How Different Stakeholders Perceive Benefits, Challenges, and Barriers in the Implementation of Green Technology Projects
Abstract
1. Introduction
2. Literature Review
2.1. Green Projects and Stakeholder Heterogeneity
2.2. Stakeholder Incongruence in Green Projects
2.3. Stakeholder Heterogeneity, Incongruence and Prioritization
3. Methods
3.1. Overview
3.2. Focus Group Session
3.3. Survey
3.4. Modified Prioritisation Tool
3.5. The Assessment Model
4. Analysis
4.1. Focus Group
Project Implementation Benefits, Barriers, and Challenges
4.2. The Questionnaire
4.3. Perceived Benefits of Green Technology Projects
4.4. FMEA–FST Assessment Model
5. Findings
5.1. Perceived Benefits
5.2. Outcome of the FMEA–FST Assessment Modelling
6. Discussion
7. Conclusions
7.1. Practical Implications
7.2. Theoretical Implications
7.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cleland, D. Project stakeholder management. Proj. Manag. J. 1986, 17, 36–44. [Google Scholar]
- Fliaster, A.; Kolloch, M. Implementation of green innovations—The impact of stakeholders and their network relations. R D Manag. 2017, 47, 689–700. [Google Scholar] [CrossRef]
- Ojiako, U.; Bashir, H.; Almansoori, H.H.B.; AlRaeesi, E.J.H.; Al Zarooni, H.A. Using ISO 14001 certification to signal sustainability equivalence: An examination of the critical success factors. Prod. Plan. Control 2025, 36, 1287–1314. [Google Scholar] [CrossRef]
- Maqbool, R.; Rashid, Y.; Ashfaq, S. Renewable energy project success: Internal versus external stakeholders’ satisfaction and influences of power-interest matrix. Sustain. Dev. 2022, 30, 1542–1561. [Google Scholar] [CrossRef]
- Zhao, X.; Hwang, B.-G.; Lee, H.N. Identifying critical leadership styles of project managers for green building projects. Int. J. Constr. Manag. 2016, 16, 150–160. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Zhang, X.; He, Q. Green transformational leadership and green innovation in megapro-jects: Is green knowledge sharing a missing link? Eng. Constr. Arch. Manag. 2025, 32, 194–213. [Google Scholar] [CrossRef]
- Olanipekun, A.O.; Xia, B.; Hon, C.; Hu, Y. Project owners’ motivation for delivering green building projects. J. Constr. Eng. Manag. 2017, 143, 04017068. [Google Scholar] [CrossRef]
- Onubi, H.O.; Yusof, N.; Hassan, A.S. How environmental performance influence client satisfaction on pro-jects that adopt green construction practices: The role of economic performance and client types. J. Clean. Prod. 2020, 272, 122763. [Google Scholar] [CrossRef]
- Shaukat, M.B.; Latif, K.F.; Sajjad, A.; Eweje, G. Revisiting the relationship between sustainable project manage-ment and project success: The moderating role of stakeholder engagement and team building. Sustain. Dev. 2022, 30, 58–75. [Google Scholar] [CrossRef]
- Kalkbrenner, B.J.; Roosen, J. Citizens’ willingness to participate in local renewable energy projects: The role of community and trust in Germany. Energy Res. Soc. Sci. 2016, 13, 60–70. [Google Scholar] [CrossRef]
- Barclay, N.; Klotz, L. Role of community participation for green stormwater infrastructure development. J. Environ. Manag. 2019, 251, 109620. [Google Scholar] [CrossRef]
- Cvijović, J.; Obradović, V.; Todorović, M. Stakeholder management and project sustainability—A throw of the dice. Sustainability 2021, 13, 9513. [Google Scholar] [CrossRef]
- Klaus-Rosińska, A.; Iwko, J. Stakeholder management—One of the clues of sustainable project manage-ment—As an underestimated factor of project success in small construction companies. Sustainability 2021, 13, 9877. [Google Scholar] [CrossRef]
- Turner, R.; Zolin, R. Forecasting success on large projects: Developing reliable scales to predict multiple perspectives by multiple stakeholders over multiple time frames. Proj. Manag. J. 2012, 43, 87–99. [Google Scholar] [CrossRef]
- Aaltonen, K.; Derakhshan, R.; Di Maddaloni, F.; Turner, R. Stakeholder engagement: Theoretical and meth-odological directions for project scholarship. Int. J. Proj. Manag. 2024, 42, 102649. [Google Scholar] [CrossRef]
- Gustavsson, T.K.; Hallin, A.; Dobers, P. Stakeholder involvement in distributed projects: A performative approach to large scale urban sustainable development projects and the case of Stockholm Royal Seaport. Constr. Manag. Econ. 2024, 42, 146–161. [Google Scholar] [CrossRef]
- Wu, H.; Feng, Z.; Sun, T.; Li, R.; Zhao, H. Efficiency, sustainability, and resilience a trifecta for a green eco-nomic recovery through natural resource markets. Resour. Policy 2024, 88, 104435. [Google Scholar] [CrossRef]
- Dao, V.; Langella, I.; Carbo, J. From green to sustainability: Information Technology and an integrated sustainability framework. J. Strateg. Inf. Syst. 2011, 20, 63–79. [Google Scholar] [CrossRef]
- Silvius, A.J.; Nedeski, S. Sustainability in IS projects: A case study. Commun. IIMA 2011, 11, 1. [Google Scholar] [CrossRef]
- Hwang, B.G.; Tan, J.S. Green building project management: Obstacles and solutions for sustainable devel-opment. Sustain. Dev. 2012, 20, 335–349. [Google Scholar] [CrossRef]
- Wang, Y.; Chong, D.; Liu, X. Evaluating the critical barriers to green construction technologies adoption in China. Sustainability 2021, 13, 6510. [Google Scholar] [CrossRef]
- Carlander, J.; Thollander, P. Barriers to implementation of energy-efficient technologies in building construction projects—Results from a Swedish case study. Resour. Environ. Sustain. 2023, 11, 100097. [Google Scholar] [CrossRef]
- Rasheed, A.S.; Booth, C.A.; Horry, R.E. Stakeholder perceptions of the benefits and barriers of implementing environmental management systems in the Maldivian construction industry. J. Hous. Built Environ. 2023, 38, 2821–2850. [Google Scholar] [CrossRef]
- Mok, K.Y.; Shen, G.Q.; Yang, R. Stakeholder complexity in large scale green building projects: A holistic analysis towards a better understanding. Eng. Constr. Archit. Manag. 2018, 25, 1454–1474. [Google Scholar] [CrossRef]
- Hall, J.; Bachor, V.; Matos, S. The impact of stakeholder heterogeneity on risk perceptions in technological innovation. Technovation 2014, 34, 410–419. [Google Scholar] [CrossRef]
- Mafongosi, K.N.; Awuzie, B.O.; Talukhaba, A.A. Exploring stakeholders’ perceptions of the green campus initiative in South African higher education institutions. J. Constr. Proj. Manag. Innov. 2018, 8, 2209–2218. [Google Scholar]
- Li, Y.; Rong, Y.; Ahmad, U.M.; Wang, X.; Zuo, J.; Mao, G. A comprehensive review on green buildings re-search: Bibliometric analysis during 1998–2018. Environ. Sci. Pollut. Res. 2021, 28, 46196–46214. [Google Scholar] [CrossRef]
- Li, H.; Jiang, T.; Mao, P.; Zheng, J.; Fang, Y.; Skitmore, M.; Wu, D. Stakeholder perceptions of sustainable infrastructure project delivery: A comparative analysis between guangdong, Hong Kong, and Macao. J. Environ. Public Heal. 2022, 2022, 5398706. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, M.; Sang, P.; Chen, P.-H.; Li, C. Stakeholder studies of green buildings: A literature review. J. Build. Eng. 2022, 54, 104667. [Google Scholar] [CrossRef]
- Ojiako, U.; Maseko, L.; Root, D.; Venkatachalam, S.; Marshall, A.; AlRaeesi, E.J.H.; Chipulu, M. Design phase collaborative risk management factors: A case study of a green rating system in South Africa. Eng. Constr. Arch. Manag. 2024. [Google Scholar] [CrossRef]
- Musarat, M.A.; Hameed, N.; Altaf, M.; Alaloul, W.S.; Al Salaheen, M.; Alawag, A.M. Digital transformation of the construction industry: A review. In Proceedings of the 2021 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 7–8 December 2021; IEEE: Piscataway, NJ, USA, 2023; pp. 897–902. [Google Scholar]
- Shafique, F.; Mollaoglu, S. Shared transformational leadership for green architecture engineering and construction project teams: A study of LEED projects. J. Constr. Eng. Manag. 2022, 148, 04022137. [Google Scholar] [CrossRef]
- Liang, X.; Yu, T.; Guo, L. Understanding stakeholders’ influence on project success with a new SNA method: A case study of the green retrofit in China. Sustainability 2017, 9, 1927. [Google Scholar] [CrossRef]
- Koc, K.; Kunkcu, H.; Gurgun, A.P. A life cycle risk management framework for green building project stakeholders. J. Manag. Eng. 2023, 39, 04023022. [Google Scholar] [CrossRef]
- Azadi, H.; Ho, P.; Hafni, E.; Zarafshani, K.; Witlox, F. Multi-stakeholder involvement and urban green space performance. J. Environ. Plan. Manag. 2011, 54, 785–811. [Google Scholar] [CrossRef]
- Bohari, A.A.M.; Skitmore, M.; Xia, B.; Teo, M.; Khalil, N. Key stakeholder values in encouraging green ori-entation of construction procurement. J. Clean. Prod. 2020, 270, 122246. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Caldera, S.; Maqsood, T.; Ryley, T. Using recycled construction and demolition waste products: A review of stakeholders’ perceptions, decisions, and motivations. Recycling 2020, 5, 31. [Google Scholar] [CrossRef]
- Yun, S.; Jung, W. Benchmarking sustainability practices use throughout industrial construction project de-livery. Sustainability 2017, 9, 1007. [Google Scholar] [CrossRef]
- Freeman, R. Strategic Management: A stakeholder Approach; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Achterkamp, M.C.; Vos, J.F. Investigating the use of the stakeholder notion in project management literature, a meta-analysis. Int. J. Proj. Manag. 2008, 26, 749–757. [Google Scholar] [CrossRef]
- Littau, P.; Jujagiri, N.J.; Adlbrecht, G. 25 years of stakeholder theory in project management literature (1984–2009). Proj. Manag. J. 2010, 41, 17–29. [Google Scholar] [CrossRef]
- Fineman, S.; Clarke, K. Green stakeholders: Industry interpretations and response. J. Manag. Stud. 1996, 33, 715–741. [Google Scholar] [CrossRef]
- Aaltonen, K.; Kujala, J. Towards an improved understanding of project stakeholder landscapes. Int. J. Proj. Manag. 2016, 34, 1537–1552. [Google Scholar] [CrossRef]
- Rodrigues, T.d.A.; Ojiako, U.; Marshall, A.; Mota, C.M.d.M.; Dweiri, F.T.; Chipulu, M.; Ika, L.; AlRaeesi, E.J.H. Risk factor prioritization in infrastructure handover to operations. Int. J. Proj. Manag. 2024, 42, 102558. [Google Scholar] [CrossRef]
- Zwikael, O.; Meredith, J.R. Who’s who in the project zoo? The ten core project roles. Int. J. Oper. Prod. Manag. 2018, 38, 474–492. [Google Scholar] [CrossRef]
- Scheepers, H.; McLoughlin, S.; Wijesinghe, R. Aligning stakeholders perceptions of project performance: The contribution of Business Realisation Management. Int. J. Proj. Manag. 2022, 40, 471–480. [Google Scholar] [CrossRef]
- Turi, J.A.; Al Kharusi, S.; Khwaja, M.G.; Razzak, M.R.; Bashir, S. Requirement engineering and project performance: Mediating effect of communication effectiveness, change readiness, stakeholder engagement and moderating effect of team cohesion. Eng. Constr. Arch. Manag. 2024, in press. [Google Scholar] [CrossRef]
- Ali, A.; Ma, L.; Shahzad, M.; Musonda, J.; Hussain, S. How various stakeholder pressure influences mega-project sustainable performance through corporate social responsibility and green competitive advantage. Environ. Sci. Pollut. Res. 2024, 31, 67244–67258. [Google Scholar] [CrossRef] [PubMed]
- Harrington, T.S.; Srai, J.S.; Kumar, M.; Wohlrab, J. “Identifying Design Criteria for Urban System ‘Last-Mile’ Solutions—A Multi-stakeholder Perspective. ” Prod. Plan. Control. 2016, 27, 456–476. [Google Scholar] [CrossRef]
- Nasiritousi, N.; Faber, H. Legitimacy under institutional complexity: Mapping stakeholder perceptions of legitimate institutions and their sources of legitimacy in global renewable energy governance. Rev. Int. Stud. 2021, 47, 377–398. [Google Scholar] [CrossRef]
- Baah, C.; Afum, E.; Agyabeng-Mensah, Y.; Agyeman, D.O. Stakeholder influence on adoption of circular economy principles: Measuring implications for satisfaction and green legitimacy. Circ. Econ. Sustain. 2022, 2, 91–111. [Google Scholar] [CrossRef]
- Allen, M. Legitimacy, Stakeholders, and Strategic Communication Efforts. In Strategic Communication for Sustainable Organizations; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Linderman, K.; Schroeder, R. The role of project and organizational context in managing high-tech R&D projects. Prod. Oper. Manag. 2015, 24, 560–586. [Google Scholar]
- Browning, T.R. On the alignment of the purposes and views of process models in project management. J. Oper. Manag. 2010, 28, 316–332. [Google Scholar] [CrossRef]
- Battistella, C.; Bortolotti, T.; Boscari, S.; Nonino, F.; Palombi, G. The impact of cultural dimensions on project management performance. Int. J. Organ. Anal. 2024, 32, 108–130. [Google Scholar] [CrossRef]
- Muthusamy, K.; Adnan, R.C. The relationship between national culture and organizational culture in determining the project success factors in the perception of project professionals in Malaysia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 498, No. 1; p. 012093. [Google Scholar]
- Unger-Aviram, E.; Zwikael, O.; Restubog, S. Revisiting goals, feedback, recognition, and performance suc-cess: The case of project teams. Group Organ. Manag. 2013, 38, 570–600. [Google Scholar] [CrossRef]
- Qazi, A. Exploring the impact of global competitiveness pillars on sustainable development. Environ. Impact Assess. Rev. 2024, 105, 107404. [Google Scholar] [CrossRef]
- Kristof-Brown, A.L.; Stevens, C.K. Goal congruence in project teams: Does the fit between members’ per-sonal mastery and performance goals matter? J. Appl. Psychol. 2001, 86, 1083–1095. [Google Scholar] [CrossRef]
- Mosannenzadeh, F.; Di Nucci, M.R.; Vettorato, D. Identifying and prioritizing barriers to implementation of smart energy city projects in Europe: An empirical approach. Energy Policy 2017, 105, 191–201. [Google Scholar] [CrossRef]
- Chen, Z.; Agapiou, A.; Li, H. A benefits prioritization analysis on adopting BIM systems against major chal-lenges in megaproject delivery. Front. Built Environ. 2020, 6, 26. [Google Scholar] [CrossRef]
- Creswell, J.; Plano Clark, V. Designing and Conducting Mixed Methods Research; Sage Publications: Thousand Oaks, CA, USA, 2007. [Google Scholar]
- Cameron, R.; Sankaran, S. Mixed methods research design: Well beyond the notion of triangulation. In Novel Approaches to Organizational Project Management Research: Translational and Transformational; Drouin, N., Müller, R., Sankaran, S., Eds.; Copenhagen Business School Press: Copenhagen, Denmark, 2013. [Google Scholar]
- Al-Mhdawi, M.K.S.; Brito, M.P.; Onggo, B.S.; Rashid, H.A. Analyzing the impact of the COVID-19 pandemic risks on construction projects in developing countries: Case of Iraq. In Proceedings of the Construction Research Congress 2022, Arlington, VA, USA, 9–12 March 2022; pp. 1013–1023. [Google Scholar]
- Al-Mhdawi, M.K.S.; Brito, M.; Onggo, B.S.; Qazi, A.; O’cOnnor, A.; Ayyub, B.M.; Chan, A.P.C. A structural equation model to analyze the effects of COVID-19 pandemic risks on project success: Contractors’ perspectives. ASCE J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2023, 9, 05023003. [Google Scholar] [CrossRef]
- Jiang, J.; Klein, G.; Müller, R. Mixed-methods research for Project Management Journal. Proj. Manament J. 2022, 53, 215–218. [Google Scholar] [CrossRef]
- Guest, G.; Namey, E.; McKenna, K. How many focus groups are enough? Building an evidence base for non-probability sample sizes. Field Methods 2016, 29, 3–22. [Google Scholar] [CrossRef]
- Hennink, M.M.; Kaiser, B.N.; Weber, M.B. What influences saturation? Estimating sample sizes in focus group research. Qual. Health Res. 2019, 29, 1483–1496. [Google Scholar] [CrossRef]
- Krueger, R.A.; Casey, M.A. Focus Groups: A Practical Guide for Applied Research, 4th ed.; Sage Publications Inc.: Thousand Oaks, CA, USA, 2000. [Google Scholar]
- Mendes de Almeida, P.F. A review of group discussion methodology. Eur. Res. 1980, 8, 114–120. [Google Scholar]
- Fern, E.F. The use of focus groups for idea generation: The effects of group size, acquaintanceship and moderation on response quantity and quality. J. Mark. Res. 1982, 19, 1–13. [Google Scholar] [CrossRef]
- Creswell, J. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches; SAGE Publications: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Krippendorff, K. Content Analysis: An Introduction to Its Methodology, 3rd ed.; SAGE: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Ojiako, U.; AlRaeesi, E.J.H.; Chipulu, M.; Marshall, A.; Bashir, H. Innovation readiness in public sector service delivery: An exploration. Prod. Plan. Control. 2024, 35, 437–460. [Google Scholar] [CrossRef]
- Hatton, S. Choosing the Right Prioritization Method. In Proceedings of the 19th Australian Conference on Software Engineering (ASWEC 2008), Perth, Australia, 25–28 March 2008; pp. 517–526. [Google Scholar]
- Elkadry, H.; Shamsuzzaman, M.; Piya, S.; Haridy, S.; Bashir, H.; Khadem, M. A fuzzy Delphi-AHP frame-work for identifying and prioritizing factors affecting students’ satisfaction in public high schools: Insights from the United Arab Emirates. J. Eng. Res. 2025, 13, 596–610. [Google Scholar] [CrossRef]
- Carbone, T.A.; Tippett, D.D. Project Risk Management Using the Project Risk FMEA. Eng. Manag. J. 2004, 16, 28–35. [Google Scholar] [CrossRef]
- Bahrami, M.; Bazzaz, D.H.; Sajjadi, S.M. Innovation and Improvements in Project Implementation and Management; Using FMEA Technique. In Proceedings of the 1st International Conference on Leadership, Technology and Innovation Management, Rio de Janeiro, Brazil, 1 May 2012; pp. 418–425. [Google Scholar] [CrossRef]
- Sultan, L.; Haq, J. Risk Analysis Method: FMEA/FMECA in the Organizations. Int. J. Basic Appl. Sci. 2011, 11, 74–82. [Google Scholar]
- Sayareh, J.; Ahouei, V. Failure Mode and Effects Analysis (FMEA) for Reducing the Delays of Cargo Handling Operations in Marine Bulk Terminals. J. Marit. Res. 2013, 10, 43–50. [Google Scholar]
- Afshari, H.; Issa, M.; Radwan, A. Using failure mode and effects analysis to evaluate barriers to the greening of existing buildings using the Leadership in Energy and Environmental Design rating system. J. Clean. Prod. 2016, 127, 195–203. [Google Scholar] [CrossRef]
- Xu, Z.; Lee, S.; Albani, D.; Dobbins, D.; Ellis, R.J.; Biswas, T.; Machtay, M.; Podder, T.K. Evaluating radiotherapy treatment delay using Failure Mode and Effects Analysis (FMEA). Radiother. Oncol. 2019, 137, 102–109. [Google Scholar] [CrossRef]
- Lee, D.; Lim, H.; Lee, D.; Cho, H.; Kang, K.-I. Assessment of Delay Factors for Structural Frameworks in Free-from Tall Buildings Using FMEA. Int. J. Concr. Struct. Mater. 2019, 13, 1–11. [Google Scholar] [CrossRef]
- Willy, P.; Luis, M.; Frédérick, B. Risks and Resilience of Collaborative Networks. In Proceedings of the 16th IFIP WG 5.5 Working Conference on Virtual Enterprises, Albi, France, 5–7 October 2015. [Google Scholar]
- Mariajayaprakash, A.; Senthilvelan, T.; Gnanadass, R. Optimization of process parameters through fuzzy logic and genetic algorithm–A case study in a process industry. Appl. Soft Comput. 2015, 30, 94–103. [Google Scholar] [CrossRef]
- John, K.; Steven, M.; Drummond, G. Value Management of Construction Projects, 2nd ed.; John Wiley and Sons Ltd.: Chichester, UK, 2015. [Google Scholar]
- Gunjan, J.; Himanshu, J. FMEA and Alternatives v/s Enhanced Risk Assessment Mechanism. Int. J. Comput. Appl. 2014, 93, 33–37. [Google Scholar] [CrossRef]
- Vahdani, B.; Salimi, M.; Charkhchian, M. A new FMEA method by integrating fuzzy belief structure and TOPSIS to improve risk evaluation process. Int. J. Adv. Manuf. Technol. 2015, 77, 357–368. [Google Scholar] [CrossRef]
- Işik, Z.; Aladağ, H. A fuzzy AHP model to assess sustainable performance of the construction industry from urban regeneration perspective. J. Civ. Eng. Manag. 2017, 23, 499–509. [Google Scholar] [CrossRef]
- Al-Mhdawi, M.; O’COnnor, A.; Qazi, A. Structural equation modeling and Fuzzy set theory: Advancing risk assessment in oil and gas construction projects. Environ. Impact Assess. Rev. 2024, 109, 107622. [Google Scholar] [CrossRef]
- Zadeh, L. Fuzzy Sets. Inf. Control. 1965, 8, 338–351. [Google Scholar] [CrossRef]
- Petrovic, D.; Tanasijevic, M.; Stojadinovic, S.; Ivaz, J.; Stojkovic, P. Fuzzy Model for Risk Assessment of Machinery Failures. Symmetry 2000, 12, 525. [Google Scholar] [CrossRef]
- Kineber, A.F.; Othman, I.; Oke, A.E.; Chileshe, N.; Buniya, M.K. Impact of value management on building projects success: Structural equation modeling approach. J. Constr. Eng. Manag. 2021, 147, 04021011. [Google Scholar] [CrossRef]
- Doumbouya, L.; Gao, G.; Guan, C. Adoption of the Building Information Modeling (BIM) for construction project effectiveness: The review of BIM benefits. Am. J. Civ. Eng. Archit. 2016, 4, 74–79. [Google Scholar]
- Yildiz, Z.; Baba, A.F. Evaluation of Student Performance in Laboratory Applications using Fuzzy Decision Support System Model. In Proceeding of the IEEE Global Engineering Education Conference, Istanbul, Turkey, 3–5 April 2014; pp. 1023–1027. [Google Scholar]
- Mamdani, E.H.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 1975, 7, 1–13. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, 15, 116–132. [Google Scholar] [CrossRef]
- Nieto-Morote, A.; Ruz-Vila, F. A fuzzy approach to construction project risk assessment. Int. J. Proj. Manag. 2011, 29, 220–231. [Google Scholar] [CrossRef]
- Al-Mhdawi, M.K.S.; Brito, M.; Onggo, B.S.; Qazi, A.; O’cOnnor, A.; Namian, M. Construction risk manage-ment in Iraq during the COVID-19 pandemic: Challenges to implementation and efficacy of practices. J. Constr. Eng. Manag. 2023, 149, 04023086. [Google Scholar] [CrossRef]
- Al-Mhdawi, M.K.S.; Brito, M.; Onggo, B.S.; Qazi, A.; O’COnnor, A. COVID-19 emerging risk assessment for the construction industry of developing countries: Evidence from Iraq. Int. J. Constr. Manag. 2024, 24, 693–706. [Google Scholar] [CrossRef]
- Ross, T. Fuzzy Logic with Engineering Applications; McGraw-Hill: New York, NY, USA, 1995. [Google Scholar]
- Negnevitsky, M. Artificial Intelligence: A Guide to Intelligent Systems; Pearson Education: London, UK, 2005. [Google Scholar]
- Khan, N.R.; Rahies Khan, M.; Ahmad, W.; Sohail Jafar, R.M. Barriers and challenges in green concepts implementation. In Entrepreneurship and Green Finance Practices: Avenues for Sustainable Business Start-Ups in Asia; Emerald Publishing Limited: Manchester, UK, 2003; pp. 141–161. [Google Scholar]
- Sami Ur Rehman, M.; Shafiq, M.T.; Afzal, M. Impact of COVID-19 on project performance in the UAE construction industry. J. Eng. Des. Technol. 2022, 20, 245–266. [Google Scholar] [CrossRef]
- Waqar, A.; Othman, I.; Saad, N.; Azab, M.; Khan, A.M. BIM in green building: Enhancing sustainability in the small construction project. Clean. Environ. Syst. 2023, 11, 100149. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Pearce, A.R. Green construction: Contractor experiences, expectations, and perceptions. J. Green Build. 2007, 2, 106–122. [Google Scholar] [CrossRef]
- Magano, J.; Silvius, G.; e Silva, C.S.; Leite, Â. The contribution of project management to a more sustainable society: Exploring the perception of project managers. Proj. Leadersh. Soc. 2021, 2, 100020. [Google Scholar] [CrossRef]
- Office of Government Commerce (OGC). Managing Successful Projects with PRINCE2; The Stationery Office: Norwich, UK, 2009. [Google Scholar]
- Guo, M.; Wang, J.; Liu, H.; Zhai, H. Analyzing the role of digital technology to enhance firms’ green inno-vation resilience: A moderated mediation model. Int. J. Prod. Econ. 2025, 288, 109720. [Google Scholar] [CrossRef]
- Guo, R.; Lv, S.; Liao, T.; Xi, F.; Zhang, J.; Zuo, X.; Cao, X.; Feng, Z.; Zhang, Y. Classifying green technologies for sustainable innovation and investment. Resour. Conserv. Recycl. 2020, 153, 104580. [Google Scholar] [CrossRef]
- AlRaeesi, E.J.H.; Ojiako, U. Examination of legal perspective of public policy implementation on construction projects arbitration. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2021, 13, 03721002. [Google Scholar] [CrossRef]
- Tabbara, L.M.; Abdul-Malak, M.-A.U.; Kishida, T.; El Fadel, M. Law–Contract Interaction in Construction Disputes: Identification, Examples, and Strategic Insights. Leg. Aff. Disput. Resolut. Eng. Constr. 2025, 17, 05025008. [Google Scholar] [CrossRef]
- Svensson, G. The interactive interface of service quality: A conceptual framework. Eur. Bus. Rev. 2006, 18, 243–257. [Google Scholar] [CrossRef]
- Wenzel, S.; Jessen, U. The integration of 3-D visualization into the simulation-based planning process of logistics systems. Simulation 2001, 77, 114–127. [Google Scholar] [CrossRef]
- Liu, D.; Pan, Y.; Li, L. Logistics Engineering Simulation Using Computer 3D Modeling Technology. J. Phys. Conf. Ser. 2021, 2143, 012018. [Google Scholar] [CrossRef]
- Besten, M.D.; Amrit, C.; Capiluppi, A.; Robles, G. Collaboration and innovation dynamics in software ecosystems: A technology management research perspective. IEEE Trans. Eng. Manag. 2020, 68, 1532–1537. [Google Scholar] [CrossRef]
- Rodríguez-Espíndola, O.; Chowdhury, S.; Dey, P.K.; Albores, P.; Emrouznejad, A. Analysis of the adoption of emergent technologies for risk management in the era of digital manufacturing. Technol. Forecast. Soc. Chang. 2022, 178, 121562. [Google Scholar] [CrossRef]
- Hwang, B.G.; Ng, W.J. Project management knowledge and skills for green construction: Overcoming challenges. Int. J. Proj. Manag. 2013, 31, 272–284. [Google Scholar] [CrossRef]
- Hwang, B.-G.; Shan, M.; Phua, H.; Chi, S. An exploratory analysis of risks in green residential building construction projects: The case of Singapore. Sustainability 2017, 9, 1116. [Google Scholar] [CrossRef]
- Hwang, B.G.; Zhao, X.; See, Y.L.; Zhong, Y. Addressing risks in green retrofit projects: The case of Singapore. Proj. Manag. J. 2015, 46, 76–89. [Google Scholar] [CrossRef]
- Ikejemba, E.C.; Mpuan, P.B.; Schuur, P.C.; Van Hillegersberg, J. The empirical reality & sustainable man-agement failures of renewable energy projects in Sub-Saharan Africa (part 1 of 2). Renew. Energy 2017, 102, 234–240. [Google Scholar]
- Köhler, H. Learning from a failed project–challenges of implementing ‘green’ technology in a real world setting. Scott. Geogr. J. 2018, 134, 158–171. [Google Scholar] [CrossRef]
- Venkataraman, V.; Cheng, J.C.P. Critical success and failure factors for managing green building projects. J. Arch. Eng. 2018, 24, 04018025. [Google Scholar] [CrossRef]
- Ahmed, R.; Philbin, S.P. It takes more than the project manager: The importance of senior management support for successful social sector projects. Proj. Leadersh. Soc. 2022, 3, 100042. [Google Scholar] [CrossRef]
- Wiener, M.; Cram, W.A.; Remus, U.; Mähring, M. Control-style choices and performance impacts: How should senior IS managers enact control over uncertain IS projects? Decis. Support Syst. 2023, 167, 113915. [Google Scholar] [CrossRef]
- Sortheix, F.M.; Lönnqvist, J. Person-group value congruence and subjective well-being in students from Argentina, Bulgaria and Finland: The role of interpersonal relationships. J. Community Appl. Soc. Psychol. 2015, 25, 34–48. [Google Scholar] [CrossRef]
- Humberg, S.; Nestler, S.; Back, M.D. Response surface analysis in personality and social psychology: Checklist and clarifications for the case of congruence hypotheses. Soc. Psychol. Pers. Sci. 2019, 10, 409–419. [Google Scholar] [CrossRef]
- Maylor, H.; Meredith, J.; Söderlund, J.; Browning, T. Old theories, new contexts: Extending operations management theories to projects. Int. J. Oper. Prod. Manag. 2018, 38, 1274–1288. [Google Scholar] [CrossRef]
- Brauner, S.; Lahnaoui, A.; Agbo, S.; Böschen, S.; Kuckshinrichs, W. Towards green hydrogen? A comparison of German and African visions and expectations in the context of the H2Atlas-Africa project. Energy Strat. Rev. 2023, 50, 101204. [Google Scholar] [CrossRef]
- Jørgensen, M.S.; Jørgensen, U. Green technology foresight of high technology: A social shaping of technology approach to the analysis of hopes and hypes. Technol. Anal. Strat. Manag. 2009, 21, 363–379. [Google Scholar] [CrossRef]
- Manzoor, B.; Antwi-Afari, M.F.; Alotaibi, K.S. Green buildings and digital technologies: A pathway to sustainable development. Green Technol. Sustain. 2025, 3, 100243. [Google Scholar] [CrossRef]






| Educational Background Level | Assigned Weight |
|---|---|
| BSc degree | 1 |
| MSc degree | 1.25 |
| PhD degree | 1.5 |
| Years of Experience | Assigned Weight |
|---|---|
| 1–5 years | 1 |
| 6–15 years | 1.25 |
| 16–25 years | 1.5 |
| 25 years | 1.75 |
| Project Role | Number | Percentage | Av. Years of Experience | Educational Qualification | ||
|---|---|---|---|---|---|---|
| Bachelors | Masters | Doctorate | ||||
| Solution architect | 7 | 46.66% | 21.3 | 57.41% | 14.28% | 28.57% |
| Project manager | 5 | 33.34% | 17.8 | 80% | 20% | 0% |
| Contractor | 3 | 20.0% | 20.4 | 66.67% | 33.33% | 0% |
| No. | Guiding Questions |
|---|---|
| 1 | What do you think are the benefits of the epayments project? |
| 2 | What do you think are the key barriers and challenges hindering the efficient implementation of the epayments project? |
| Outputs of the Focus Group’s Sessions | |
|---|---|
| Project implementation benefits | |
| B01 | Enhance design capability |
| B02 | Enhance project scheduling/sequencing |
| B03 | Task clash detection |
| B04 | Stimulate client usage |
| B05 | Reduce disputes, claims and lawsuits |
| B06 | Enhance productivity and technical competence of professional practice |
| B07 | Enhance resource management and reduce environmental impact across the value chain |
| B08 | Enhance project collaboration and communication |
| B09 | Enhance health and safety performance |
| B10 | Mitigate risks and reduce costs |
| B11 | Streamline systems maintenance (i.e., changing, modifying, and updating relevant systems software) |
| Project implementation barriers and challenges | |
| C01 | Lack of expertise in technology solutions (specific to epayments) |
| C02 | Lack of client demand |
| C03 | Lack of relevant related software codes and standards |
| C04 | High cost of implementation |
| C05 | Lack of support from senior management |
| C06 | Lack of relevant training |
| C07 | Potential less benefit for small sized and less complex projects |
| C08 | Poor communication between stakeholders |
| C09 | Incompatibility with industry and professional standard cost planning |
| C10 | Poor project management culture. |
| Project Benefits | Solution Architects | Contractors | Project Managers | |||
|---|---|---|---|---|---|---|
| Project Benefits Perception Score 1 | Project Benefits Rank | Project Benefits Perception Score 1 | Project Benefits Rank | Project Benefits Perception Score 1 | Project Benefits Rank | |
| B01 | 62.0 | 1 | 19.0 | 8 | 28.0 | 9 |
| B02 | 35.0 | 4 | 32.0 | 6 | 53.0 | 5 |
| B03 | 39.0 | 3 | 43.0 | 4 | 79.0 | 1 |
| B04 | 29.0 | 5 | 12.0 | 11 | 24.0 | 10 |
| B05 | 26.0 | 7 | 48.0 | 2 | 68.0 | 3 |
| B06 | 17.0 | 10 | 53.0 | 1 | 70.0 | 2 |
| B07 | 24.0 | 8 | 44.0 | 3 | 57.0 | 4 |
| B08 | 13.0 | 11 | 18.0 | 9 | 15.0 | 11 |
| B09 | 42.0 | 2 | 25.0 | 7 | 49.0 | 6 |
| B10 | 21.0 | 9 | 16.0 | 10 | 42.0 | 8 |
| B11 | 27.0 | 6 | 35.0 | 5 | 38.0 | 7 |
| Code | L | S | D | RPN | |||||
|---|---|---|---|---|---|---|---|---|---|
| Linguistic Variable | Crisp Value | Linguistic Variable | Crisp Value | Linguistic Variable | Crisp Value | L × S × D | Linguistic Variable | Rank | |
| C01 | H | 4.0 | H | 4.0 | L | 5.0 | 80.0 | Significant | 1 |
| C02 | V.H | 5.0 | H | 4.0 | M | 3.0 | 60.0 | Significant | 4 |
| C03 | H | 4.0 | H | 4.0 | M | 3.0 | 48.0 | Major | 5 |
| C04 | H | 4.0 | V.H | 5.0 | M | 3.0 | 60.0 | Significant | 4 |
| C05 | V.H | 5.0 | V.H | 5.0 | M | 3.0 | 75.0 | Significant | 2 |
| C06 | H | 4.0 | V.H | 5.0 | H | 2.0 | 40.0 | Major | 7 |
| C07 | V.H | 5.0 | M | 3.0 | M | 3.0 | 45.0 | Moderate | 6 |
| C08 | H | 4.0 | V.H | 5.0 | M | 3.0 | 60.0 | Significant | 4 |
| C09 | H | 4.0 | H | 4.0 | H | 4.0 | 64.0 | Significant | 3 |
| C10 | H | 4.0 | H | 4.0 | L | 2.0 | 32.0 | Moderate | 8 |
| Project Implementation Barriers | L | S | D | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Linguistic Variable | Triangular Number | Supporting Interval | Linguistic Variable | Triangular Number | Supporting Interval | Linguistic Variable | Triangular Number | Supporting Interval | |
| C01 | H | (3,4,5) | 3 ≤ x ≤ 5 | H | (3,4,5) | 3 ≤ x ≤ 5 | L | (1,2,3) | 1 ≤ x ≤ 3 |
| C02 | V.H | (4,5) | 4 ≤ x ≤ 5 | H | (3,4,5) | 3 ≤ x ≤ 5 | M | (2,3,4) | 2 ≤ x ≤ 4 |
| C03 | H | (3,4,5) | 3 ≤ x ≤ 5 | H | (3,4,5) | 3 ≤ x ≤ 5 | H | (3,4,5) | 3 ≤ x ≤ 5 |
| C04 | H | (3,4,5) | 3 ≤ x ≤ 5 | V.H | (4,5) | 4 ≤ x ≤ 5 | M | (2,3,4) | 2 ≤ x ≤ 4 |
| C05 | V.H | (4,5) | 4 ≤ x ≤ 5 | V.H | (4,5) | 4 ≤ x ≤ 5 | M | (2,3,4) | 2 ≤ x ≤ 4 |
| C06 | H | (3,4,5) | 3 ≤ x ≤ 5 | V.H | (4,5) | 4 ≤ x ≤ 5 | H | (3,4,5) | 3 ≤ x ≤ 5 |
| C07 | V.H | (4,5) | 4 ≤ x ≤ 5 | M | (2,3,4) | 2 ≤ x ≤ 4 | M | (2,3,4) | 2 ≤ x ≤ 4 |
| C08 | H | (3,4,5) | 3 ≤ x ≤ 5 | V.H | (4,5) | 4 ≤ x ≤ 5 | M | (2,3,4) | 2 ≤ x ≤ 4 |
| C09 | H | (3,4,5) | 3 ≤ x ≤ 5 | H | (3,4,5) | 3 ≤ x ≤ 5 | H | (3,4,5) | 3 ≤ x ≤ 5 |
| C10 | H | (3,4,5) | 3 ≤ x ≤ 5 | H | (3,4,5) | 3 ≤ x ≤ 5 | L | (1,2,3) | 1 ≤ x ≤ 3 |
| Project Implementation Barriers | F-RPN | Rank |
|---|---|---|
| C01 | 80.2 | 4 |
| C02 | 83.9 | 2 |
| C03 | 56.7 | 9 |
| C04 | 83.1 | 3 |
| C05 | 89.8 | 1 |
| C06 | 71.7 | 7 |
| C07 | 53.5 | 10 |
| C08 | 75.0 | 6 |
| C09 | 74.5 | 5 |
| C10 | 63.0 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Naqbi, K.K.M.; Ojiako, U.; Al-Mhdawi, M.K.S.; Chipulu, M.; Dweiri, F.T. How Different Stakeholders Perceive Benefits, Challenges, and Barriers in the Implementation of Green Technology Projects. Sustainability 2025, 17, 9849. https://doi.org/10.3390/su17219849
Al Naqbi KKM, Ojiako U, Al-Mhdawi MKS, Chipulu M, Dweiri FT. How Different Stakeholders Perceive Benefits, Challenges, and Barriers in the Implementation of Green Technology Projects. Sustainability. 2025; 17(21):9849. https://doi.org/10.3390/su17219849
Chicago/Turabian StyleAl Naqbi, Khalid Khalfan Mohamed, Udechukwu Ojiako, M. K. S. Al-Mhdawi, Maxwell Chipulu, and Fikri T. Dweiri. 2025. "How Different Stakeholders Perceive Benefits, Challenges, and Barriers in the Implementation of Green Technology Projects" Sustainability 17, no. 21: 9849. https://doi.org/10.3390/su17219849
APA StyleAl Naqbi, K. K. M., Ojiako, U., Al-Mhdawi, M. K. S., Chipulu, M., & Dweiri, F. T. (2025). How Different Stakeholders Perceive Benefits, Challenges, and Barriers in the Implementation of Green Technology Projects. Sustainability, 17(21), 9849. https://doi.org/10.3390/su17219849

