Factors Explaining Municipal Climate Adaptation: Insights from Two Assessments of over 100 German Cities in 2018 and 2022
Abstract
1. Introduction
1.1. Assessing the State of Climate Adaptation in Cities
1.2. Influential Factors on Municipal Climate Adaptation
1.3. Aim of the Study
- To what extent do various factors contribute to the overall findings from two climate adaptation assessment approaches?
- How do different factors influence the individual dimensions of the two assessment approaches?
- How do these factors explain the temporal variations in results for assessing municipal climate adaptation in 2018 and 2022?
2. Materials and Methods
2.1. City Sample
2.2. Two Assessment Approaches
2.3. Influencing Factors of Municipal Climate Adaptation
| City Size & Scale | Land Use & Compactness | Socio-Economics | Regional Climate & Exposure to Extreme Weather | ||
|---|---|---|---|---|---|
| Eigenvalue | 5.185 | 2.637 | 2.416 | 2.304 | |
| Variables (details in Table 2) | PC1 | PC2 | PC3 | PC4 | Communality h |
| City area | 0.932 | 0.065 | −0.032 | 0.157 | 0.898 |
| Inhabitants | 0.852 | 0.383 | 0.123 | 0.113 | 0.900 |
| Population density | 0.310 | 0.834 | 0.283 | 0.086 | 0.880 |
| GDP per capita | −0.057 | −0.072 | 0.778 | 0.100 | 0.624 |
| Trade tax per capita | 0.031 | 0.226 | 0.789 | 0.105 | 0.686 |
| Number of scientific institutions | 0.852 | 0.237 | 0.207 | 0.170 | 0.854 |
| Green voters [%] | 0.262 | 0.196 | 0.687 | −0.168 | 0.607 |
| Future development score | −0.110 | 0.050 | −0.885 | −0.015 | 0.798 |
| Built-up area [%] | 0.052 | 0.902 | −0.051 | 0.055 | 0.821 |
| Traffic area [%] | 0.097 | 0.868 | 0.195 | 0.243 | 0.860 |
| Green space [%] | 0.005 | −0.836 | 0.059 | 0.017 | 0.702 |
| Mean temperature in August | 0.007 | 0.046 | 0.231 | 0.854 | 0.785 |
| Drought index | 0.014 | 0.023 | 0.028 | −0.855 | 0.732 |
| Minimum mortality temperature (MMT) | 0.112 | 0.123 | −0.074 | 0.769 | 0.624 |
| Number of heavy rain events | 0.750 | −0.023 | 0.295 | −0.085 | 0.657 |
| Mean heavy precipitation total | −0.103 | −0.121 | −0.002 | −0.708 | 0.526 |
| Mean share of rainfall-affected area in the city | 0.751 | −0.070 | −0.129 | −0.016 | 0.586 |
| Explained variance | 73.774 | ||||
2.4. Statistical Analyses (Principal Component and Regression Analyses)
3. Results
3.1. Comparison of the Results of the Three Assessments (ACP2018, ACP2022, AR2018)
3.2. Results of the Principal Component Analysis (PCA)
3.3. Regression Analyses
3.3.1. AR2018 Versus ACP2018—Total Scores
3.3.2. AR2018 Versus ACP2018—Single Dimensions
3.3.3. ACP2018 Versus ACP2022
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PCA | Principal component analysis |
| ACP | Adaptation commitment and plan approach |
| AR | Adaptation readiness approach |
| CatRaRE | Catalogues of heavy precipitation events |
| DWD | German Weather Service |
| GDP | Gross domestic product |
| MMT | Minimum Mortality Temperature |
Appendix A
| Name of the Independent Variable | Brief Description and Calculation | Data Source | Examples of Literature Using (Similar) Variables |
|---|---|---|---|
| Institutional domain | |||
| Adaptation at the federal state level | Adaptation performance in Germany’s 16 federal states according to [79] | [79] | [6,55] |
| County affiliation | Is the city affiliated with a county? | Federal and State Statistical Offices 1, data from 2017 | [6] |
| Green voters | Votes for the Green Party in the 2017 election of the German Bundestag | Federal and State Statistical Offices 1, data from 2017 | [48,59] |
| Socio-economic domain | |||
| City area | Administrative area of the city | German Federal Statistical Office 2, data from 2017 | |
| Inhabitants | Number of people living in the city as of 31 December 2017 | German Federal Statistical Office 2, data from 2017 | [4,27,45,49,54,89] |
| Population density | Number of people as of 31 Dec. 2017 per km2 of the total city area | Federal and state statistical offices 1, data from 2017 | [27,54] |
| Population density in built-up areas | Number of people as of 31 Dec. 2017 per km2 of the built-up area according to the Urban Atlas3 | Own calculation | |
| GDP per capita | Gross domestic product (GDP) per capita in the municipality as of 2016 | Federal and state statistical offices 1, data from 2016 | [54] |
| Debts per capita | Municipal debt per capita as of 2016 | Federal and state statistical offices 1, data from 2016 | [48] |
| Trade tax per capita | Municipal trade tax per capita as of 2015 | Federal and state statistical offices 1, data from 2015 | [48] |
| Scientific institutions | Number of (applied) universities and research institutes | Own search (data provided by Leibniz Institute for Research on Society and Space (IRS)) | Access to external expertise [90] |
| Future development score | Index for assessing the future development potential of cities and counties based on 29 socio-economic indicators and their dynamics; the best city receives the value 1 [80] | Ref. [80], data from 2019 | Similar indices such as the Smart City Index: [54] |
| World Heritage | Has the (inner) city been declared a World Heritage site? | Own search (data provided by Leibniz Institute for Research on Society and Space (IRS)) | [91] |
| Environmental domain | |||
| Built-up area | Share of municipality’s territory that was built-up in 2018 | Urban atlas 3 and own calculation in ArcGIS | |
| Traffic area | Share of the municipality’s territory that was taken up by roads and traffic infrastructure in 2018 | Urban atlas 3 and own calculation in ArcGIS | |
| Green space | Share of the municipality’s territory taken up by green space in 2018 | Urban atlas 3 and own calculation in ArcGIS | [54] |
| Water space | Share of the municipality’s territory take up by water in 2018 | Urban atlas 3 and own calculation in ArcGIS | |
| Tmean August | Areal mean of the monthly temperature in August from 2000 to 2020 | Ref. [92] and own calculation in ArcGIS | [54] |
| Drought index | Areal mean of the annual de Martonne drought index from 2000 to 2020 | Ref. [93] and own calculation in ArcGIS | Average change in drought over the last 10 years: [55] |
| MMT | Minimum Mortality Temperature, i.e., the temperature at which the mortality rate is the lowest as estimated in a non-linear regression by [81] | Ref. [81] for cities >100,000 inhabitants and data provision by personal communication for cities <100,000 inhabitants | Average change in temperature over the last 10 years: [55] |
| Number of heavy rain events | Number of heavy rain events between 2000 and 2020 that triggered a severe weather warning (warning level ≥ 3), based on [82,83] | Personal communication with DWD, analysis based on the CatRaRE-catalogue [82,83] | Experience with severe weather and hazard events: [27,49,54,61,62,94] |
| Mean heavy precipitation total | Average amount of precipitation for all heavy rain events, based on [82,83] | Analysis based on the Cat-RaRE-catalogue [82,83] | |
| Total affected area | Total sum of the areas affected across all heavy rain events relevant for the municipality, based on [82,83] | ||
| Mean maximum precipitation | Mean maximum precipitation of all heavy rain events, based on [82,83] | ||
| Average share of rainfall–affected area | Total area affected by all heavy rainfall events divided by the area of the city, based on [82,83] | ||
| Heavy rain indicator | Product of the mean maximum precipitation and the average proportion of urban area affected, based on [82,83] | ||

| Variable Name | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | City area | -- | |||||||||||||||
| 2 | Inhabitants | 0.640 ** | -- | ||||||||||||||
| 3 | Population density | 0.002 | 0.689 ** | -- | |||||||||||||
| 4 | GDP per capita | 0.007 | 0.098 | 0.153 | -- | ||||||||||||
| 5 | Trade tax per capita | 0.019 | 0.222 * | 0.286 ** | 0.815 ** | -- | |||||||||||
| 6 | Number of scientific institutions | 0.566 ** | 0.670 ** | 0.356 ** | 0.324 ** | 0.361 ** | -- | ||||||||||
| 7 | Green voters [%] | 0.057 | 0.368 ** | 0.430 ** | 0.557 ** | 0.523 ** | 0.544 ** | -- | |||||||||
| 8 | Future development score | 0.001 | −0.181 | −0.245 * | −0.779 ** | −0.705 ** | −0.402 ** | −0.648 ** | -- | ||||||||
| 9 | Built-up area [%] | −0.038 | 0.548 ** | 0.820 ** | −0.034 | 0.068 | 0.196 * | 0.201 * | −0.016 | -- | |||||||
| 10 | Traffic area [%] | 0.046 | 0.649 ** | 0.874 ** | 0.115 | 0.223 * | 0.341 ** | 0.279 ** | −0.116 | 0.864 ** | -- | ||||||
| 11 | Green space [%] | 0.079 | −0.415 ** | −0.701 ** | −0.062 | −0.088 | −0.079 | −0.112 | −0.114 | −0.808 ** | −0.745 ** | -- | |||||
| 12 | Mean temperature in August | 0.063 | 0.122 | 0.208 * | 0.148 | 0.154 | 0.17 | 0.003 | −0.250 * | 0.023 | 0.260 ** | 0.01 | -- | ||||
| 13 | Drought index | −0.18 | −0.043 | 0.047 | −0.034 | 0.035 | −0.223 * | 0.095 | 0.058 | 0.115 | −0.045 | −0.1 | −0.629 ** | -- | |||
| 14 | Minimum mortality temperature | 0.229 * | 0.255 ** | 0.246 * | −0.141 | −0.046 | 0.049 | −0.101 | 0.027 | 0.18 | 0.323 ** | −0.123 | 0.692 ** | −0.433 ** | -- | ||
| 15 | Number of heavy rain events | 0.515 ** | 0.359 ** | 0.061 | 0.210 * | 0.219 * | 0.370 ** | 0.232 * | −0.303 ** | −0.165 | −0.067 | 0.224 * | 0.123 | 0.1 | 0.059 | -- | |
| 16 | Mean heavy precipitation total | −0.222 * | −0.294 ** | −0.164 | −0.045 | −0.113 | −0.250 * | 0.057 | −0.031 | −0.086 | −0.233 * | 0.19 | −0.386 ** | 0.454 ** | −0.280 ** | −0.066 | -- |
| 17 | Mean share of rainfall-affected area in the city | 0.773 ** | 0.533 ** | 0.023 | −0.091 | −0.102 | 0.391 ** | 0.07 | 0.055 | 0.036 | 0.057 | 0.032 | −0.089 | 0.023 | 0.178 | 0.341 ** | 0.091 |
| Eigenvalue | 5.185 | 2.637 | 2.416 | 2.304 | 1.005 | |
|---|---|---|---|---|---|---|
| Variables (details in Table 2) | PC1 | PC2 | PC3 | PC4 | PC5 | Communality h |
| City area | 0.935 | 0.064 | −0.029 | 0.021 | −0.204 | 0.922 |
| Inhabitants | 0.856 | 0.383 | 0.122 | 0.012 | −0.141 | 0.913 |
| Population density | 0.312 | 0.838 | 0.268 | 0.126 | 0.038 | 0.890 |
| GDP per capita | −0.046 | −0.070 | 0.797 | −0.056 | −0.223 | 0.695 |
| Trade tax per capita | 0.041 | 0.229 | 0.799 | −0.002 | −0.159 | 0.718 |
| Number of scientific institutions | 0.857 | 0.239 | 0.204 | 0.089 | −0.138 | 0.860 |
| Green voters [%] | 0.263 | 0.202 | 0.667 | 0.016 | 0.297 | 0.644 |
| Future development score | −0.115 | 0.042 | −0.871 | −0.142 | −0.157 | 0.819 |
| Built-up area [%] | 0.051 | 0.903 | −0.064 | 0.097 | 0.048 | 0.835 |
| Traffic area [%] | 0.099 | 0.874 | 0.177 | 0.291 | −0.010 | 0.890 |
| Green space [%] | 0.001 | −0.830 | 0.039 | 0.240 | 0.252 | 0.812 |
| Mean temperature in August | 0.015 | 0.061 | 0.211 | 0.860 | −0.296 | 0.875 |
| Drought index | 0.001 | 0.018 | 0.009 | −0.529 | 0.704 | 0.776 |
| Minimum mortality temperature (MMT) | 0.114 | 0.138 | −0.106 | 0.880 | −0.135 | 0.836 |
| Number of heavy rain events | 0.750 | −0.021 | 0.283 | −0.017 | 0.129 | 0.661 |
| Mean heavy precipitation total | −0.119 | −0.121 | −0.040 | −0.221 | 0.843 | 0.789 |
| Mean share of rainfall-affected area in the city | 0.748 | −0.068 | −0.146 | 0.089 | 0.145 | 0.614 |
| Explained variance | 79.686 | |||||
| Dependent Variable | ||||||
|---|---|---|---|---|---|---|
| Independent Variables | AR2018 | Dimension I | Dimension II | Dimension III | Dimension IV | Dimension V |
| City size & scale | 7.523 ** | 1.869 *** | 0.793 * | 2.057 *** | 1.372 * | 1.432 * |
| Land use & compactness | 6.640 *** | 1.791 *** | 0.878 * | 0.754 | 1.112 ** | 2.105 *** |
| Socio-economics | 1.975 | 1.053 *** | 0.284 | 0.033 | 0.253 | 0.353 |
| Regional climate & exposure to extreme weather | 3.725 * | 0.329 | 0.840 * | 1.469 * | 0.732 * | 0.355 |
| Constant | 30.695 *** | 5.115 *** | 5.212 *** | 7.868 *** | 5.865 *** | 6.635 *** |
| Corrected R2 | 0.359 | 0.491 | 0.112 | 0.193 | 0.215 | 0.251 |
References
- Dodman, D.; Hayward, B.; Pelling, M.; Castan Broto, V.; Chow, W.; Chu, E.; Dawson, R.; Khirfan, L.; McPhearson, T.; Prakash, A.; et al. Cities, Settlements and Key Infrastructure. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 907–1040. [Google Scholar]
- Davoudi, S.; Crawford, J.; Mehmood, A. Planning for Climate Change: Strategies for Mitigation and Adaptation for Spatial Planners; Earthscan: London, UK; Sterling, VA, USA, 2009. [Google Scholar]
- Kern, K.; Eckersley, P.; Haupt, W. Diffusion and Upscaling of Municipal Climate Mitigation and Adaptation Strategies in Germany. Reg. Environ. Change 2023, 23, 28. [Google Scholar] [CrossRef]
- Reckien, D.; Salvia, M.; Heidrich, O.; Marco, J.; Pietrapertosa, F.; De Gregorio-hurtado, S.; Alonzo, V.D.; Orru, H.; Orru, K.; Foley, A.; et al. How Are Cities Planning to Respond to Climate Change? Assessment of Local Climate Plans from 885 Cities in the EU-28. J. Clean. Prod. 2018, 191, 207–219. [Google Scholar] [CrossRef]
- Reckien, D.; Buzasi, A.; Olazabal, M.; Spyridaki, N.; Eckersley, P.; Simoes, G. Quality of Urban Climate Adaptation Plans over Time. Urban Sustain. 2023, 3, 13. [Google Scholar] [CrossRef]
- van der Heijden, J. Studying Urban Climate Governance: Where to Begin, What to Look for, and How to Make a Meaningful Contribution to Scholarship and Practice. Earth Syst. Gov. 2019, 1, 100005. [Google Scholar] [CrossRef]
- Eisenack, K.; Moser, S.C.; Hoffmann, E.; Klein, R.J.T.; Oberlack, C.; Pechan, A.; Rotter, M.; Termeer, C.J.A.M. Explaining and Overcoming Barriers to Climate Change Adaptation. Nat. Clim. Change 2014, 4, 867–872. [Google Scholar] [CrossRef]
- Ford, J.D.; Berrang-Ford, L.; Lesnikowski, A.C. How to Track Adaptation to Climate Change: A Typology of Approaches for National-Level Application. Ecol. Soc. 2013, 18, 40. [Google Scholar] [CrossRef]
- Olazabal, M.; Galarraga, I.; Ford, J.; Sainz De Murieta, E.; Lesnikowski, A. Are Local Climate Adaptation Policies Credible? A Conceptual and Operational Assessment Framework. Int. J. Urban Sustain. Dev. 2019, 11, 277–296. [Google Scholar] [CrossRef]
- Berrang-Ford, L.; Biesbroek, R.; Ford, J.D.; Lesnikowski, A.; Tanabe, A.; Wang, F.M.; Chen, C.; Hsu, A.; Hellmann, J.J.; Pringle, P.; et al. Tracking Global Climate Change Adaptation among Governments. Nat. Clim. Change 2019, 9, 440–449. [Google Scholar] [CrossRef]
- Berrang-Ford, L.; Siders, A.R.; Lesnikowski, A.; Fischer, A.P.; Callaghan, M.W.; Haddaway, N.R.; Mach, K.J.; Araos, M.; Shah, M.A.R.; Wannewitz, M.; et al. A Systematic Global Stocktake of Evidence on Human Adaptation to Climate Change. Nat. Clim. Change 2021, 11, 989–1000. [Google Scholar] [CrossRef]
- Biesbroek, G.R.; Berrang-Ford, L.; Ford, J.D.; Tanabe, A.; Austin, S.E.; Lesnikowski, A. Data, Concepts and Methods for Large-n Comparative Climate Change Adaptation Policy Research: A Systematic Literature Review. Wires Clim. Change 2018, 9, e548. [Google Scholar] [CrossRef]
- Dupuis, J.; Biesbroek, R. Comparing Apples and Oranges: The Dependent Variable Problem in Comparing and Evaluating Climate Change Adaptation Policies. Glob. Environ. Change 2013, 23, 1476–1487. [Google Scholar] [CrossRef]
- Ford, J.D.; Berrang-Ford, L.; Biesbroek, R.; Araos, M.; Austin, S.E.; Lesnikowski, A. Adaptation Tracking for a Post-2015 Climate Agreement. Nat. Clim. Change 2015, 5, 967–969. [Google Scholar] [CrossRef]
- Goonesekera, S.M.; Olazabal, M. Climate Adaptation Indicators and Metrics: State of Local Policy Practice. Ecol. Indic. 2022, 145, 109657. [Google Scholar] [CrossRef]
- Jacob, J.; Valois, P.; Tessier, M. Development and Validation of an Index to Measure Progress in Adaptation to Climate Change at the Municipal Level. Ecol. Indic. 2022, 135, 108537. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Tompkins, E.L.; Vincent, K.; Nicholls, R.J.; Suckall, N. Documenting the State of Adaptation for the Global Stocktake of the Paris Agreement. WIREs Clim. Change 2018, 9, e545. [Google Scholar] [CrossRef]
- OECD. Measuring Progress in Adapting to a Changing Climate: Insights from OECD Countries; OECD Publishing: Paris, France, 2024. [Google Scholar]
- Otto, A.; Göpfert, C.; Thieken, A.H. Are Cities Prepared for Climate Change? An Analysis of Adaptation Readiness in 104 German Cities. Mitig. Adapt. Strateg. Glob. Change 2021, 26, 35. [Google Scholar] [CrossRef]
- Buzási, A.; Simoes, S.G.; Salvia, M.; Eckersley, P.; Geneletti, D.; Pietrapertosa, F.; Olazabal, M.; Wejs, A.; De Gregorio Hurtado, S.; Spyridaki, N.-A.; et al. European Patterns of Local Adaptation Planning—A Regional Analysis. Reg. Environ. Change 2024, 24, 59. [Google Scholar] [CrossRef]
- Reckien, D.; Buzasi, A.; Olazabal, M.; Fokaides, P.; Pietrapertosa, F.; Eckersley, P.; Salvia, M. Explaining the Adaptation Gap through Consistency in Adaptation Planning. Nat. Clim. Change 2025, 15, 614–618. [Google Scholar] [CrossRef]
- Aboagye, P.D.; Sharifi, A. Post-Fifth Assessment Report Urban Climate Planning: Lessons from 278 Urban Climate Action Plans Released from 2015 to 2022. Urban Clim. 2023, 49, 101550. [Google Scholar] [CrossRef]
- Aguiar, F.C.; Bentz, J.; Silva, J.M.N.; Fonseca, A.L.; Swart, R.; Santos, F.D.; Penha-Lopes, G. Adaptation to Climate Change at Local Level in Europe: An Overview. Environ. Sci. Policy 2018, 86, 38–63. [Google Scholar] [CrossRef]
- Baker, I.; Peterson, A.; Brown, G.; McAlpine, C. Local Government Response to the Impacts of Climate Change: An Evaluation of Local Climate Adaptation Plans. Landsc. Urban Plan. 2012, 107, 127–136. [Google Scholar] [CrossRef]
- Geneletti, D.; Zardo, L. Ecosystem-Based Adaptation in Cities: An Analysis of European Urban Climate Adaptation Plans. Land Use Policy 2016, 50, 38–47. [Google Scholar] [CrossRef]
- Heidrich, O.; Dawson, R.J.; Reckien, D.; Walsh, C.L. Assessment of the Climate Preparedness of 30 Urban Areas in the UK. Clim. Change 2013, 120, 771–784. [Google Scholar] [CrossRef]
- Hughes, S. A Meta-Analysis of Urban Climate Change Adaptation Planning in the U.S. Urban Clim. 2015, 14, 17–29. [Google Scholar] [CrossRef]
- Lee, T.; Hughes, S. Perceptions of Urban Climate Hazards and Their Effects on Adaptation Agendas. Mitig. Adapt. Strateg. Glob. Change 2017, 22, 761–776. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; da Cunha, C. Local Climate Change Adaptation Plans in the US and France: Comparison and Lessons Learned in 2007–2017. Urban Clim. 2020, 31, 100577. [Google Scholar] [CrossRef]
- Mahlkow, N.; Donner, J. From Planning to Implementation? The Role of Climate Change Adaptation Plans to Tackle Heat Stress: A Case Study of Berlin, Germany. J. Plan. Educ. Res. 2017, 37, 385–396. [Google Scholar] [CrossRef]
- Measham, T.G.; Preston, B.L.; Smith, T.F.; Brooke, C.; Gorddard, R.; Withycombe, G.; Morrison, C. Adapting to Climate Change through Local Municipal Planning: Barriers and Challenges. Mitig. Adapt. Strateg. Glob. Change 2011, 16, 889–909. [Google Scholar] [CrossRef]
- Olazabal, M.; Ruiz De Gopegui, M.; Tompkins, E.L.; Venner, K.; Smith, R. A Cross-Scale Worldwide Analysis of Coastal Adaptation Planning. Environ. Res. Lett. 2019, 14, 124056. [Google Scholar] [CrossRef]
- Pietrapertosa, F.; Salvia, M.; De Gregorio Hurtado, S.; Geneletti, D.; D’Alonzo, V.; Reckien, D. Multi-Level Climate Change Planning: An Analysis of the Italian Case. J. Environ. Manag. 2021, 289, 112469. [Google Scholar] [CrossRef]
- Segge, S.; Mauerhofer, V. Progress in Local Climate Change Adaptation against Sea Level Rise: A Comparison of Management Planning between 2013 and 2022 of Swedish Municipalities. Urban Clim. 2023, 49, 101555. [Google Scholar] [CrossRef]
- Tang, Z.; Dai, Z.; Fu, X.; Li, X. Content Analysis for the U.S. Coastal States’ Climate Action Plans in Managing the Risks of Extreme Climate Events and Disasters. Ocean Coast. Manag. 2013, 80, 46–54. [Google Scholar] [CrossRef]
- Woodruff, S.C.; Stults, M. Numerous Strategies but Limited Implementation Guidance in US Local Adaptation Plans. Nat. Clim. Change 2016, 6, 796–802. [Google Scholar] [CrossRef]
- Patterson, J.J. More than Planning: Diversity and Drivers of Institutional Adaptation under Climate Change in 96 Major Cities. Glob. Environ. Change 2021, 68, 102279. [Google Scholar] [CrossRef]
- Purwins, S.; Keck, M. The Bureaucratic Life of Urban Climate Resilience. Urban Stud. 2025, 62, 2903–2913. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, J.W. Assessing Strategies for Urban Climate Change Adaptation: The Case of Six Metropolitan Cities in South Korea. Sustainability 2018, 10, 2065. [Google Scholar] [CrossRef]
- Otto, A.; Kern, K.; Haupt, W.; Eckersley, P.; Thieken, A.H. Ranking Local Climate Policy: Assessing the Mitigation and Adaptation Activities of 104 German Cities. Clim. Change 2021, 167, 5. [Google Scholar] [CrossRef]
- Otto, A.; Haupt, W.; Eckersley, P.; Kern, K.; Thieken, A.H. Dynamism and Stasis in the Climate Policies of German Cities between 2018 and 2022. Mitig. Adapt. Strateg. Glob. Change 2025, 30, 30. [Google Scholar] [CrossRef]
- Lesnikowski, A.; Belfer, E.; Rodman, E.; Smith, J.; Biesbroek, R.; Wilkerson, J.D.; Ford, J.D.; Berrang-Ford, L. Frontiers in Data Analytics for Adaptation Research: Topic Modeling. Wiley Interdiscip. Rev. Clim. Change 2019, 10, e576. [Google Scholar] [CrossRef]
- Woodruff, S.C.; Bowman, A.O.M.; Hannibal, B.; Sansom, G.; Portney, K. Urban Resilience: Analyzing the Policies of U.S. Cities. Cities 2021, 115, 103239. [Google Scholar] [CrossRef]
- Araos, M.; Berrang-Ford, L.; Ford, J.D.; Austin, S.E.; Biesbroek, R.; Lesnikowski, A. Climate Change Adaptation Planning in Large Cities: A Systematic Global Assessment. Environ. Sci. Policy 2016, 66, 375–382. [Google Scholar] [CrossRef]
- EEA—European Environmental Agency. Urban Adaptation in Europe: How Cities and Towns Respond to Climate Change; European Environmental Agency: Copenhagen, Denmark, 2020. [Google Scholar]
- Kalafatis, S.E. Comparing Climate Change Policy Adoption and Its Extension across Areas of City Policymaking. Policy Stud. J. 2018, 46, 700–719. [Google Scholar] [CrossRef]
- Schulze, K.; Schoenefeld, J.J. Measuring Climate Change Adaptation Policy Output: Toward a Two-Dimensional Approach. Rev. Policy Res. 2023, 40, 1058–1092. [Google Scholar] [CrossRef]
- Shi, L.; Chu, E.; Debats, J. Explaining Progress in Climate Adaptation Planning Across 156 U.S. Municipalities. J. Am. Plan. Assoc. 2015, 81, 191–202. [Google Scholar] [CrossRef]
- Ford, J.D.; King, D. A Framework for Examining Adaptation Readiness. Mitig. Adapt. Strateg. Glob. Change 2015, 20, 505–526. [Google Scholar] [CrossRef]
- Simonet, G.; Leseur, A. Barriers and Drivers to Adaptation to Climate Change—A Field Study of Ten French Local Authorities. Clim. Change 2019, 155, 621–637. [Google Scholar] [CrossRef]
- Singh, C.; Ford, J.D.; Ley, D.; Bazaz, A.; Revi, A. Assessing the Feasibility of Adaptation Options: Methodological Advancements and Directions for Climate Adaptation Research and Practice. Clim. Change 2020, 162, 255–277. [Google Scholar] [CrossRef]
- Otto, A.; Miechielsen, M.; Schmidt, K.; Thieken, A.H. Drivers and Barriers to Municipal Climate Change Adaptation: A Comparative Analysis of Selected Measures and Different Implementation Stages. J. Environ. Stud. Sci. 2025. [Google Scholar] [CrossRef]
- Reckien, D.; Flacke, J.; Olazabal, M.; Heidrich, O. The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans—An Empirical Analysis of European Cities. PLoS ONE 2015, 10, e0135597. [Google Scholar] [CrossRef]
- Hultquist, A.; Wood, R.S.; Romsdahl, R.J. The Relationship Between Climate Change Policy and Socioeconomic Changes in the U.S. Great Plains. Urban Aff. Rev. 2017, 53, 138–174. [Google Scholar] [CrossRef]
- Wood, R.S.; Hultquist, A.; Romsdahl, R.J. An Examination of Local Climate Change Policies in the Great Plains. Rev. Policy Res. 2014, 31, 529–554. [Google Scholar] [CrossRef]
- Kammerer, M.; Zeigermann, U. Managing Climate Impacts—An Analysis of Adaptation Funding in German Cities and Districts. npj Clim. Action 2025, 4, 76. [Google Scholar] [CrossRef]
- Eckersley, P.; Otto, A.; Haupt, W.; Kern, K. Climate Capacity in Medium-Sized German Cities: (How) Do Smaller Municipalities Implement Mitigation and Adaptation Policies? Npj Clim. Action 2025, 4, 62. [Google Scholar] [CrossRef]
- Wang, R. Adopting Local Climate Policies: What Have California Cities Done and Why? Urban Aff. Rev. 2013, 49, 593–613. [Google Scholar] [CrossRef]
- Braunschweiger, D.; Ingold, K. What Drives Local Climate Change Adaptation? A Qualitative Comparative Analysis. Environ. Sci. Policy 2023, 145, 40–49. [Google Scholar] [CrossRef]
- Amundsen, H.; Berglund, F.; Westskogh, H. Overcoming Barriers to Climate Change Adaptation—A Question of Multilevel Governance? Environ. Plan. C Gov. Policy 2010, 28, 276–289. [Google Scholar] [CrossRef]
- Nohrstedt, D.; Parker, C.F.; Hileman, J.; Mazzoleni, M. Exploring Disaster Impacts on Adaptation Actions in 549 Cities Worldwide. Nat. Commun. 2022, 13, 3360. [Google Scholar] [CrossRef]
- Bundesinstitut für Bau- Stadt und Raumforschung (BBSR). Laufende Stadtbeobachtung—Raumabgrenzungen. Available online: https://www.bbsr.bund.de/BBSR/DE/forschung/raumbeobachtung/_node.html (accessed on 23 July 2025).
- Spekkers, M.; Rözer, V.; Thieken, A.; ten Veldhuis, M.-C.; Kreibich, H. A Comparative Survey of the Impacts of Extreme Rainfall in Two International Case Studies. Nat. Hazards Earth Syst. Sci. 2017, 17, 1337–1355. [Google Scholar] [CrossRef]
- Kalenik, B.; Sawicka, R.; Góra-Sochacka, A.; Sirko, A. Influenza Prevention and Treatment by Passive Immunization. Acta Biochim. Pol. 2014, 61, 573–587. [Google Scholar] [CrossRef] [PubMed]
- Caldas-Alvarez, A.; Augenstein, M.; Ayzel, G.; Barfus, K.; Cherian, R.; Dillenardt, L.; Fauer, F.; Feldmann, H.; Heistermann, M.; Karwat, A.; et al. Meteorological, Impact and Climate Perspectives of the 29 June 2017 Heavy Precipitation Event in the Berlin Metropolitan Area. Nat. Hazards Earth Syst. Sci. 2022, 22, 3701–3724. [Google Scholar] [CrossRef]
- Neitzke, L.; Samprogna Mohor, G.; Sieg, T. Vergleichende Hochwasserschadensschätzungen Anhand von Vor-Ort-Erhebungen Und Frei Zugänglichen Daten Nach Dem Hochwasser 2021 an Der Wupper. Hydrol. Und Wasserbewirtsch. 2025, 69, 6–20. [Google Scholar] [CrossRef]
- Dietze, M.; Bell, R.; Ozturk, U.; Cook, K.L.; Andermann, C.; Beer, A.R.; Damm, B.; Lucia, A.; Fauer, F.S.; Nissen, K.M.; et al. More than Heavy Rain Turning into Fast-Flowing Water—A Landscape Perspective on the 2021 Eifel Floods. Nat. Hazards Earth Syst. Sci. 2022, 22, 1845–1856. [Google Scholar] [CrossRef]
- Dillenardt, L.; Hudson, P.; Thieken, A.H. Urban Pluvial Flood Adaptation: Results of a Household Survey across Four German Municipalities. J. Flood Risk Manag. 2022, 15, e12748. [Google Scholar] [CrossRef]
- Kunz, M.; Karremann, M.K.; Mohr, S. Auswirkungen des Klimawandels auf Starkniederschläge, Gewitter und Schneefall. In Klimawandel in Deutschland; Springer: Berlin/Heidelberg, Germany, 2023; pp. 73–84. [Google Scholar]
- Mueller, E.N.; Pfister, A. Increasing Occurrence of High-Intensity Rainstorm Events Relevant for the Generation of Soil Erosion in a Temperate Lowland Region in Central Europe. J. Hydrol. 2011, 411, 266–278. [Google Scholar] [CrossRef]
- Bürger, G.; Pfister, A.; Bronstert, A. Temperature-Driven Rise in Extreme Sub-Hourly Rainfall. J. Clim. 2019, 32, 7597–7609. [Google Scholar] [CrossRef]
- Friedrich, K.; Deutschländer, T.; Kreienkamp, F.; Leps, N.; Mächel, H.; Walter, A. Klimawandel und Extremereignisse: Temperatur inklusive Hitzewellen. In Klimawandel in Deutschland; Springer: Berlin/Heidelberg, Germany, 2023; pp. 61–72. [Google Scholar]
- Bissolli, P.; Deutschländer, T.; Imbery, F.; Haeseler, S.; Lefebvre, C.; Blahak, J.; Fleckenstein, R.; Breyer, J.; Rocek, M.; Kreienkamp, F.; et al. Hitzewelle Juli 2019 in Westeuropa—Neuer Nationaler Rekord in Deutschland; Deutscher Wetterdienst: Offenbach am Main, Germany, 2019. [Google Scholar]
- Gabriel, K.M.A.; Endlicher, W.R. Urban and Rural Mortality Rates during Heat Waves in Berlin and Brandenburg, Germany. Environ. Pollut. 2011, 159, 2044–2050. [Google Scholar] [CrossRef]
- Kahlenborn, W.; Porst, L.; Voß, M.; Fritsch, U.; Renner, K.; Zebisch, M.; Wolf, M.; Schönthaler, K.; Schauser, I. Klimawirkungs- und Risikoanalyse 2021 für Deutschland. Kurzfassung; Umweltbundesamt: Dessau-Roßlau, Germany, 2021. [Google Scholar]
- Heidrich, O.; Reckien, D.; Olazabal, M.; Foley, A.; Salvia, M.; de Gregorio Hurtado, S.; Orru, H.; Flacke, J.; Geneletti, D.; Pietrapertosa, F.; et al. National Climate Policies across Europe and Their Impacts on Cities Strategies. J. Environ. Manag. 2016, 168, 36–45. [Google Scholar] [CrossRef]
- German Federal Government (Die Bundesregierung). Zweiter Fortschrittsbericht zur Deutschen Anpassungsstrategie an den Klimawandel; German Federal Government: Berlin, Germany, 2020. [Google Scholar]
- King, J.P. Sixteen Ways to Adapt: A Comparison of State-Level Climate Change Adaptation Strategies in the Federal States of Germany. Reg. Environ. Change 2022, 22, 40. [Google Scholar] [CrossRef]
- Prognos AG. Prognos Zukunftatlas; Prognos AG: Basel, Switzerland, 2019. [Google Scholar]
- Krummenauer, L.; Prahl, B.F.; Costa, L.; Holsten, A.; Walther, C.; Kropp, J.P. Global Drivers of Minimum Mortality Temperatures in Cities. Sci. Total Environ. 2019, 695, 133560. [Google Scholar] [CrossRef]
- Lengfeld, K.; Walawender, E.; Winterrath, T.; Becker, A. CatRaRE: A Catalogue of Radar-Based Heavy Rainfall Events in Germany Derived from 20 Years of Data. Meteorol. Z. 2021, 30, 469–487. [Google Scholar] [CrossRef]
- Lengfeld, K.; Walawender, E.; Winterrath, T.; Weigl, E.; Becker, A. Heavy Precipitation Events Version 2021.01 Exceeding DWD Warning Level 3 for Severe Weather Based on RADKLIM-RW Version 2017.002; Deutscher Wetterdienst (DWD): Offenbach am Main, Germany, 2021. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis; Cengage Learning: Andover, UK, 2019. [Google Scholar]
- Zeigermann, U.; Kammerer, M.; Böcher, M. What Drives Local Communities to Engage in Climate Change Mitigation Activities? Examining the Rural–Urban Divide. Rev. Policy Res. 2023, 40, 894–919. [Google Scholar] [CrossRef]
- Singh, C.; Iyer, S.; New, M.G.; Few, R.; Kuchimanchi, B.; Segnon, A.C.; Morchain, D. Interrogating ‘Effectiveness’ in Climate Change Adaptation: 11 Guiding Principles for Adaptation Research and Practice. Clim. Dev. 2022, 14, 650–664. [Google Scholar] [CrossRef]
- Friedrich, T.; Stieß, I.; Sunderer, G.; Böhmer, C.; Murawski, W.; Knirsch, F.; Otto, A.; Wutzler, B.; Thieken, A. Kommunalbefragung Klimaanpassung 2023; Climate Change, 34; Umwelt: Dessau-Roßlau, Germany, 2024. [Google Scholar]
- Häußler, S.; Haupt, W. Climate Change Adaptation Networks for Small and Medium-Sized Cities. SN Soc. Sci. 2021, 1, 262. [Google Scholar] [CrossRef]
- Schoenefeld, J.J.; Hildén, M.; Schulze, K.; Sorvali, J. What Motivates and Hinders Municipal Adaptation Policy? Exploring Vertical and Horizontal Diffusion in Hessen and Finland. Reg. Environ. Change 2023, 23, 53. [Google Scholar] [CrossRef]
- Rogers, N.J.L.; Adams, V.M.; Byrne, J.A. Factors Affecting the Mainstreaming of Climate Change Adaptation in Municipal Policy and Practice: A Systematic Review. Clim. Policy 2023, 23, 1327–1344. [Google Scholar] [CrossRef]
- Kern, K.; Irmisch, J.; Odermatt, C.; Haupt, W.; Kissling-Näf, I. Cultural Heritage, Sustainable Development, and Climate Policy: Comparing the UNESCO World Heritage Cities of Potsdam and Bern. Sustainability 2021, 13, 9131. [Google Scholar] [CrossRef]
- DWD Climate Data Center (CDC). Grids of Monthly Averaged Daily Air Temperature (2m) over Germany, Version v1.0; Deutscher Wetterdienst (DWD): Offenbach am Main, Germany, 2000. [Google Scholar]
- DWD Climate Data Center (CDC). Annual Grids of Drought Index (de Martonne) over Germany Version v1.0; Deutscher Wetterdienst (DWD): Offenbach am Main, Germany, 2018. [Google Scholar]
- Dilling, L.; Pizzi, E.; Ravikumar, A.; Andersson, K.P. Drivers of Adaptation: Responses to Weather- and Climate-Related Hazards in 60 Local Governments in the Intermountain Western U.S. Environ. Plan. A 2017, 49, 2628–2648. [Google Scholar] [CrossRef]



| Approaches | Content of the Approaches | Time of Analysis | Sources |
|---|---|---|---|
| Adaptation commitments and plans Short titles: ACP2018, ACP2022 | Dimensions: 3; Indicators: 6; maximum of 100 points
| 2018 2022 | [41,42] |
| Adaptation Readiness Short title: AR2018 | Dimensions: 5; Indicators: 12; maximum of 100 points
| 2018 | [20] |
| Name of the Independent Variable | Brief Description and Calculation | Units or Categories (Values in Brackets Indicate Codes and/or Absolute Number n per Category) | Data Range and Median (M) | Use of Variables in the Analysis (See Also Table 3 and Section 3.2) |
|---|---|---|---|---|
| Institutional domain | ||||
| Adaptation at the federal state level | Adaptation performance in Germany’s 16 federal states according to [79] | Presence (1) or absence (0) of eight indicators | 1 … 8; M = 5 | dismissed due to anti-image < 0.5 |
| County affiliation | Is the city affiliated with a county? | yes (0; n = 11), no (1; n = 93) | 0 … 1; M = 1 | dismissed due to communality < 0.4 |
| Green voters | Votes for the Green Party in the 2017 election of the German Bundestag | % | 2.7 … 21.2; M = 8.8 | PC3 “socio-economics” |
| Socio-economic domain | ||||
| City area | Administrative area of the city | km2 | 35.7 … 891.68; M = 120.95 | PC1 “city size & scale” |
| Inhabitants | Number of people living in the city as of 31 December 2017 | Number of people | 50,607 … 3,613,495; M = 157,372 | PC1 “city size & scale” |
| Population density | Number of people as of 31 December 2017 per km2 of the total city area | inhabitants/km2 | 313 … 4686; M = 1392.5 | PC2 “land use & compactness” |
| Population density in built-up areas | Number of people as of 31 December 2017 per km2 of the built-up area according to the Urban Atlas | inhabitants/km2 | 2552 … 546,128; M = 6698.9 | dismissed due to anti-image < 0.5 |
| GDP per capita | Gross domestic product (GDP) per capita in the municipality as of 2016 | EUR/capita | 21,229 … 178,706; M = 40,418 | PC3 “socio-economics” |
| Debts per capita | Municipal debt per capita as of 2016 | EUR/capita | 1478 … 31,756; M = 5181.5 | dismissed due to anti-image < 0.5 |
| Trade tax per capita | Municipal trade tax per capita as of 2015 | EUR/capita | 152.01 … 2018.53; M = 453.99 | PC3 “socio-economics” |
| Scientific institutions | Number of (applied) universities and research institutes | Number of scientific institutions | 0 … 65; M = 2 | PC1 “city size & scale” |
| Future development score | Index for assessing the future development potential of cities and counties based on socio-economic indicators and their dynamics; the best city receives the value 1 [80] | Score | 1 … 383; M = 119.5 | PC3 “socio-economics” |
| World Heritage | Has the (inner) city been declared a World Heritage site? | Yes (1; n = 23), No (0; n = 81) | 0 … 1: M = 0 | dismissed due to communality < 0.4 |
| Environmental and climate change impact domain | ||||
| Built-up area | Share of municipality’s territory that was built-up in 2018 | % | 0.07 … 40.14; M = 22.31 | PC2 “land use & compactness” |
| Traffic area | Share of the municipality’s territory that was taken up with roads and other traffic infrastructure in 2018 | % | 0.12 … 14.98; M = 6.11 | PC2 “land use & compactness” |
| Green space | Share of the municipality’s territory taken up by green space in 2018 | % | 3.30 … 82.75; M = 54.69 | PC2 “land use & compactness” |
| Water space | Share of the municipality’s territory taken up by water in 2018 | % | 0 … 27.39; M = 1.74 | dismissed due to communality < 0.4 |
| Tmean August | Areal mean of the monthly temperature in August from 2000 to 2020 | °C | 17.00 … 20.27; M = 18.68 | PC4 “regional climate & exposure to extreme weather” |
| Drought index | Areal mean of the annual de Martonne drought index from 2000 to 2020 | --- | 24.37 … 71.51; M = 35.06 | PC4 “regional climate & exposure to extreme weather” |
| MMT | Minimum Mortality Temperature, i.e., the temperature at which the mortality rate is the lowest as estimated in a non-linear regression by [81] | °C | 15.72 … 19.98; M = 18.14 | PC4 “regional climate & exposure to extreme weather” |
| Number of heavy rain events | Number of heavy rain events between 2000 and 2020 that triggered a severe weather warning (warning level ≥ 3), based on [82,83] | Number of events | 3 … 111, M = 32 | PC1 “city size & scale” |
| Mean heavy precipitation total | Average amount of precipitation for all heavy rain events, based on [82,83] | mm | 35.62 … 54.52; M = 43.36 | PC4 “regional climate & exposure to extreme weather” |
| Total affected area | Total sum of the areas affected across all heavy rain events in the municipality, based on [82,83] | km2 | 1269 … 338,284; M = 72,578.5 | dismissed due to high correlation (r = 0.614) with the number of heavy rain events |
| Mean maximum precipitation | Mean maximum precipitation of all heavy rain events, based on [82,83] | mm | 41.26 … 61.92; M = 50.73 | dismissed due to high correlation (r = 0.804) with the mean heavy precipitation total |
| Mean share of rainfall- affected area in the city | Total area affected by all heavy rainfall events divided by the area of the city, based on [82,83] | % | 8.44 … 62.48; M = 26.23 | PC1 “city size & scale” |
| Heavy rain indicator | Product of the mean maximum precipitation and the average proportion of urban area affected, based on [82,83] | --- | 348 … 3412; M = 1344 | dismissed due to high correlation (r = 0.984) with the average share of rainfall-affected area |
| Dependent Variable | ||
|---|---|---|
| Independent Variables | AR2018 | ACP2018 |
| City size & scale | 7.523 ** | 11.391 *** |
| Land use & compactness | 6.640 *** | 8.222 *** |
| Socio-economics | 1.975 | 1.150 |
| Regional climate & exposure to extreme weather | 3.725 * | 4.926 * |
| Constant | 30.695 *** | 27.736 *** |
| Corrected R2 | 0.359 | 0.354 |
| Assessment in 2018 | Dependent Variable | |||
| Independent Variables | ACP2018 | Dimension A | Dimension B | Dimension C |
| City size & scale | 11.391 *** | 3.077 *** | 3.252 *** | 5.062 *** |
| Land use & compactness | 8.222 *** | 1.779 ** | 3.228 *** | 3.215 * |
| Socio-economics | 1.150 | 1.662 * | 0.013 | −0.524 |
| Regional climate & exposure to extreme weather | 4.926 * | 1.126 * | 1.559 ° | 2.241 * |
| Constant | 27.736 *** | 5.125 *** | 10.841 *** | 11.769 *** |
| Corrected R2 | 0.354 | 0.272 | 0.282 | 0.263 |
| Assessment in 2022 | Dependent Variable | |||
| Independent Variables | ACP2022 | Dimension A | Dimension B | Dimension C |
| City size & scale | 10.514 ** | 3.318 *** | 3.255 ** | 3.942 ** |
| Land use & compactness | 7.966 *** | 2.053 ** | 3.204 *** | 2.709 ** |
| Socio-economics | 2.857 | 2.176 ** | 0.577 | 0.104 |
| Regional climate & exposure to extreme weather | 2.684 | 0.617 | 1.025 | 1.042 |
| Constant | 37.800 *** | 6.683 *** | 13.173 *** | 17.944 *** |
| Corrected R2 | 0.302 | 0.272 | 0.278 | 0.141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otto, A.; Dillenardt, L.; Thieken, A.H. Factors Explaining Municipal Climate Adaptation: Insights from Two Assessments of over 100 German Cities in 2018 and 2022. Sustainability 2025, 17, 9826. https://doi.org/10.3390/su17219826
Otto A, Dillenardt L, Thieken AH. Factors Explaining Municipal Climate Adaptation: Insights from Two Assessments of over 100 German Cities in 2018 and 2022. Sustainability. 2025; 17(21):9826. https://doi.org/10.3390/su17219826
Chicago/Turabian StyleOtto, Antje, Lisa Dillenardt, and Annegret H. Thieken. 2025. "Factors Explaining Municipal Climate Adaptation: Insights from Two Assessments of over 100 German Cities in 2018 and 2022" Sustainability 17, no. 21: 9826. https://doi.org/10.3390/su17219826
APA StyleOtto, A., Dillenardt, L., & Thieken, A. H. (2025). Factors Explaining Municipal Climate Adaptation: Insights from Two Assessments of over 100 German Cities in 2018 and 2022. Sustainability, 17(21), 9826. https://doi.org/10.3390/su17219826

