|---|
| Line colour | ||||||||
| Black (regular) | 30 (65%) | 99 (74%) | 76 (44%) | 45 (30%) | 37 (47%) | 135 (47%) | 53 (52%) | |
| Red (accelerated) | 0 (0%) | 0 (0%) | 7 (4.1%) | 0 (0%) | 2 (2.6%) | 25 (8.7%) | 4 (4.0%) | |
| Blue (night) | 0 (0%) | 17 (13%) | 14 (8.1%) | 15 (10%) | 22 (28%) | 41 (14%) | 17 (17%) | |
| Green (suburban) | 16 (35%) | 17 (13%) | 75 (44%) | 89 (60%) | 17 (22%) | 86 (30%) | 27 (27%) | |
| Distance travelled [km] | <0.001 | |||||||
| Mean | 888 | 635 | 752 | 640 | 753 | 1176 | 1034 | |
| Median | 891 | 423 | 580 | 556 | 561 | 887 | 682 | |
| SD | 485 | 533 | 584 | 514 | 683 | 970 | 833 | |
| Min | 84 | 10 | 53 | 33 | 21 | 78 | 80 | |
| Max | 1825 | 1968 | 3007 | 2662 | 3581 | 5372 | 3059 | |
| TCZ distance travelled [km] | <0.001 | |||||||
| Mean | 103 | 96 | 148 | 71 | 54 | 79 | 256 | |
| Median | 109 | 17 | 97 | 26 | 16 | 18 | 97 | |
| SD | 97 | 156 | 158 | 104 | 73 | 133 | 281 | |
| Min | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
| Max | 334 | 984 | 848 | 541 | 345 | 854 | 1108 | |
| Mean trip length [km] | <0.001 | |||||||
| Mean | 13 | 13 | 14 | 15 | 12 | 16 | 14 | |
| Median | 12 | 12 | 14 | 13 | 10 | 15 | 15 | |
| SD | 3 | 6 | 7 | 7 | 7 | 7 | 5 | |
| Min | 8 | 1 | 3 | 1 | 3 | 2 | 3 | |
| Max | 19 | 31 | 37 | 33 | 32 | 37 | 29 | |
| Trip count [−] | <0.001 | |||||||
| Mean | 72 | 53 | 58 | 51 | 72 | 85 | 78 | |
| Median | 73 | 47 | 51 | 37 | 60 | 74 | 60 | |
| SD | 37 | 40 | 40 | 41 | 63 | 62 | 67 | |
| Min | 8 | 2 | 2 | 1 | 5 | 8 | 6 | |
| Max | 135 | 191 | 258 | 148 | 381 | 297 | 454 | |
| TCZ share [−] | <0.001 | |||||||
| Mean | 0.10 | 0.16 | 0.25 | 0.10 | 0.10 | 0.07 | 0.22 | |
| Median | 0.10 | 0.04 | 0.19 | 0.06 | 0.04 | 0.02 | 0.22 | |
| SD | 0.08 | 0.21 | 0.24 | 0.12 | 0.14 | 0.12 | 0.14 | |
| Min | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| Max | 0.31 | 0.90 | 0.93 | 0.49 | 0.68 | 0.78 | 0.61 | |
| Drive through the TCZ | 38 (83%) | 76 (57%) | 169 (98%) | 120 (81%) | 71 (91%) | 216 (75%) | 101 (100%) |
| Line Parameter | Białystok N = 46 1 | Gdańsk N = 133 1 | Kraków N = 172 1 | Poznań N = 149 1 | Szczecin N = 78 1 | Warsaw N = 287 1 | Wrocław N = 101 1 | p-Value 2 |
|---|---|---|---|---|---|---|---|---|
| Line colour | ||||||||
| Black (regular) | 30 (65%) | 99 (74%) | 76 (44%) | 45 (30%) | 37 (47%) | 135 (47%) | 53 (52%) | |
| Red (accelerated) | 0 (0%) | 0 (0%) | 7 (4.1%) | 0 (0%) | 2 (2.6%) | 25 (8.7%) | 4 (4.0%) | |
| Blue (night) | 0 (0%) | 17 (13%) | 14 (8.1%) | 15 (10%) | 22 (28%) | 41 (14%) | 17 (17%) | |
| Green (suburban) | 16 (35%) | 17 (13%) | 75 (44%) | 89 (60%) | 17 (22%) | 86 (30%) | 27 (27%) | |
| Distance travelled [km] | <0.001 | |||||||
| Mean | 888 | 635 | 752 | 640 | 753 | 1176 | 1034 | |
| Median | 891 | 423 | 580 | 556 | 561 | 887 | 682 | |
| SD | 485 | 533 | 584 | 514 | 683 | 970 | 833 | |
| Min | 84 | 10 | 53 | 33 | 21 | 78 | 80 | |
| Max | 1825 | 1968 | 3007 | 2662 | 3581 | 5372 | 3059 | |
| TCZ distance travelled [km] | <0.001 | |||||||
| Mean | 219 | 93 | 102 | 64 | 59 | 90 | 682 | |
| Median | 165 | 13 | 58 | 20 | 19 | 18 | 349 | |
| SD | 198 | 162 | 114 | 99 | 80 | 154 | 685 | |
| Min | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
| Max | 784 | 893 | 544 | 541 | 345 | 956 | 2595 | |
| Mean trip length [km] | <0.001 | |||||||
| Mean | 13 | 13 | 14 | 15 | 12 | 16 | 14 | |
| Median | 12 | 12 | 14 | 13 | 10 | 15 | 15 | |
| SD | 3 | 6 | 7 | 7 | 7 | 7 | 5 | |
| Min | 8 | 1 | 3 | 1 | 3 | 2 | 3 | |
| Max | 19 | 31 | 37 | 33 | 32 | 37 | 29 | |
| Trip count [−] | <0.001 | |||||||
| Mean | 72 | 53 | 58 | 51 | 72 | 85 | 78 | |
| Median | 73 | 47 | 51 | 37 | 60 | 74 | 60 | |
| SD | 37 | 40 | 40 | 41 | 63 | 62 | 67 | |
| Min | 8 | 2 | 2 | 1 | 5 | 8 | 6 | |
| Max | 135 | 191 | 258 | 148 | 381 | 297 | 454 | |
| TCZ share [−] | <0.001 | |||||||
| Mean | 0.20 | 0.14 | 0.17 | 0.09 | 0.10 | 0.08 | 0.59 | |
| Median | 0.18 | 0.04 | 0.10 | 0.06 | 0.04 | 0.03 | 0.66 | |
| SD | 0.14 | 0.20 | 0.19 | 0.11 | 0.12 | 0.13 | 0.29 | |
| Min | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| Max | 0.55 | 0.90 | 0.75 | 0.66 | 0.57 | 0.78 | 1.00 | |
| Drive through the TCZ | 43 (93%) | 77 (58%) | 168 (98%) | 120 (81%) | 71 (91%) | 216 (75%) | 101 (100%) |
| Line Parameter | Białystok N = 46 1 | Gdańsk N = 133 1 | Kraków N = 172 1 | Poznań N = 149 1 | Szczecin N = 78 1 | Warsaw N = 287 1 | Wrocław N = 101 1 | p-Value 2 |
|---|---|---|---|---|---|---|---|---|
| Line colours | ||||||||
| Black (regular) | 30 (65%) | 99 (74%) | 76 (44%) | 45 (30%) | 37 (47%) | 135 (47%) | 53 (52%) | |
| Red (accelerated) | 0 (0%) | 0 (0%) | 7 (4.1%) | 0 (0%) | 2 (2.6%) | 25 (8.7%) | 4 (4.0%) | |
| Blue (night) | 0 (0%) | 17 (13%) | 14 (8.1%) | 15 (10%) | 22 (28%) | 41 (14%) | 17 (17%) | |
| Green (suburban) | 16 (35%) | 17 (13%) | 75 (44%) | 89 (60%) | 17 (22%) | 86 (30%) | 27 (27%) | |
| Distance travelled [km] | <0.001 | |||||||
| Mean | 888 | 635 | 752 | 640 | 753 | 1176 | 1034 | |
| Median | 891 | 423 | 580 | 556 | 561 | 887 | 682 | |
| SD | 485 | 533 | 584 | 514 | 683 | 970 | 833 | |
| Min | 84 | 10 | 53 | 33 | 21 | 78 | 80 | |
| Max | 1825 | 1968 | 3007 | 2662 | 3581 | 5372 | 3059 | |
| TCZ distance travelled [km] | <0.001 | |||||||
| Mean | 78 | 74 | 97 | 61 | 52 | 74 | 253 | |
| Median | 47 | 11 | 50 | 20 | 16 | 17 | 97 | |
| SD | 88 | 122 | 110 | 94 | 70 | 127 | 280 | |
| Min | 0 | 0 | 0 | 0 | 0 | 0 | 1 | |
| Max | 334 | 591 | 455 | 541 | 345 | 854 | 1108 | |
| Mean trip length [km] | <0.001 | |||||||
| Mean | 13 | 13 | 14 | 15 | 12 | 16 | 14 | |
| Median | 12 | 12 | 14 | 13 | 10 | 15 | 15 | |
| SD | 3 | 6 | 7 | 7 | 7 | 7 | 5 | |
| Min | 8 | 1 | 3 | 1 | 3 | 2 | 3 | |
| Max | 19 | 31 | 37 | 33 | 32 | 37 | 29 | |
| Trip count [−] | <0.001 | |||||||
| Mean | 72 | 53 | 58 | 51 | 72 | 85 | 78 | |
| Median | 73 | 47 | 51 | 37 | 60 | 74 | 60 | |
| SD | 37 | 40 | 40 | 41 | 63 | 62 | 67 | |
| Min | 8 | 2 | 2 | 1 | 5 | 8 | 6 | |
| Max | 135 | 191 | 258 | 148 | 381 | 297 | 454 | |
| TCZ share [−] | <0.001 | |||||||
| Mean | 0.07 | 0.12 | 0.17 | 0.09 | 0.09 | 0.07 | 0.22 | |
| Median | 0.05 | 0.03 | 0.10 | 0.06 | 0.04 | 0.02 | 0.22 | |
| SD | 0.07 | 0.18 | 0.19 | 0.10 | 0.12 | 0.12 | 0.14 | |
| Min | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| Max | 0.25 | 0.90 | 0.75 | 0.44 | 0.57 | 0.78 | 0.61 | |
| Drive through TCZ | 36 (78%) | 76 (57%) | 168 (98%) | 120 (81%) | 71 (91%) | 216 (75%) | 101 (100%) |
References
- World Health Organization. Global Status Report on Road Safety 2023; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- EU. Directive (EU) 2019/1936 of the European Parliament and of the Council of 23 October 2019 Amending Directive 2008/96/EC on Road Infrastructure Safety Management. Available online: https://eur-lex.europa.eu/eli/dir/2019/1936/oj/eng (accessed on 29 October 2025).
- Distefano, N.; Leonardi, S. Evaluation of the Benefits of Traffic Calming on Vehicle Speed Reduction. Civ. Eng. Archit. 2019, 7, 200–214. [Google Scholar] [CrossRef]
- Ewing, R. Traffic Calming: State of the Practice; Institute of Transportation Engineers: Washington, DC, USA, 1999. [Google Scholar]
- European Commission (Ed.) Reclaiming City Streets for People: Chaos or Quality of Life? Office for Official Publications of the European Communities: Luxembourg, 2004. [Google Scholar]
- Ewing, R.; Brown, S. U.S. Traffic Calming Manual; American Planning Association: Chicago, IL, USA; ASCE Press: Reston, VA, USA, 2009. [Google Scholar]
- Transport for London. Traffic Calming Measures for Bus Routes; Transport for London: London, UK, 2005.
- Wolański, M.; Czerliński, M.; Krukowicz, T.; Orcholska, K.; Pinkosz, M.; Babicki, M.; Kaczorowski, J.; Makarski, K. Introduction of traffic calming zones in Warsaw—stage II—Guidelines and catalog of good practices. 2023. [Google Scholar]
- Wolański, M.; Czerliński, M.; Krukowicz, T.; Orcholska, K.; Pinkosz, M.; Babicki, M.; Kaczorowski, J.; Makarski, K. Introduction of traffic calming zones in Warsaw—stage I—Review of available literature and regulations on traffic calming zones and speed management. 2021. [Google Scholar]
- Wolański, M.; Czerliński, M.; Krukowicz, T.; Orcholska, K.; Pinkosz, M.; Babicki, M.; Kaczorowski, J.; Makarski, K. Introduction of traffic calming zones in Warsaw—stage III—Technical description for the map of the target implementation of traffic calming zones in Warsaw. 2022. [Google Scholar]
- Balant, M.; Lep, M. Comprehensive Traffic Calming as a Key Element of Sustainable Urban Mobility Plans—Impacts of a Neighbourhood Redesign in Ljutomer. Sustainability 2020, 12, 8143. [Google Scholar] [CrossRef]
- Rupprecht Consult (Ed.) Guidelines for Developing and Implementing a Sustainable Urban Mobility Plan, 2nd ed.; Rupprecht Consult: Cologne, Germany, 2019. [Google Scholar]
- Bunn, F.; Collier, T.; Frost, C.; Ker, K.; Roberts, I.; Wentz, R. Traffic calming for the prevention of road traffic injuries: Systematic review and meta-analysis. Inj. Prev. 2003, 9, 200–204. [Google Scholar] [CrossRef]
- Inada, H.; Tomio, J.; Nakahara, S.; Ichikawa, M. Area-Wide Traffic-Calming Zone 30 Policy of Japan and Incidence of Road Traffic Injuries Among Cyclists and Pedestrians. Am. J. Public Health 2020, 110, 237–243. [Google Scholar] [CrossRef]
- Arsenieva, N.; Fomenko, G. Formation practice of traffic calming zones in cities. Munic. Econ. Cities 2022, 3, 168–173. [Google Scholar] [CrossRef]
- Karndacharuk, A.; McTiernan, D. Implementation Principles for 30 km/h Speed Limits and Zones. J. Australas. Coll. Road Saf. 2019, 30, 45–54. [Google Scholar] [CrossRef]
- Chng, S.; Chang, C.; Mosquera, K.; Leong, W.Y. Living in a Silver Zone: Residents’ perceptions of area-wide traffic calming measures in Singapore. Transp. Res. Interdiscip. Perspect. 2022, 16, 100710. [Google Scholar] [CrossRef]
- Sołowczuk, A. Effect of Traffic Calming in a Downtown District of Szczecin, Poland. Energies 2021, 14, 5838. [Google Scholar] [CrossRef]
- Ratanavaraha, V. The Effectiveness of Temporary Traffic Calming Devices on Reducing Speeds of Traffic Flow in School Zones. Indian J. Sci. Technol. 2013, 6, 1–7. [Google Scholar] [CrossRef]
- Ambros, J.; Tomešová, L.; Jurewicz, C.; Valentová, V. A review of the best practice in traffic calming evaluation. Accid. Anal. Prev. 2023, 189, 107073. [Google Scholar] [CrossRef]
- Berloco, N.; Coropulis, S.; Intini, P.; Ranieri, V. Effects of Berlin speed cushions in urban restricted speed zones: A case study in Bari, Italy. Transp. Res. Procedia 2022, 60, 180–187. [Google Scholar] [CrossRef]
- Gonzalo-Orden, H.; Arce, M.R.; Unamunzaga, A.L.; Aponte, N.; Pérez-Acebo, H. Why is necessary to reduce the speed in urban areas to 30 Km/h? Transp. Res. Procedia 2021, 58, 209–216. [Google Scholar] [CrossRef]
- Paszkowski, J.; Herrmann, M.; Richter, M.; Szarata, A. Modelling the Effects of Traffic-Calming Introduction to Volume–Delay Functions and Traffic Assignment. Energies 2021, 14, 3726. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Ziolkowski, R.; Gonzalo-Orden, H. Evaluation of the Radar Speed Cameras and Panels Indicating the Vehicles’ Speed as Traffic Calming Measures (TCM) in Short Length Urban Areas Located along Rural Roads. Energies 2021, 14, 8146. [Google Scholar] [CrossRef]
- Zalewski, A.; Kempa, J. Traffic Calming as a Comprehensive Solution Improving Traffic Road Safety. IOP Conf. Ser. Mater. Sci. Eng. 2019, 471, 062035. [Google Scholar] [CrossRef]
- Solowczuk, A. Efficient Improvement of the Visibility of Pedestrians on Junctions in Tempo–30 Zones. IOP Conf. Ser. Mater. Sci. Eng. 2019, 603, 022042. [Google Scholar] [CrossRef]
- Gonzalo-Orden, H.; Pérez-Acebo, H.; Unamunzaga, A.L.; Arce, M.R. Effects of traffic calming measures in different urban areas. Transp. Res. Procedia 2018, 33, 83–90. [Google Scholar] [CrossRef]
- Solowczuk, A.; Majer, S. Lesson Learned from the Effect of Traffic Calming in a Downtown District of Szczecin, Poland for Congested Urban Center. In Science and Technology: Recent Updates and Future Prospects; Santoso, L.W., Ed.; B P International: Hong Kong, China, 2024; Volume 2, pp. 1–35. [Google Scholar] [CrossRef]
- Kempa, J. Respecting a speed limit and its effectiveness in a traffic calming zone. IOP Conf. Ser. Mater. Sci. Eng. 2019, 603, 042068. [Google Scholar] [CrossRef]
- Solowczuk, A. Effect of Traffic Calming Measures Implemented on the Approach to the Tempo–30 zone on the Degree of Speed Reduction. IOP Conf. Ser. Mater. Sci. Eng. 2019, 603, 022044. [Google Scholar] [CrossRef]
- Majer, S.; Sołowczuk, A.; Kurnatowski, M. Design and Construction Aspects of Concrete Block Paved Vertical Traffic-Calming Devices Located in Home Zone Areas. Sustainability 2024, 16, 2982. [Google Scholar] [CrossRef]
- Sołowczuk, A.; Gardas, P. Effect of the Parking Lane Configuration on Vehicle Speeds in Home Zones in Poland. Sustainability 2020, 12, 588. [Google Scholar] [CrossRef]
- Fridman, L.; Ling, R.; Rothman, L.; Cloutier, M.S.; Macarthur, C.; Hagel, B.; Howard, A. Effect of reducing the posted speed limit to 30 km per hour on pedestrian motor vehicle collisions in Toronto, Canada—a quasi experimental, pre-post study. BMC Public Health 2020, 20, 56. [Google Scholar] [CrossRef]
- Hydén, C. Traffic Calming: The Way Ahead in Mixed Traffic. In Transport and Safety; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Global Road Safety Partnership, International Federation of Red Cross and Red Crescent Societies. Speed Management: A Road Safety Manual for Decision-Makers and Practitioners, 2nd ed.; Global Road Safety Partnership, International Federation of Red Cross and Red Crescent Societies: Geneva, Switzerland, 2023. [Google Scholar]
- WHO. Global Plan for the Decade of Action for Road Safety 2021–2030; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- NACTO. Urban Street Design Guide; National Association of City Transportation Officials: Washington, WA, USA, 2013. [Google Scholar]
- van Schagen, I. Traffic Calming Schemes; Swedish National Road Administration, Traffic Safety Department: Borlänge, Sweden, 2003. [Google Scholar]
- Chávez, D.B.V.; Kurek, A.; Sierpiński, G.; Jużyniec, J.; Kielc, B. Review and comparison of traffic calming solutions: Mexico City and Katowice. Sci. J. Silesian Univ. Technol. Ser. Transp. 2017, 96, 185–195. [Google Scholar] [CrossRef]
- Majer, S.; Sołowczuk, A. Traffic Circle—An Example of Sustainable Home Zone Design. Sustainability 2023, 15, 16751. [Google Scholar] [CrossRef]
- Vasileiadis, I.; Nalmpantis, D. Development of a Methodology, Using Multi-Criteria Decision Analysis (MCDA), to Choose Between Full Pedestrianization and Traffic Calming Area (Woonerf Zone Type). In Data Analytics: Paving the Way to Sustainable Urban Mobility; Advances in Intelligent Systems and Computing, Nathanail, E.G., Karakikes, I.D., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 879, pp. 315–322. [Google Scholar] [CrossRef]
- Batomen, B.; Cloutier, M.-S.; Carabali, M.; Hagel, B.; Howard, A.; Rothman, L.; Perreault, S.; Brown, P.; Di Ruggiero, E.; Bondy, S. Traffic-Calming Measures and Road Traffic Collisions and Injuries: A Spatiotemporal Analysis. Am. J. Epidemiology 2023, 193, 707–717. [Google Scholar] [CrossRef]
- Burden, D. Streets and Sidewalks, People and Cars. In The Citzens’ Guide to Traffic Calming; Local Government Commission Center for Livable Communities: Denver, CO, USA, 2007. [Google Scholar]
- Richter, M.; Paszkowski, J. Modelling driver behaviour in traffic-calmed areas. Czas. Tech. 2018, 8, 111–124. [Google Scholar] [CrossRef]
- Polish Geoportal. 2025. Available online: https://www.geoportal.gov.pl/ (accessed on 22 March 2022).
- National Register of Boundaries. 2025. Available online: https://www.geoportal.gov.pl/en/data/national-register-of-boundaries/ (accessed on 22 March 2022).
- Guidelines for Shaping the Road Network. 2022. Available online: https://www.gov.pl/attachment/b1b63ec5-2468-4e92-bae7-1e3e37a48a59 (accessed on 16 March 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 22 March 2025).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Pebesma, E.; Bivand, R. Spatial Data Science: With Applications in R; Chapman and Hall/CRC: Boca Raton, FL, USA, 2023. [Google Scholar] [CrossRef]
- Lovelace, R.; Nowosad, J.; Muenchow, J. Geocomputation with R. In The R Series, 2nd ed.; Chapman & Hall: London, UK, 2025. [Google Scholar]
- Gagolewski, M. stringi: Fast and Portable Character String Processing in R. J. Stat. Softw. 2022, 102, 2. [Google Scholar] [CrossRef]
- Dyba, K.; Nowosad, J. rgugik: Search and Retrieve Spatial Data from the Polish Head Office of Geodesy and Cartography in R. J. Open Source Softw. 2021, 6, 2948. [Google Scholar] [CrossRef]
- Kuranowski, M. MKuran: GTFS Feeds Source Page. 2025. Available online: https://mkuran.pl/gtfs/ (accessed on 22 May 2025).
- General Transit Feed Specification Reference. 2025. Available online: https://gtfs.org/schedule/reference/ (accessed on 22 May 2025).
- Lowson, M. Idealised models for public transport systems. Int. J. Transp. Manag. 2004, 2, 135–147. [Google Scholar] [CrossRef]
- Wang, J.; Rakha, H.A. Fuel consumption model for conventional diesel buses. Appl. Energy 2016, 170, 394–402. [Google Scholar] [CrossRef]
- Rose, R.; Eyton, E.; Hill, N.; Ingledew, D.; Karagianni, E.; Norris, J.; Murrells, T. Speed-Emission/Energy Consumption Curves for Ultra-Low Emission Vehicles and Non-Fuel Operating Costs for All Vehicles; Ricardo Energy & Environment: Oxfordshire, UK, 2025. [Google Scholar]







| No. | Objective | Description | Mentioned in the Literature |
|---|---|---|---|
| 1 | Safety improvement | Reduce accident and fatality rates, especially for pedestrians and cyclists. | [1,3,4,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43] |
| 2 | Speed reduction and compliance | Ensure drivers adhere to posted reduced speed limits through physical and visual measures. | [1,3,4,7,8,9,10,11,13,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,42,43,44] |
| 3 | Active mobility promotion | Encourage walking and cycling by making streets more attractive for non-motorised users. | [1,4,8,9,10,11,12,13,14,15,16,17,18,20,21,22,23,24,25,34,35,36,37,38,39,43,44] |
| 4 | Environmental benefits | Reduce vehicles’ emissions of noise and pollution, as well as fuel consumption, by lowering speeds and smoothing traffic flow. | [4,7,8,9,16,17,18,20,21,23,24,25,28,30,31,32,34,35,37,38,39,40,43] |
| 5 | Traffic flow management | Discourage through-traffic in residential areas and local streets. | [1,4,8,9,10,11,13,15,18,20,22,23,24,28,37,38,39,43,44] |
| 6 | Quality of life enhancement | Create more liveable spaces through street transformation and a reduction in traffic dominance in neighbourhoods. | [4,7,8,9,11,17,20,23,25,29,34,37,38,43] |
| 7 | Accessibility improvement | Enhance mobility for all users, including children, older people, and those with disabilities. | [1,4,8,9,10,11,12,17,18,19,35,37,38,43] |
| 8 | Improvement in street aesthetics | Street transformation by space of higher quality (with so-called street furniture) and more greenery (also as a calming measure). | [4,8,9,10,11,20,25,28,29,30,31,37,38,43] |
| 9 | Community cohesion | Foster a sense of place and community by reclaiming street space for social interactions. | [8,9,11,16,17,18,20,28,37,38,43] |
| 10 | Revitalizations | Literally, it is revival or bringing back to life; it is the process of bringing degraded areas of the city out of a state of crisis. | [4,8,9,20,25,37,39] |
| 11 | Economic benefits | Increase in property values and a boost to local businesses. | [4,9,20,37,43] |
| 12 | Increase in public transport usage | Encouraging a shift in transport modal split to PT. | [3,15,17,20,38] |
| 13 | Crime reduction | Potentially decrease crime rates by increasing street activity and enhancing natural surveillance through the presence of people. | [4,9,38,43] |
| TCZ Area Parameter | Białystok N = 70 | Wrocław N = 97 | Bydgoszcz N = 67 | Gdańsk N = 66 | Kraków N = 87 | Lublin N = 77 | Łódź N = 210 | Poznań N = 133 | Szczecin N = 136 | Warsaw N = 430 | p-Value 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| surface area [km2] | <0.001 | ||||||||||
| Mean | 1.31 | 2.80 | 2.43 | 3.77 | 3.50 | 1.75 | 1.26 | 1.81 | 2.06 | 1.06 | |
| Median | 0.78 | 0.80 | 0.53 | 1.05 | 1.34 | 0.90 | 0.40 | 0.45 | 0.28 | 0.31 | |
| diameter—circumscribed circle [m] | <0.001 | ||||||||||
| Mean | 1753 | 2262 | 2159 | 2716 | 2723 | 1924 | 1559 | 1814 | 1579 | 1385 | |
| Median | 1483 | 1542 | 1350 | 1864 | 1975 | 1518 | 1120 | 1222 | 916 | 929 | |
| shape [km] | <0.001 | ||||||||||
| Mean | 5.7 | 6.9 | 6.2 | 7.1 | 8.1 | 6.4 | 4.9 | 5.8 | 4.9 | 4.7 | |
| Median | 5.1 | 4.8 | 4.5 | 5.0 | 6.3 | 5.5 | 3.6 | 4.1 | 2.9 | 3.4 | |
| diameter—inscribed circle [m] | <0.001 | ||||||||||
| Mean | 778 | 856 | 799 | 929 | 1027 | 828 | 643 | 771 | 631 | 608 | |
| Median | 670 | 652 | 579 | 726 | 853 | 730 | 502 | 545 | 391 | 447 | |
| circuit [m] | <0.001 | ||||||||||
| Mean | 4843 | 7269 | 6567 | 8688 | 8115 | 5464 | 4285 | 5288 | 5056 | 3806 | |
| Median | 3851 | 3898 | 3443 | 5121 | 5381 | 4195 | 2916 | 2997 | 2495 | 2436 | |
| circuit—surface area [m/km2] | <0.001 | ||||||||||
| Mean | 6805 | 8610 | 8131 | 7329 | 5777 | 6896 | 9220 | 8386 | 11,818 | 9333 | |
| Median | 5220 | 5767 | 6617 | 5693 | 4248 | 5129 | 7091 | 6581 | 9280 | 7757 |
| TCZ Area Parameter | Białystok N = 58 | Wrocław N = 29 | Bydgoszcz N = 73 | Gdańsk N = 83 | Kraków N = 131 | Lublin N = 85 | Łódź N = 261 | Poznań N = 143 | Szczecin N = 132 | Warsaw N = 431 | p-Value 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| surface area [km2] | <0.001 | ||||||||||
| Mean | 1.60 | 9.75 | 2.23 | 2.98 | 2.30 | 1.59 | 1.00 | 1.67 | 2.13 | 1.06 | |
| Median | 0.83 | 3.36 | 0.55 | 0.50 | 0.88 | 0.67 | 0.31 | 0.45 | 0.29 | 0.32 | |
| diameter—circumscribed circle [m] | <0.001 | ||||||||||
| Mean | 1902 | 4173 | 2077 | 2355 | 2266 | 1812 | 1360 | 1794 | 1628 | 1382 | |
| Median | 1599 | 3623 | 1351 | 1235 | 1629 | 1446 | 965 | 1222 | 916 | 944 | |
| shape [km] | <0.001 | ||||||||||
| Mean | 6.1 | 13.4 | 5.9 | 6.1 | 6.4 | 6.0 | 4.4 | 5.6 | 5.0 | 4.7 | |
| Median | 5.3 | 9.7 | 4.5 | 3.9 | 5.2 | 5.2 | 3.2 | 4.0 | 3.0 | 3.5 | |
| diameter—inscribed circle [m] | <0.001 | ||||||||||
| Mean | 803 | 1689 | 778 | 800 | 865 | 782 | 572 | 744 | 641 | 625 | |
| Median | 717 | 1411 | 593 | 541 | 712 | 615 | 428 | 538 | 403 | 451 | |
| circuit [m] | <0.001 | ||||||||||
| Mean | 5562 | 13,136 | 6112 | 7602 | 6069 | 4984 | 3860 | 5220 | 5210 | 3720 | |
| Median | 4318 | 9443 | 3570 | 3410 | 4303 | 4113 | 2570 | 2997 | 2560 | 2496 | |
| circuit—surface area [m/km2] | <0.001 | ||||||||||
| Mean | 7188 | 4805 | 8813 | 9064 | 7258 | 7015 | 10,526 | 8478 | 11,929 | 9263 | |
| Median | 4929 | 2690 | 5578 | 6826 | 5145 | 5470 | 8195 | 6722 | 8957 | 7509 |
| TCZ Area Parameter | Białystok N = 86 | Wrocław N = 101 | Bydgoszcz N = 80 | Gdańsk N = 99 | Kraków N = 137 | Lublin N = 93 | Łódź N = 291 | Poznań N = 145 | Szczecin N = 140 | Warsaw N = 457 | p-Value 1 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| surface area [km2] | <0.001 | ||||||||||
| Mean | 1.06 | 2.69 | 2.03 | 2.48 | 2.20 | 1.44 | 0.89 | 1.65 | 2.00 | 1.00 | |
| Median | 0.57 | 0.80 | 0.48 | 0.39 | 0.83 | 0.63 | 0.27 | 0.45 | 0.29 | 0.30 | |
| diameter—circumscribed circle [m] | <0.001 | ||||||||||
| Mean | 1527 | 2243 | 1943 | 2110 | 2215 | 1712 | 1265 | 1793 | 1597 | 1348 | |
| Median | 1304 | 1542 | 1171 | 1232 | 1546 | 1354 | 902 | 1232 | 998 | 925 | |
| shape [km] | <0.001 | ||||||||||
| Mean | 5.0 | 6.9 | 5.6 | 5.6 | 6.2 | 5.7 | 4.1 | 5.6 | 4.9 | 4.6 | |
| Median | 4.3 | 4.8 | 4.0 | 3.2 | 5.2 | 4.7 | 2.9 | 4.0 | 3.0 | 3.4 | |
| diameter—inscribed circle [m] | <0.001 | ||||||||||
| Mean | 667 | 857 | 736 | 732 | 846 | 737 | 536 | 739 | 640 | 598 | |
| Median | 576 | 659 | 548 | 483 | 704 | 599 | 377 | 538 | 403 | 443 | |
| circuit [m] | <0.001 | ||||||||||
| Mean | 4214 | 7042 | 5692 | 6707 | 5970 | 4808 | 3529 | 5185 | 4983 | 3665 | |
| Median | 3523 | 3898 | 3216 | 3345 | 4062 | 3642 | 2300 | 3063 | 2560 | 2366 | |
| circuit—surface area [m/km2] | <0.001 | ||||||||||
| Mean | 8676 | 8484 | 8919 | 9340 | 7446 | 7678 | 11,262 | 8451 | 11,760 | 9568 | |
| Median | 6156 | 5408 | 6656 | 7681 | 5295 | 5590 | 8874 | 6722 | 8957 | 7845 |
| Line Parameter | Białystok N = 46 1 | Gdańsk N = 133 1 | Kraków N = 172 1 | Poznań N = 149 1 | Szczecin N = 78 1 | Warsaw N = 287 1 | Wrocław N = 101 1 | p-Value 2 |
|---|---|---|---|---|---|---|---|---|
| Line colour | ||||||||
| Black (regular) | 30 (65%) | 99 (74%) | 76 (44%) | 45 (30%) | 37 (47%) | 135 (47%) | 53 (52%) | |
| Red (accelerated) | 0 (0%) | 0 (0%) | 7 (4.1%) | 0 (0%) | 2 (2.6%) | 25 (8.7%) | 4 (4.0%) | |
| Blue (night) | 0 (0%) | 17 (13%) | 14 (8.1%) | 15 (10%) | 22 (28%) | 41 (14%) | 17 (17%) | |
| Green (suburban) | 16 (35%) | 17 (13%) | 75 (44%) | 89 (60%) | 17 (22%) | 86 (30%) | 27 (27%) | |
| Distance travelled [km] | <0.001 | |||||||
| Mean | 888 | 635 | 752 | 640 | 753 | 1176 | 1034 | |
| Median | 891 | 423 | 580 | 556 | 561 | 887 | 682 | |
| TCZ distance travelled [km] | <0.001 | |||||||
| Mean | 103 | 96 | 148 | 71 | 54 | 79 | 256 | |
| Median | 109 | 17 | 97 | 26 | 16 | 18 | 97 | |
| Mean trip length [km] | <0.001 | |||||||
| Mean | 13 | 13 | 14 | 15 | 12 | 16 | 14 | |
| Median | 12 | 12 | 14 | 13 | 10 | 15 | 15 | |
| Trip count [−] | <0.001 | |||||||
| Mean | 72 | 53 | 58 | 51 | 72 | 85 | 78 | |
| Median | 73 | 47 | 51 | 37 | 60 | 74 | 60 | |
| TCZ share [−] | <0.001 | |||||||
| Mean | 0.10 | 0.16 | 0.25 | 0.10 | 0.10 | 0.07 | 0.22 | |
| Median | 0.10 | 0.04 | 0.19 | 0.06 | 0.04 | 0.02 | 0.22 | |
| Drive through the TCZ | 38 (83%) | 76 (57%) | 169 (98%) | 120 (81%) | 71 (91%) | 216 (75%) | 101 (100%) |
| Line Parameter | Białystok N = 46 1 | Gdańsk N = 133 1 | Kraków N = 172 1 | Poznań N = 149 1 | Szczecin N = 78 1 | Warsaw N = 287 1 | Wrocław N = 101 1 | p-Value 2 |
|---|---|---|---|---|---|---|---|---|
| Line colour | ||||||||
| Black (regular) | 30 (65%) | 99 (74%) | 76 (44%) | 45 (30%) | 37 (47%) | 135 (47%) | 53 (52%) | |
| Red (accelerated) | 0 (0%) | 0 (0%) | 7 (4.1%) | 0 (0%) | 2 (2.6%) | 25 (8.7%) | 4 (4.0%) | |
| Blue (night) | 0 (0%) | 17 (13%) | 14 (8.1%) | 15 (10%) | 22 (28%) | 41 (14%) | 17 (17%) | |
| Green (suburban) | 16 (35%) | 17 (13%) | 75 (44%) | 89 (60%) | 17 (22%) | 86 (30%) | 27 (27%) | |
| Distance travelled [km] | <0.001 | |||||||
| Mean | 888 | 635 | 752 | 640 | 753 | 1176 | 1034 | |
| Median | 891 | 423 | 580 | 556 | 561 | 887 | 682 | |
| TCZ distance travelled [km] | <0.001 | |||||||
| Mean | 219 | 93 | 102 | 64 | 59 | 90 | 682 | |
| Median | 165 | 13 | 58 | 20 | 19 | 18 | 349 | |
| Mean trip length [km] | <0.001 | |||||||
| Mean | 13 | 13 | 14 | 15 | 12 | 16 | 14 | |
| Median | 12 | 12 | 14 | 13 | 10 | 15 | 15 | |
| Trip count [−] | <0.001 | |||||||
| Mean | 72 | 53 | 58 | 51 | 72 | 85 | 78 | |
| Median | 73 | 47 | 51 | 37 | 60 | 74 | 60 | |
| TCZ share [−] | <0.001 | |||||||
| Mean | 0.20 | 0.14 | 0.17 | 0.09 | 0.10 | 0.08 | 0.59 | |
| Median | 0.18 | 0.04 | 0.10 | 0.06 | 0.04 | 0.03 | 0.66 | |
| Drive through the TCZ | 43 (93%) | 77 (58%) | 168 (98%) | 120 (81%) | 71 (91%) | 216 (75%) | 101 (100%) |
| Line Parameter | Białystok N = 46 1 | Gdańsk N = 133 1 | Kraków N = 172 1 | Poznań N = 149 1 | Szczecin N = 78 1 | Warsaw N = 287 1 | Wrocław N = 101 1 | p-Value 2 |
|---|---|---|---|---|---|---|---|---|
| Line colours | ||||||||
| Black (regular) | 30 (65%) | 99 (74%) | 76 (44%) | 45 (30%) | 37 (47%) | 135 (47%) | 53 (52%) | |
| Red (accelerated) | 0 (0%) | 0 (0%) | 7 (4.1%) | 0 (0%) | 2 (2.6%) | 25 (8.7%) | 4 (4.0%) | |
| Blue (night) | 0 (0%) | 17 (13%) | 14 (8.1%) | 15 (10%) | 22 (28%) | 41 (14%) | 17 (17%) | |
| Green (suburban) | 16 (35%) | 17 (13%) | 75 (44%) | 89 (60%) | 17 (22%) | 86 (30%) | 27 (27%) | |
| Distance travelled [m] | <0.001 | |||||||
| Mean | 888 | 635 | 752 | 640 | 753 | 1176 | 1034 | |
| Median | 891 | 423 | 580 | 556 | 561 | 887 | 682 | |
| TCZ distance travelled [m] | <0.001 | |||||||
| Mean | 78 | 74 | 97 | 61 | 52 | 74 | 253 | |
| Median | 47 | 11 | 50 | 20 | 16 | 17 | 97 | |
| Mean trip length [m] | <0.001 | |||||||
| Mean | 13 | 13 | 14 | 15 | 12 | 16 | 14 | |
| Median | 12 | 12 | 14 | 13 | 10 | 15 | 15 | |
| Trip count [−] | <0.001 | |||||||
| Mean | 72 | 53 | 58 | 51 | 72 | 85 | 78 | |
| Median | 73 | 47 | 51 | 37 | 60 | 74 | 60 | |
| TCZ share [−] | <0.001 | |||||||
| Mean | 0.07 | 0.12 | 0.17 | 0.09 | 0.09 | 0.07 | 0.22 | |
| Median | 0.05 | 0.03 | 0.10 | 0.06 | 0.04 | 0.02 | 0.22 | |
| Drive through TCZ | 36 (78%) | 76 (57%) | 168 (98%) | 120 (81%) | 71 (91%) | 216 (75%) | 101 (100%) |
| City | p-Value | Normal |
|---|---|---|
| Kraków | 0.08 | TRUE |
| Poznań | 0.7 | TRUE |
| Warsaw | 0.08 | TRUE |
| Białystok | 0.04 | FALSE |
| Gdańsk | 0.33 | TRUE |
| Wrocław | 0.99 | TRUE |
| Szczecin | 0.99 | TRUE |
| Łódź | 0.77 | TRUE |
| Lublin | <0.01 | FALSE |
| Bydgoszcz | 0.01 | FALSE |
| City | Bydgoszcz | Gdańsk | Kraków | Lublin | Łódź | Poznań | Szczecin | Warsaw | Wrocław |
|---|---|---|---|---|---|---|---|---|---|
| Białystok | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | TRUE | TRUE | FALSE |
| Bydgoszcz | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | |
| Gdańsk | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | ||
| Kraków | FALSE | TRUE | FALSE | TRUE | TRUE | FALSE | |||
| Lublin | TRUE | FALSE | TRUE | TRUE | FALSE | ||||
| Łódź | TRUE | FALSE | FALSE | TRUE | |||||
| Poznań | FALSE | FALSE | TRUE | ||||||
| Szczecin | FALSE | TRUE | |||||||
| Warsaw | TRUE |
| City | Bydgoszcz | Gdańsk | Kraków | Lublin | Łódź | Poznań | Szczecin | Warsaw | Wrocław |
|---|---|---|---|---|---|---|---|---|---|
| Białystok | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | TRUE | TRUE | FALSE |
| Bydgoszcz | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | |
| Gdańsk | FALSE | FALSE | TRUE | FALSE | TRUE | TRUE | FALSE | ||
| Kraków | FALSE | TRUE | TRUE | TRUE | TRUE | FALSE | |||
| Lublin | TRUE | FALSE | TRUE | TRUE | FALSE | ||||
| Łódź | FALSE | FALSE | FALSE | FALSE | |||||
| Poznań | FALSE | FALSE | FALSE | ||||||
| Szczecin | FALSE | TRUE | |||||||
| Warsaw | TRUE |
| City | Bydgoszcz | Gdańsk | Kraków | Lublin | Łódź | Poznań | Szczecin | Warsaw | Wrocław |
|---|---|---|---|---|---|---|---|---|---|
| Białystok | FALSE | FALSE | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE |
| Bydgoszcz | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | FALSE | |
| Gdańsk | FALSE | FALSE | TRUE | FALSE | FALSE | FALSE | FALSE | ||
| Kraków | FALSE | TRUE | FALSE | TRUE | TRUE | FALSE | |||
| Lublin | TRUE | FALSE | TRUE | TRUE | FALSE | ||||
| Łódź | TRUE | FALSE | FALSE | TRUE | |||||
| Poznań | FALSE | FALSE | FALSE | ||||||
| Szczecin | FALSE | TRUE | |||||||
| Warsaw | TRUE |
| City 1 | City 2 | Number of Lines | Category | Class | Class and Category | |||
|---|---|---|---|---|---|---|---|---|
| P.adj | P.adj.signif | P.adj | P.adj.signif | P.adj | P.adj.signif | |||
| Białystok | Gdańsk | 179 | 4.17 × 10−5 | **** | 0.0205 | * | 0.104 | ns |
| Białystok | Kraków | 218 | 0.656 | ns | 0.00275 | ** | 0.000455 | *** |
| Białystok | Poznań | 195 | 0.272 | ns | 1 | ns | 1 | ns |
| Białystok | Szczecin | 124 | 0.743 | ns | 1 | ns | 0.327 | ns |
| Białystok | Warsaw | 333 | 0.0353 | * | 1 | ns | 1 | ns |
| Białystok | Wrocław | 147 | 0.234 | ns | 0.000762 | *** | 6.01 × 10−5 | **** |
| Gdańsk | Kraków | 305 | 4.03 × 10−18 | **** | 1.28 × 10−19 | **** | 1.36 × 10−18 | **** |
| Gdańsk | Poznań | 282 | 0.000637 | *** | 0.000409 | *** | 0.00038 | *** |
| Gdańsk | Szczecin | 211 | 2.55 × 10−6 | **** | 1.23 × 10−6 | **** | 1.3 × 10−6 | **** |
| Gdańsk | Warsaw | 420 | 0.00478 | ** | 0.00277 | ** | 0.00277 | ** |
| Gdańsk | Wrocław | 234 | 8.24 × 10−16 | **** | 3.24 × 10−16 | **** | 3.24 × 10−16 | **** |
| Kraków | Poznań | 321 | 5.66 × 10−6 | **** | 1.08 × 10−6 | **** | 5.66 × 10−6 | **** |
| Kraków | Szczecin | 250 | 0.272 | ns | 0.0826 | ns | 0.272 | ns |
| Kraków | Warsaw | 459 | 8.82 × 10−11 | **** | 1.42 × 10−11 | **** | 8.82 × 10−11 | **** |
| Kraków | Wrocław | 273 | 0.693 | ns | 1 | ns | 0.924 | ns |
| Poznań | Szczecin | 227 | 0.272 | ns | 0.327 | ns | 0.327 | ns |
| Poznań | Warsaw | 436 | 0.693 | ns | 1 | ns | 0.924 | ns |
| Poznań | Wrocław | 250 | 2.94 × 10−6 | **** | 2.76 × 10−6 | **** | 2.94 × 10−6 | **** |
| Szczecin | Warsaw | 365 | 0.0197 | * | 0.0179 | * | 0.0179 | * |
| Szczecin | Wrocław | 179 | 0.0255 | * | 0.0205 | * | 0.023 | * |
| Warsaw | Wrocław | 388 | 1.28 × 10−9 | **** | 1.28 × 10−9 | **** | 1.28 × 10−9 | **** |
| Name | Test | p-Value | Normal |
|---|---|---|---|
| Białystok | Category | 0.86 | TRUE |
| Białystok | Class | 0.77 | TRUE |
| Białystok | Class and category | 0.7 | TRUE |
| Gdańsk | Category | <0.01 | FALSE |
| Gdańsk | Class | <0.01 | FALSE |
| Gdańsk | Class and category | <0.01 | FALSE |
| Kraków | Category | <0.01 | FALSE |
| Kraków | Class | <0.01 | FALSE |
| Kraków | Class and category | <0.01 | FALSE |
| Poznań | Category | <0.01 | FALSE |
| Poznań | Class | <0.01 | FALSE |
| Poznań | Class and category | <0.01 | FALSE |
| Szczecin | Category | <0.01 | FALSE |
| Szczecin | Class | <0.01 | FALSE |
| Szczecin | Class and category | <0.01 | FALSE |
| Warsaw | Category | <0.01 | FALSE |
| Warsaw | Class | <0.01 | FALSE |
| Warsaw | Class and category | <0.01 | FALSE |
| Wrocław | Category | <0.01 | FALSE |
| Wrocław | Class | 0.07 | TRUE |
| Wrocław | Class and category | 0.04 | FALSE |
| Comparison | Category | Class | Class and Category | |||
|---|---|---|---|---|---|---|
| P.adj | P.adj.signif | P.adj | P.adj.signif | P.adj | P.adj.signif | |
| Białystok–Gdańsk | 0.82 | FALSE | <0.01 | TRUE | 0.02 | TRUE |
| Białystok–Kraków | 1 | FALSE | <0.01 | TRUE | 0.03 | TRUE |
| Gdańsk–Kraków | 0.42 | FALSE | 1 | FALSE | 1 | FALSE |
| Białystok–Poznań | 0.02 | TRUE | 1 | FALSE | 1 | FALSE |
| Gdańsk–Poznań | <0.01 | TRUE | <0.01 | TRUE | <0.01 | TRUE |
| Kraków–Poznań | 0.08 | FALSE | <0.01 | TRUE | 0.02 | TRUE |
| Białystok–Szczecin | <0.01 | TRUE | 1 | FALSE | 1 | FALSE |
| Gdańsk–Szczecin | <0.01 | TRUE | <0.01 | TRUE | <0.01 | TRUE |
| Kraków–Szczecin | 0.01 | TRUE | <0.01 | TRUE | <0.01 | TRUE |
| Poznań–Szczecin | 1 | FALSE | 0.38 | FALSE | 1 | FALSE |
| Białystok–Warsaw | <0.01 | TRUE | 1 | FALSE | 1 | FALSE |
| Gdańsk–Warsaw | <0.01 | TRUE | <0.01 | TRUE | <0.01 | TRUE |
| Kraków–Warsaw | <0.01 | TRUE | <0.01 | TRUE | <0.01 | TRUE |
| Poznań–Warsaw | 1 | FALSE | 0.09 | FALSE | 0.76 | FALSE |
| Szczecin–Warsaw | 1 | FALSE | 0.99 | FALSE | 0.85 | FALSE |
| Białystok–Wrocław | <0.01 | TRUE | 0.02 | TRUE | <0.01 | TRUE |
| Gdańsk–Wrocław | <0.01 | TRUE | 1 | FALSE | 1 | FALSE |
| Kraków–Wrocław | <0.01 | TRUE | 1 | FALSE | 0.33 | FALSE |
| Poznań–Wrocław | <0.01 | TRUE | <0.01 | TRUE | <0.01 | TRUE |
| Szczecin–Wrocław | <0.01 | TRUE | <0.01 | TRUE | <0.01 | TRUE |
| Warsaw–Wrocław | <0.01 | TRUE | <0.01 | TRUE | <0.01 | TRUE |
| Comparison | Black | Red | Blue | Green |
|---|---|---|---|---|
| Białystok–Gdańsk | TRUE | FALSE | ||
| Białystok–Kraków | TRUE | FALSE | ||
| Gdańsk–Kraków | FALSE | FALSE | FALSE | |
| Białystok–Poznań | FALSE | FALSE | ||
| Gdańsk–Poznań | TRUE | FALSE | FALSE | |
| Kraków–Poznań | TRUE | FALSE | FALSE | |
| Białystok–Szczecin | FALSE | FALSE | ||
| Gdańsk–Szczecin | TRUE | TRUE | FALSE | |
| Kraków–Szczecin | TRUE | FALSE | TRUE | FALSE |
| Poznań–Szczecin | FALSE | TRUE | FALSE | |
| Białystok–Warsaw | FALSE | FALSE | ||
| Gdańsk–Warsaw | TRUE | TRUE | FALSE | |
| Kraków–Warsaw | TRUE | FALSE | TRUE | FALSE |
| Poznań–Warsaw | FALSE | TRUE | FALSE | |
| Szczecin–Warsaw | FALSE | FALSE | FALSE | FALSE |
| Białystok–Wrocław | TRUE | FALSE | ||
| Gdańsk–Wrocław | FALSE | FALSE | FALSE | |
| Kraków–Wrocław | FALSE | FALSE | FALSE | FALSE |
| Poznań–Wrocław | TRUE | FALSE | FALSE | |
| Szczecin–Wrocław | TRUE | FALSE | TRUE | FALSE |
| Warsaw–Wrocław | TRUE | FALSE | TRUE | FALSE |
| City | Daily Distance in TCZ [km] | Daily Distance Outside of TCZ [km] | Share of Daily Distance in TCZ [−] |
|---|---|---|---|
| Kraków | 16,669 | 112,664 | 0.128 |
| Poznań | 9031 | 86,294 | 0.094 |
| Warsaw | 21,267 | 316,340 | 0.062 |
| Białystok | 3589 | 37,256 | 0.087 |
| Gdańsk | 9871 | 74,598 | 0.116 |
| Wrocław | 25,573 | 78,899 | 0.244 |
| Szczecin | 4032 | 54,728 | 0.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czerliński, M.; Krukowicz, T.; Wolański, M.; Pawłowski, P. Impact of Traffic Calming Zones (TCZs) in Cities on Public Transport Operations. Sustainability 2025, 17, 10012. https://doi.org/10.3390/su172210012
Czerliński M, Krukowicz T, Wolański M, Pawłowski P. Impact of Traffic Calming Zones (TCZs) in Cities on Public Transport Operations. Sustainability. 2025; 17(22):10012. https://doi.org/10.3390/su172210012
Chicago/Turabian StyleCzerliński, Mirosław, Tomasz Krukowicz, Michał Wolański, and Patryk Pawłowski. 2025. "Impact of Traffic Calming Zones (TCZs) in Cities on Public Transport Operations" Sustainability 17, no. 22: 10012. https://doi.org/10.3390/su172210012
APA StyleCzerliński, M., Krukowicz, T., Wolański, M., & Pawłowski, P. (2025). Impact of Traffic Calming Zones (TCZs) in Cities on Public Transport Operations. Sustainability, 17(22), 10012. https://doi.org/10.3390/su172210012

