Agglomeration Impacts of the Digital Economy and Water-Conservation Technologies on China’s Water-Use Efficiency
Abstract
1. Introduction
2. Literature Review and Hypothesis Development
2.1. Digital Economy, Water Resources Consumption
2.2. Water Conservation Technologies and Water Resources Consumption
2.3. Moderating Effect—Knowledge Gaps
3. Model Development and Methodology
Model Construction
4. Data and Methodology
4.1. Data
4.2. Methodology
5. M-MQR Main-Findings
5.1. Discussion of Findings
5.2. Cross-Robustness Test of Findings
6. Conclusions
6.1. Policy Implications
6.2. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Variable(s) | Data Used (Measurement) | Labels | Data Sources |
|---|---|---|---|
| Water resources consumption | Total water use (100 million m3) | WTRC | Provincial Bureau of Statistics. National Bureau of Statistics. Ministry of Housing and Urban-Rural Development. China Agricultural Machinery Industry Yearbook. Ministry of Environmental Protection of China. |
| Water resources | Total water resources (100 million m3) | WRR | |
| Mobile use | Mobile Phone Subscriber (Ten thousand) | MBL | |
| Internet access | Internet Broadband Access Port (Ten thousand) | INTRB | |
| Internet users | Internet Users | INTRU | |
| Telecom business | Total Telecom Business (billion) | TLB | |
| Recycling | Recycling of Wastewater (10,000 tons) | RECY | |
| Sprinkler technology | Sprinkler Irrigation (1000 hectares) | SPRNK | |
| Reservoirs | Number of reservoirs | RESV | |
| Gross domestic per capita | GDP per Capita (Yuan) | GDP | |
| Higher Education | Number of Degrees Granted by Higher Education Institutions | HEDU | |
| Population | Population (total) | POP | |
| Investment in water conservation | Total Investment in Water-conservation Measures (10 thousand) | WTR-INVST |
| Anhui | Heilongjiang | Qinghai |
| Beijing | Henan | Shaanxi |
| Chongqing | Hubei | Shandong |
| Fujian | Hunan | Shanghai |
| Gansu | Inner Mongolia | Shanxi |
| Guangdong | Jiangsu | Sichuan |
| Guangxi | Jiangxi | Tianjin |
| Guizhou | Jilin | Yunnan |
| Hainan | Liaoning | Zhejiang |
| Hebei | Ningxia |
| Variable(s) | Comp-1 | Comp-2 | Comp-3 | Comp-4 | Factor Loading | Conceptual Role in DGE Index |
|---|---|---|---|---|---|---|
| INTRU (Internet Usage) | 0.5309 | −0.1769 | −0.0497 | −0.8273 | 0.5309 | Reflects the role of internet usage in the digital economy, capturing its influence on data accessibility and connectivity. |
| TLB (Telecom Business) | 0.4362 | 0.8922 | 0.0811 | 0.0843 | 0.8922 | Represents the strength and accessibility of telecommunications infrastructure, a key enabler for digital technologies. |
| INTRB (Internet Access) | 0.5176 | −0.2288 | −0.7074 | 0.4236 | 0.5176 | Indicates the level of internet bandwidth availability, reflecting digital economy’s capacity for data transfer and connectivity. |
| MBL (Mobile Users) | 0.5099 | −0.3469 | 0.7004 | 0.3593 | 0.7004 | Measures mobile internet access and its role in supporting digital services, communication, and commerce. |
Appendix B
| Model(s) Testing | Pesaran CD (2004) [42] | Pesaran CD (2015) [43] | Pesaran and Yamagata Significance [44] | |
|---|---|---|---|---|
| Digital Model-1 | 1.941(0.0523) | 2.231(0.026) | ∆ = 6.691(0.000) | ∆-adj = 9.676(0.000) |
| Digital Model-2 | 3.598(0.0003) | 2.792(0.005) | ∆ = 5.864(0.000) | ∆-adj = 8.480(0.000) |
| Digital Model-3 | 2.814(0.005) | 3.177(0.0015) | ∆ = 6.288(0.000) | ∆-adj = 9.093(0.000) |
| Digital Model-4 | 2.892(0.0038) | 2.111(0.035) | ∆ = 6.474(0.000) | ∆-adj = 9.363(0.000) |
| Digital Model-5 | 2.646(0.0081) | 2.122(0.034) | ∆ = 6.362(0.000) | ∆-adj = 9.200(0.000) |
| Moderator (1) Model-6 | 2.452 (0.0142) | 2.016(0.044) | ∆ = 5.002(0.000) | ∆-adj = 7.874(0.000) |
| Model-7 RECY (Tech-1) | 1.651(0.0986) | 2.437(0.015) | ∆ = 8.450(0.000) | ∆-adj = 11.366(0.000) |
| Model-8 SPRNK (Tech-2) | 2.536(0.0112) | 2.052(0.040) | ∆j = 4.919(0.000) | ∆-adj = 7.744(0.000) |
| Model-9 RESV (Tech-3) | 2.426(0.0153) | 2.031(0.042) | ∆ = 4.652(0.000) | ∆-adj = 7.322(0.000) |
| Moderator (2) Model-10 | 2.372(0.0177) | 1.969(0.049) | ∆ = 4.915(0.000) | ∆-adj = 7.737(0.000) |
| Moderator (3) Model-11 | 2.452(0.0142) | 2.016(0.044) | ∆ = 5.002(0.000) | ∆-adj = 7.874(0.000) |
| Variable(s) | CIPS—Level | CIPS—First Difference | ||
|---|---|---|---|---|
| Trend—Exclusive | Trend—Inclusive | Trend—Exclusive | Trend—Inclusive | |
| WTRC | −1.479 | −2.646 * | −3.778 *** | −3.699 *** |
| WRR | −2.373 | −2.724 * | −3.859 *** | −3.533 *** |
| MBL | −1.920 | −2.269 | −3.096 *** | −3.160 *** |
| INTRB | −2.507 * | −2.603 * | −3.605 *** | −4.009 *** |
| INTRU | −3.151 *** | −3.835 *** | −4.294 *** | −4.579 |
| TLB | −2.105 | −2.865 * | −3.901 *** | −3.689 *** |
| DGE | −2.507 * | −2.603 | −3.605 *** | −4.009 *** |
| RECY | −1.349 | −1.668 | −2.152 * | −2.887 ** |
| SPRNK | −0.854 | −1.485 | −4.126 *** | −4.587 *** |
| RESV | −4.121 *** | −4.016 *** | −4.916 *** | −4.769 *** |
| GDP | −1.256 | −1.779 | −2.794 * | −3.095 *** |
| HEDU | −2.352 | −2.653 * | −3.261 *** | −3.318 *** |
| POP | −1.646 | −1.867 | −2.848 * | −3.164 *** |
| WTR-INVST | −2.487 | −2.707 * | −4.013 | −4.352 |
| Moderator-1 | −3.492 *** | −3.280 *** | −3.280 *** | −3.993 *** |
| Moderator-2 | −1.337 | −1.692 | −2.549 * | −3.306 |
| Moderator-3 | −3.887 *** | −3.933 *** | −4.968 *** | −4.811 *** |
References
- Tellman, B.; Bausch, J.C.; Eakin, H.; Manuel-Navarrete, D.; Redman, C.L.; Anderies, J.M.; Mazari-Hiriart, M. Adaptive pathways and coupled infrastructure: Seven centuries of adaptation to water risk and the production of vulnerability in Mexico City. Ecol. Soc. 2018, 23, 1. [Google Scholar] [CrossRef]
- Cerilli, M. Driving Resilience and Responsible Water Use with Digital Solutions. 2022. Available online: https://www.watertechonline.com/water-reuse/article/14223984/driving-resilience-and-responsible-water-use-with-digital-solutions (accessed on 30 September 2023).
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water supply and water scarcity. Water 2020, 12, 2347. [Google Scholar] [CrossRef]
- Foster, S.; Custodio, E. Groundwater resources and intensive agriculture in Europe–can regulatory agencies cope with the threat to sustainability? Water Resour. Manag. 2019, 33, 2139–2151. [Google Scholar] [CrossRef]
- Everard, M. A socio-ecological framework supporting catchment-scale water resource stewardship. Environ. Sci. Policy 2019, 91, 50–59. [Google Scholar] [CrossRef]
- Jiang, Y. China’s water scarcity. J. Environ. Manag. 2009, 90, 3185–3196. [Google Scholar] [CrossRef]
- Zhao, H.; Miller, T.R.; Ishii, N.; Kawasaki, A. Global spatio-temporal change assessment in interregional water stress footprint in China by a high resolution MRIO model. Sci. Total Environ. 2022, 841, 156682. [Google Scholar] [CrossRef]
- Yuan, B.; Li, C.; Xiong, X. Innovation and environmental total factor productivity in China: The moderating roles of economic policy uncertainty and marketization process. Environ. Sci. Pollut. Res. 2021, 28, 9558–9581. [Google Scholar] [CrossRef]
- He, C.; Harden, C.P.; Liu, Y. Comparison of water resources management between China and the United States. Geogr. Sustain. 2020, 1, 98–108. [Google Scholar] [CrossRef]
- Yao, T.; Bolch, T.; Chen, D.; Gao, J.; Immerzeel, W.; Piao, S.; Su, F.; Thompson, L.; Wada, Y.; Wang, L. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 2022, 3, 618–632. [Google Scholar] [CrossRef]
- Gamal, Y.; Soltan, A.; Said, L.A.; Madian, A.H.; Radwan, A.G. Smart irrigation systems: Overview. IEEE Access 2023, 13, 66109–66121. [Google Scholar] [CrossRef]
- Li, H.; Issaka, Z.; Jiang, Y.; Tang, P.; Chen, C. Overview of emerging technologies in sprinkler irrigation to optimize crop production. Int. J. Agric. Biol. Eng. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.M.; Achilli, A.; Ghassemi, A. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Goyal, K. Water reuse in India: Current perspective and future potential. In Advances in Chemical Pollution, Environmental Management and Protection; Elsevier: Amsterdam, The Netherlands, 2020; Volume 6, pp. 33–63. [Google Scholar]
- Bauer, S.; Wagner, M. Possibilities and challenges of wastewater reuse—Planning aspects and realized examples. Water 2022, 14, 1619. [Google Scholar] [CrossRef]
- Griffith, C.; Heydon, G.; Lamb, D.; Lefort, L.; Taylor, K.; Trotter, M.; Wark, T. Smart Farming: Leveraging the Impact of Broadband and the Digital Economy; CSIRO: Armidale, Australia; University of New England: Armidale, Australia, 2013. [Google Scholar]
- Zhang, W.; Zhao, S.; Wan, X.; Yao, Y. Study on the effect of digital economy on high-quality economic development in China. PLoS ONE 2021, 16, e0257365. [Google Scholar] [CrossRef]
- Andrić, I.; Vrsalović, A.; Perković, T.; Čuvić, M.A.; Šolić, P. IoT approach towards smart water usage. J. Clean. Prod. 2022, 367, 133065. [Google Scholar] [CrossRef]
- Ahmed, S.; Hossain, M.F.; Kaiser, M.S.; Noor, M.B.T.; Mahmud, M.; Chakraborty, C. Artificial intelligence and machine learning for ensuring security in smart cities. In Data-Driven Mining, Learning and Analytics for Secured Smart Cities: Trends and Advances; Springer: Cham, Switzerland, 2021; pp. 23–47. [Google Scholar]
- Velayudhan, N.K.; Pradeep, P.; Rao, S.N.; Devidas, A.R.; Ramesh, M.V. IoT-enabled water distribution systems—A comparative technological review. IEEE Access 2022, 10, 101042–101070. [Google Scholar] [CrossRef]
- Abu-Mahfouz, A.M.; Hamam, Y.; Page, P.R.; Adedeji, K.B.; Anele, A.O.; Todini, E. Real-time dynamic hydraulic model of water distribution networks. Water 2019, 11, 470. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Sitzenfrei, R. Rethinking the framework of smart water system: A review. Water 2020, 12, 412. [Google Scholar] [CrossRef]
- Stewart, R.A.; Nguyen, K.; Beal, C.; Zhang, H.; Sahin, O.; Bertone, E.; Vieira, A.S.; Castelletti, A.; Cominola, A.; Giuliani, M. Integrated intelligent water-energy metering systems and informatics: Visioning a digital multi-utility service provider. Environ. Model. Softw. 2018, 105, 94–117. [Google Scholar] [CrossRef]
- Sivaiah, N.; Sowmya, K.; Susmitha, K.; Sai, N.A.; Suma, N. Internet of things (Iot) enabled water monitoring system. Iconic Res. Eng. J. 2018, 1, 40–43. [Google Scholar]
- Perumal, T.; Sulaiman, M.N.; Leong, C.Y. Internet of Things (IoT) enabled water monitoring system. In Proceedings of the 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 27–30 October 2015; pp. 86–87. [Google Scholar]
- AlMetwally, S.A.H.; Hassan, M.K.; Mourad, M.H. Real time internet of things (IoT) based water quality management system. Procedia CIRP 2020, 91, 478–485. [Google Scholar] [CrossRef]
- Joseph, J.; Manju, K.; Sajith, M.; Nair, S.; Viay, V.P.; Krishnan, S. Water management system using IoT. Int. Res. J. Eng. Technol. 2018, 5, 1887–1890. [Google Scholar]
- Qiao, N.; Fang, L.; Mu, L. Evaluating the impacts of water resources technology progress on development and economic growth over the Northwest, China. PLoS ONE 2020, 15, e0229571. [Google Scholar] [CrossRef]
- Yang, X.; Chen, W.; Jiang, M.; Jiang, P.; Shen, X. Dual effects of technology change: How does water technological progress affect China’s water consumption? iScience 2022, 25, 104629. [Google Scholar] [CrossRef]
- Qiao, N.; Yue, A.; Guan, H.; Mu, L.; Ding, Y. How effective is water technology as a water scarcity remedy for the economy in China? Water 2022, 14, 3056. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Maziotis, A. Drivers of productivity change in water companies: An empirical approach for England and Wales. Int. J. Water Resour. Dev. 2020, 36, 972–991. [Google Scholar] [CrossRef]
- Hu, J.-L.; Wang, S.-C.; Yeh, F.-Y. Total-factor water efficiency of regions in China. Resour. Policy 2006, 31, 217–230. [Google Scholar] [CrossRef]
- Zhong, S.; Li, A.; Wu, J. The total factor productivity index of freshwater aquaculture in China: Based on regional heterogeneity. Environ. Sci. Pollut. Res. 2022, 29, 15664–15680. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Maziotis, A.; Sala-Garrido, R. Assessment of the total factor productivity change in the English and Welsh water industry: A Färe-primont productivity index approach. Water Resour. Manag. 2017, 31, 2389–2405. [Google Scholar] [CrossRef]
- Zou, D.; Cong, H. Evaluation and influencing factors of China’s industrial water resource utilization efficiency from the perspective of spatial effect. Alex. Eng. J. 2021, 60, 173–182. [Google Scholar] [CrossRef]
- Liao, M.; Ren, Y. The ‘double-edged effect’of progress in energy-biased technology on energy efficiency: A comparison between the manufacturing sector of China and Japan. J. Environ. Manag. 2020, 270, 110794. [Google Scholar] [CrossRef]
- Geetha, S.; Gouthami, S. Internet of things enabled real time water quality monitoring system. Smart Water 2016, 2, 1. [Google Scholar] [CrossRef]
- Idachaba, F.E.; Olowoleni, J.O.; Ibhaze, A.E.; Oni, O.O. IoT enabled real-time fishpond management system. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 25–27 October 2017; pp. 25–27. [Google Scholar]
- Bdour, A.N.; Hamdi, M.R.; Tarawneh, Z. Perspectives on sustainable wastewater treatment technologies and reuse options in the urban areas of the Mediterranean region. Desalination 2009, 237, 162–174. [Google Scholar] [CrossRef]
- Al Hamedi, F.H.; Kandhan, K.; Liu, Y.; Ren, M.; Jaleel, A.; Alyafei, M.A.M. Wastewater irrigation: A promising way for future sustainable agriculture and food security in the United Arab Emirates. Water 2023, 15, 2284. [Google Scholar] [CrossRef]
- He, K.; Mi, Z.; Coffman, D.M.; Guan, D. Using a linear regression approach to sequential interindustry model for time-lagged economic impact analysis. Struct. Change Econ. Dyn. 2022, 62, 399–406. [Google Scholar] [CrossRef]
- Pesaran, M.H. General diagnostic tests for cross section dependence in panels. Cambridge Working Paper. Economics 2004, 1240, 1. [Google Scholar]
- Pesaran, M.H. Testing weak cross-sectional dependence in large panels. Econom. Rev. 2015, 34, 1089–1117. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Yamagata, T. Testing slope homogeneity in large panels. J. Econom. 2008, 142, 50–93. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Chandio, A.A.; Ozdemir, D.; Gokmenoglu, K.K.; Usman, M.; Jiang, Y. Digital agriculture for sustainable development in China: The promise of computerization. Technol. Soc. 2024, 76, 102479. [Google Scholar] [CrossRef]
- Binder, M.; Coad, A. From Average Joe’s happiness to Miserable Jane and Cheerful John: Using quantile regressions to analyze the full subjective well-being distribution. J. Econ. Behav. Organ. 2011, 79, 275–290. [Google Scholar] [CrossRef]
- Machado, J.A.; Silva, J.S. Quantiles via moments. J. Econom. 2019, 213, 145–173. [Google Scholar] [CrossRef]
- Chandio, A.A.; Amin, A.; Khan, I.; Rehman, A.; Memon, A. Can digitalization improve agriculture? Exploring the impact of ICT on grain food production in SAARC countries. Inf. Dev. 2024, 02666669231225945. [Google Scholar] [CrossRef]
- Galvao, A.F.; Kato, K. Quantile regression methods for longitudinal data. In Handbook of Quantile Regression; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017; pp. 363–380. [Google Scholar]
- Liao, W. How does the digital economy affect the development of the green economy? Evidence from Chinese cities. PLoS ONE 2023, 18, e0289826. [Google Scholar] [CrossRef]
- Jawa, H.; Chaichi, K. Factors influencing consumer behavior towards online shopping in Saudi Arabia. Int. J. Multicult. Multireligious Underst. 2015, 2, 1–10. [Google Scholar] [CrossRef]
- Antwi, S.H.; Rolston, A.; Linnane, S.; Getty, D. Communicating water availability to improve awareness and implementation of water conservation: A study of the 2018 and 2020 drought events in the Republic of Ireland. Sci. Total Environ. 2022, 807, 150865. [Google Scholar] [CrossRef]
- Tan, W.C.; Sidhu, M.S. Review of RFID and IoT integration in supply chain management. Oper. Res. Perspect. 2022, 9, 100229. [Google Scholar] [CrossRef]
- Litvinenko, V. Digital economy as a factor in the technological development of the mineral sector. Nat. Resour. Res. 2020, 29, 1521–1541. [Google Scholar] [CrossRef]
- Jagtap, S.; Garcia-Garcia, G.; Rahimifard, S. Optimisation of the resource efficiency of food manufacturing via the Internet of Things. Comput. Ind. 2021, 127, 103397. [Google Scholar] [CrossRef]
- Zhang, T.; Guna, A.; Yu, W.; Shen, D. The recycled water use policy in China: Evidence from 114 cities. J. Clean. Prod. 2022, 344, 131038. [Google Scholar] [CrossRef]
- Lee, K.; Jepson, W. Drivers and barriers to urban water reuse: A systematic review. Water Secur. 2020, 11, 100073. [Google Scholar] [CrossRef]
- Bichai, F.; Grindle, A.K.; Murthy, S.L. Addressing barriers in the water-recycling innovation system to reach water security in arid countries. J. Clean. Prod. 2018, 171, S97–S109. [Google Scholar] [CrossRef]
- Cherchi, C.; Kesaano, M.; Badruzzaman, M.; Schwab, K.; Jacangelo, J.G. Municipal reclaimed water for multi-purpose applications in the power sector: A review. J. Environ. Manag. 2019, 236, 561–570. [Google Scholar] [CrossRef]
- Hosseinnejad, A.; Saboohi, Y.; Zarei, G.; Shayegan, J. An exergoeconomic-based method for forming water quality pyramid and assessing the sustainability of recycling processes—A greenhouse case study. Sustain. Energy Technol. Assess. 2023, 59, 103408. [Google Scholar] [CrossRef]
- Bischel, H.N.; Simon, G.L.; Frisby, T.M.; Luthy, R.G. Management experiences and trends for water reuse implementation in Northern California. Environ. Sci. Technol. 2012, 46, 180–188. [Google Scholar] [CrossRef]
- Radcliffe, J.C.; Page, D. Water reuse and recycling in Australia—History, current situation and future perspectives. Water Cycle 2020, 1, 19–40. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Zhang, X. Public attention and sentiment of recycled water: Evidence from social media text mining in China. J. Clean. Prod. 2021, 303, 126814. [Google Scholar] [CrossRef]
- Yan, H.; Hui, X.; Li, M.; Xu, Y. Development in sprinkler irrigation technology in China. Irrig. Drain. 2020, 69, 75–87. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, J.; Qin, B.; Zhu, G.; Zhang, Y.; Jeppesen, E.; Tong, Y. Importance and vulnerability of lakes and reservoirs supporting drinking water in China. Fundam. Res. 2023, 3, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, M. Effect of water-saving society policy on water consumption in the cities of china: A propensity score matching analysis. Int. J. Environ. Res. Public Health 2020, 17, 8171. [Google Scholar] [CrossRef]
- Tian, K.; Wang, H.; Wang, Y. Investigation and evaluation of water literacy of urban residents in China based on data correction method. Water Policy 2021, 23, 77–95. [Google Scholar] [CrossRef]
- Hao, Y.; Hu, X.; Chen, H. On the relationship between water use and economic growth in China: New evidence from simultaneous equation model analysis. J. Clean. Prod. 2019, 235, 953–965. [Google Scholar] [CrossRef]
- Gu, A.; Zhang, Y.; Pan, B. Relationship between industrial water use and economic growth in China: Insights from an environmental Kuznets curve. Water 2017, 9, 556. [Google Scholar] [CrossRef]











| Variable(s) | Mean | Std. Dev. | Minimum | Maximum |
|---|---|---|---|---|
| WTRC | 183.7206 | 124.4543 | 22.33 | 619.1 |
| WTRR | 795.3575 | 723.4657 | 8.1 | 3237.3 |
| MBL | 4174.645 | 2992.67 | 247.2 | 16,823.26 |
| INTRB | 1824.546 | 1752.994 | 25.7 | 9333.74 |
| INTRU | 2786.681 | 2429.152 | 102 | 15,070.27 |
| TLB | 1274.391 | 1724.918 | 45.89 | 15,025.3 |
| DGE | 1.33 × 10−9 | 1.000004 | −1.026162 | 4.283659 |
| RECY | 10,400.07 | 15,887.44 | −2669 | 84,341 |
| SPRNK | 125.8212 | 259.6182 | 1.2 | 1786.39 |
| RESV | 3293.241 | 3425.77 | 1 | 14,098 |
| GDP | 52,992.83 | 29,800.41 | 9855 | 183,980 |
| HEDU | 112,134.5 | 65,462.16 | 2690 | 304,875 |
| POP | 4.66 × 107 | 2.88 × 107 | 5317,512 | 1.15 × 108 |
| WTR-INVST | 12,267.84 | 24,964.59 | −17,450 | 242,844 |
| Model(s) | Regressor(s) | Lower Quantile (0.1) | Middel Quantile (0.5) Significance | Higher Quantile (0.95) Significance | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Coef. | Sig. (Standard Error) | Lower CI (95%) | Upper CI (95%) | Coef. | Sig. (Standard Error) | Lower CI (95%) | Upper CI (95%) | Coef. | Sig. (Standard Error) | Lower CI (95%) | Upper CI (95%) | ||
| Digital Economy Models | |||||||||||||
| Model-1 | MBL | −0.0000211 *** | −5.65 × 10−6 | −3.22 × 10−5 | −1.00 × 10−5 | −0.0000159 *** | −3.65 × 10−6 | −2.31 × 10−5 | −8.75 × 10−6 | −0.0000115 ** | −4.51 × 10−6 | −2.03 × 10−5 | −2.66 × 10−6 |
| WTRR | 0.00819 | −0.0181 | −0.02728535 | 0.04366535 | 0.0159 | −0.0117 | −0.00703158 | 0.03883158 | 0.0224 | −0.0144 | −0.00582348 | 0.05062348 | |
| GDP | 0.0691 * | −0.0356 | −0.00067472 | 0.13887472 | 0.032 | −0.023 | −0.01307917 | 0.07707917 | 0.00042 | −0.0284 | −0.05524298 | 0.05608298 | |
| HEDU | −0.0548 | −0.0401 | −0.13339456 | 0.02379456 | −0.0484 * | −0.0259 | −0.09916307 | 0.00236307 | −0.043 | −0.032 | −0.10571885 | 0.01971885 | |
| POP | 0.315 | −0.253 | −0.18087089 | 0.81087089 | 0.475 *** | −0.163 | 0.15552587 | 0.79447413 | 0.611 *** | −0.201 | 0.21704724 | 1.00495276 | |
| Model-2 | INTRB | −0.0000306 *** | −4.83 × 10−6 | −4.01 × 10−5 | −2.11 × 10−5 | −0.0000234 *** | −3.28 × 10−6 | −2.98 × 10−5 | −1.70 × 10−5 | −0.0000167 *** | −4.55 × 10−6 | −2.56 × 10−5 | −7.78 × 10−6 |
| WTRR | 0.0113 | −0.017 | −0.02201939 | 0.04461939 | 0.0187 | −0.0115 | −0.00383959 | 0.04123959 | 0.0255 | −0.0158 | −0.00546743 | 0.05646743 | |
| GDP | 0.0855 ** | −0.0337 | 0.01944921 | 0.15155079 | 0.0506 ** | −0.0228 | 0.00591282 | 0.09528718 | 0.0184 | −0.0315 | −0.04333887 | 0.08013887 | |
| HEDU | −0.0658 * | (−0.0394) | −0.14302258 | 0.01142258 | −0.0594 ** | −0.0266 | −0.11153504 | −0.00726496 | −0.0535 | −0.0367 | −0.12543068 | 0.01843068 | |
| POP | 0.556 ** | −0.239 | 0.08756861 | 1.02443139 | 0.573 *** | −0.161 | 0.2574458 | 0.8885542 | 0.589 *** | −0.222 | 0.153888 | 1.024112 | |
| Model-3 | INTRU | −0.0000202 *** | −3.92 × 10−6 | −2.79 × 10−5 | −1.25 × 10−5 | −0.0000131 *** | −2.76 × 10−6 | −1.85 × 10−5 | −7.69 × 10−6 | −0.00000673 * | −3.52 × 10−6 | −1.36 × 10−5 | 1.69 × 10−7 |
| WTRR | 0.0077 | −0.0169 | −0.02542339 | 0.04082339 | 0.0161 | −0.0118 | −0.00702758 | 0.03922758 | 0.0236 | −0.0149 | −0.00560346 | 0.05280346 | |
| GDP | 0.0687 ** | −0.0325 | 0.00500117 | 0.13239883 | 0.0308 | −0.0227 | −0.01369118 | 0.07529118 | −0.00339 | −0.0289 | −0.06003296 | 0.05325296 | |
| HEDU | −0.0628 * | −0.0381 | −0.13747463 | 0.01187463 | −0.0560 ** | −0.0265 | −0.10793905 | −0.00406095 | −0.0498 | −0.0337 | −0.11585079 | 0.01625079 | |
| POP | 0.481 ** | −0.236 | 0.0184485 | 0.9435515 | 0.531 *** | −0.164 | 0.20956591 | 0.85243409 | 0.577 *** | −0.209 | 0.16736753 | 0.98663247 | |
| Model-4 | TLB | −0.0000128 *** | −3.36 × 10−6 | −1.94 × 10−5 | −6.21 × 10−6 | −0.00000871 *** | −2.28 × 10−6 | −1.32 × 10−5 | −4.24 × 10−6 | −0.00000465 | −2.84 × 10−6 | −1.02 × 10−5 | 9.16 × 10−7 |
| WTRR | 0.00906 | −0.0173 | −0.02484738 | 0.04296738 | 0.0148 | −0.0117 | −0.00813158 | 0.03773158 | 0.0204 | −0.0145 | −0.00801948 | 0.04881948 | |
| GDP | 0.0208 | −0.031 | −0.03995888 | 0.08155888 | 0.00312 | −0.021 | −0.03803924 | 0.04427924 | −0.0142 | −0.0261 | −0.06535506 | 0.03695506 | |
| HEDU | −0.0534 | −0.0382 | −0.12827062 | 0.02147062 | −0.0508 ** | −0.0258 | −0.10136707 | −0.00023293 | −0.0482 | −0.0321 | −0.11111484 | 0.01471484 | |
| POP | 0.414 * | −0.237 | −0.05051146 | 0.87851146 | 0.459 *** | −0.16 | 0.14540576 | 0.77259424 | 0.504 ** | −0.199 | 0.11396717 | 0.89403283 | |
| Model-5 | DGE | −0.0537 *** | −0.00847 | −0.07030089 | −0.03709911 | −0.0410 *** | −0.00576 | −0.05228939 | −0.02971061 | −0.0292 *** | −0.00798 | −0.04484051 | −0.01355949 |
| WRR | 0.0113 | −0.017 | −0.02201939 | 0.04461939 | 0.0187 | −0.0115 | −0.00383959 | 0.04123959 | 0.0255 | −0.0158 | −0.00546743 | 0.05646743 | |
| GDP | 0.0855 ** | −0.0337 | 0.01944921 | 0.15155079 | 0.0506 ** | −0.0228 | 0.00591282 | 0.09528718 | 0.0184 | −0.0315 | −0.04333887 | 0.08013887 | |
| HEDU | −0.0658 * | −0.0394 | −0.14302258 | 0.01142258 | −0.0594 ** | −0.0266 | −0.11153504 | −0.00726496 | −0.0535 | −0.0367 | −0.12543068 | 0.01843068 | |
| POP | 0.556 ** | −0.239 | 0.08756861 | 1.02443139 | 0.573 *** | −0.161 | 0.2574458 | 0.8885542 | 0.589 *** | −0.222 | 0.153888 | 1.024112 | |
| Model-6 | DGEWTRR (Moderator-1) | −0.0000281 *** | −4.21 × 10−6 | −3.64 × 10−5 | −1.98 × 10−5 | −0.0000187 *** | −3.00 × 10−6 | −2.46 × 10−5 | −1.28 × 10−5 | −0.0000107 ** | −4.30 × 10−6 | −1.91 × 10−5 | −2.27 × 10−6 |
| WTRR | 0.00686 | −0.0175 | −0.02743937 | 0.04115937 | 0.0183 | −0.0123 | −0.00580756 | 0.04240756 | 0.0280 * | −0.017 | −0.00531939 | 0.06131939 | |
| GDP | 0.0674 ** | −0.0317 | 0.00526914 | 0.12953086 | 0.0207 | −0.0224 | −0.02320319 | 0.06460319 | −0.0192 | −0.0314 | −0.08074287 | 0.04234287 | |
| HEDU | −0.0736 ** | −0.037 | −0.14611867 | −0.00108133 | −0.0524 ** | −0.026 | −0.10335906 | −0.00144094 | −0.0342 | −0.0358 | −0.10436671 | 0.03596671 | |
| POP | 0.307 | −0.24 | −0.16339136 | 0.77739136 | 0.437 *** | −0.169 | 0.10576609 | 0.76823391 | 0.549 ** | −0.232 | 0.09428836 | 1.00371164 | |
| Water Conservation Technologies and Investment Models | |||||||||||||
| Model-7 | RECY (Tech-1) | 0.00165 | −0.00612 | −0.01034498 | 0.01364498 | −0.000109 | −0.0032 | −0.00638088 | 0.00616288 | −0.00176 | −0.00282 | −0.0072871 | 0.0037671 |
| WTRR | 0.0128 | −0.0159 | −0.01836343 | 0.04396343 | 0.0169 | −0.0132 | −0.00897152 | 0.04277152 | 0.0207 | −0.0191 | −0.01673531 | 0.05813531 | |
| GDP | −0.024 | −0.0318 | −0.08632685 | 0.03832685 | −0.0355 | −0.0227 | −0.07999118 | 0.00899118 | −0.0463 * | −0.0276 | −0.10039501 | 0.00779501 | |
| HEDU | −0.00723 | −0.0442 | −0.09386041 | 0.07940041 | −0.00893 | −0.0284 | −0.06459298 | 0.04673298 | −0.0105 | −0.032 | −0.07321885 | 0.05221885 | |
| POP | 0.281 | −0.219 | −0.14823211 | 0.71023211 | 0.454 ** | −0.195 | 0.07180702 | 0.83619298 | 0.617 ** | −0.275 | 0.0780099 | 1.1559901 | |
| WTR-INVST | −0.00799 ** | −0.00382 | −0.01547706 | −0.00050294 | −0.00929 *** | −0.0023 | −0.01379792 | −0.00478208 | −0.0105 *** | −0.00241 | −0.01522351 | −0.00577649 | |
| Model-8 | SPRNK (Tech-2) | −0.0373 *** | −0.0091 | −0.05513567 | −0.01946433 | −0.0222 *** | −0.00614 | −0.03423418 | −0.01016582 | −0.00699 | −0.00697 | −0.02065095 | 0.00667095 |
| WTRR | 0.00621 | −0.0143 | −0.02181748 | 0.03423748 | 0.0148 | −0.0129 | −0.01048354 | 0.04008354 | 0.0235 | −0.02 | −0.01569928 | 0.06269928 | |
| GDP | 0.0161 | −0.0286 | −0.03995497 | 0.07215497 | −0.0155 | −0.0215 | −0.05763923 | 0.02663923 | −0.0474 * | −0.0281 | −0.10247499 | 0.00767499 | |
| HEDU | −0.00961 | −0.0375 | −0.08310865 | 0.06388865 | −0.00606 | −0.0251 | −0.0552551 | 0.0431351 | −0.00247 | −0.0299 | −0.06107292 | 0.05613292 | |
| POP | 0.207 | −0.199 | −0.18303283 | 0.59703283 | 0.403 ** | −0.187 | 0.03648673 | 0.76951327 | 0.600 ** | −0.279 | 0.05317005 | 1.14682995 | |
| WTR-INVST | −0.00572 | −0.00367 | −0.01291307 | 0.00147307 | −0.00758 *** | −0.00233 | −0.01214672 | −0.00301328 | −0.00946 *** | −0.00254 | −0.01443831 | −0.00448169 | |
| Model-9 | RESV (Tech-3) | 0.00271 | −0.00217 | −0.00154312 | 0.00696312 | 0.0022 | −0.00161 | −0.00095554 | 0.00535554 | 0.00172 | −0.00208 | −0.00235673 | 0.00579673 |
| WRR | 0.0148 | −0.0154 | −0.01538345 | 0.04498345 | 0.0177 | −0.013 | −0.00777953 | 0.04317953 | 0.0205 | −0.0191 | −0.01693531 | 0.05793531 | |
| GDP | −0.0193 | −0.0304 | −0.07888291 | 0.04028291 | −0.0316 | −0.0213 | −0.07334723 | 0.01014723 | −0.0431 * | −0.0257 | −0.09347107 | 0.00727107 | |
| HEDU | −0.0255 | −0.0419 | −0.10762249 | 0.05662249 | −0.0188 | −0.0262 | −0.07015106 | 0.03255106 | −0.0126 | −0.0286 | −0.06865497 | 0.04345497 | |
| POP | 0.383 * | −0.219 | −0.04623211 | 0.81223211 | 0.474 ** | −0.19 | 0.10160684 | 0.84639316 | 0.559 ** | −0.263 | 0.04352947 | 1.07447053 | |
| WTR-INVST | −0.00815 ** | −0.00384 | −0.01567626 | −0.00062374 | −0.00890 *** | −0.00229 | −0.01338832 | −0.00441168 | −0.00962 *** | −0.00236 | −0.01424552 | −0.00499448 | |
| Synergy of Dig. Conserve. Tech. Models | |||||||||||||
| Model-10 | GDP | −0.0586 * | −0.0325 | −0.12229883 | 0.00509883 | −0.0383 | −0.0248 | −0.08690711 | 0.01030711 | −0.0146 | −0.0341 | −0.08143477 | 0.05223477 |
| HEDU | 0.0109 | −0.047 | −0.08121831 | 0.10301831 | −0.00231 | −0.0358 | −0.07247671 | 0.06785671 | −0.0177 | −0.0493 | −0.11432622 | 0.07892622 | |
| POP | 0.372 | −0.253 | −0.12387089 | 0.86787089 | 0.480 ** | −0.193 | 0.10172695 | 0.85827305 | 0.606 ** | −0.266 | 0.08464958 | 1.12735042 | |
| WTR-INVST | −0.00588 | −0.00475 | −0.01518983 | 0.00342983 | −0.0111 *** | −0.00365 | −0.01825387 | −0.00394613 | −0.0171 *** | −0.00497 | −0.02684102 | −0.00735898 | |
| DGE-WTRTCH (Moderator-2) | −0.0124 *** | −0.00414 | −0.02051425 | −0.00428575 | −0.00812 ** | −0.00318 | −0.01435269 | −0.00188731 | −0.00311 | −0.00433 | −0.01159664 | 0.00537664 | |
| Model-11 | GDP | −0.0547 * | −0.0321 | −0.11761484 | 0.00821484 | −0.0362 | −0.0249 | −0.0850031 | 0.0126031 | −0.0149 | −0.0345 | −0.08251876 | 0.05271876 |
| HEDU | 0.0102 | −0.0465 | −0.08093833 | 0.10133833 | −0.00182 | −0.036 | −0.0723787 | 0.0687387 | −0.0157 | −0.05 | −0.1136982 | 0.0822982 | |
| POP | 0.339 | −0.251 | −0.15295096 | 0.83095096 | 0.461 ** | −0.195 | 0.07880702 | 0.84319298 | 0.600 ** | −0.27 | 0.07080972 | 1.12919028 | |
| WTR-INVST | −0.00602 | −0.0047 | −0.01523183 | 0.00319183 | −0.0113 *** | −0.00367 | −0.01849307 | −0.00410693 | −0.0174 *** | −0.00505 | −0.02729782 | −0.00750218 | |
| WTRR-DGE-WTRTCH (Moderator-3) | −0.0118 *** | −0.00404 | −0.01971825 | −0.00388175 | −0.00761 ** | −0.00315 | −0.01378389 | −0.00143611 | −0.00275 | −0.00434 | −0.01125624 | 0.00575624 | |
| Baseline Water Resources | Digital Economy Effect | Statistical Significance | Complementarity Strength |
|---|---|---|---|
| Abundant (Q1) | 0.628 *** | p < 0.001 | Baseline |
| Moderate (Q2) | 0.325 *** | p < 0.001 | 48% weaker |
| Limited (Q3) | 0.445 *** | p < 0.001 | 29% weaker |
| Scarce (Q4) | 0.797 *** | p < 0.001 | 27% stronger |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, R.; Long, Y.; Yasmeen, R.; Tang, C. Agglomeration Impacts of the Digital Economy and Water-Conservation Technologies on China’s Water-Use Efficiency. Sustainability 2025, 17, 9703. https://doi.org/10.3390/su17219703
Tao R, Long Y, Yasmeen R, Tang C. Agglomeration Impacts of the Digital Economy and Water-Conservation Technologies on China’s Water-Use Efficiency. Sustainability. 2025; 17(21):9703. https://doi.org/10.3390/su17219703
Chicago/Turabian StyleTao, Rui, Yunfei Long, Rizwana Yasmeen, and Caihong Tang. 2025. "Agglomeration Impacts of the Digital Economy and Water-Conservation Technologies on China’s Water-Use Efficiency" Sustainability 17, no. 21: 9703. https://doi.org/10.3390/su17219703
APA StyleTao, R., Long, Y., Yasmeen, R., & Tang, C. (2025). Agglomeration Impacts of the Digital Economy and Water-Conservation Technologies on China’s Water-Use Efficiency. Sustainability, 17(21), 9703. https://doi.org/10.3390/su17219703

