Estimating Demolition Waste Recoverable Fractions in Rapidly Transforming Urban Zones
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Building Classification Based on Structure and Materials
2.2.1. Type 1: Stone Block Private Buildings
2.2.2. Type 2: Woodblock Private Buildings
2.2.3. Type 3: Brick Condominiums
2.2.4. Type 4: Concrete Block Condominiums
2.3. Composition of Materials of Interest
2.4. Material Weight Estimation Based on Building Dimensions
2.5. Recoverable Percentage of Materials of Interest
2.6. Financial Assessment of Demolition Waste (DW)
2.7. Processing Capacity Assessment for DW
3. Results and Discussion
3.1. Percentages of MOI
3.2. Recovery Rate
3.3. Total Amount of DW Between 2023–2029
3.4. Financial Value of DW
3.5. Capacity to Deal with DW Within Current Waste Management Context
3.6. Options for Reuse and Recycling
3.7. Study Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, X. Stakeholder-Associated Factors Influencing Construction and Demolition Waste Management: A Systematic Review. Buildings 2021, 11, 149. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Sustainable Management of Construction and Demolition Materials; 2025. Available online: https://www.epa.gov/smm/sustainable-management-construction-and-demolition-materials (accessed on 29 September 2025).
- George, M.; Simpeh, E.; Smallwood, J. Sustainable Waste Management Practices During Construction Projects. In Smart and Sustainable Cities and Buildings; Springer: Cham, Switzerland, 2020; pp. 551–570. [Google Scholar] [CrossRef]
- Department of Climate Change, Energy, the Environment and Water (DCCEEW). Construction and Demolition Waste Status Report—Management of Construction and Demolition Waste in Australia. 2022. Available online: https://www.dcceew.gov.au/environment/protection/waste/publications/construction-and-demolition-waste-status-report (accessed on 3 April 2024).
- Nagapan, S.; Rahman, I.A.; Asmi, A.; Memon, A.H.; Latif, I. Issues on construction waste: The need for sustainable waste management. In Proceedings of the 2012 IEEE Colloquium on Humanities, Science and Engineering (CHUSER), Kota Kinabalu, Malaysia, 3–4 December 2012. [Google Scholar] [CrossRef]
- Ginga, C.P.; Ongpeng, J.M.; Daly, M.K. Circular economy on construction and demolition waste: A literature review on material recovery and production. Materials 2020, 13, 2970. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, A.; Sarmah, A.K. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 2018, 186, 262–281. [Google Scholar] [CrossRef]
- Oh, D.-Y.; Noguchi, T.; Kitagaki, R.; Park, W.-J. CO2 emission reduction by reuse of building material waste in the Japanese cement industry. Renew. Sustain. Energy Rev. 2014, 38, 796–810. [Google Scholar] [CrossRef]
- USGS. Cement statistics and information. U.S. Geological Survey. 2017. Available online: https://www.usgs.gov/centers/national-minerals-information-center/cement-statistics-and-information (accessed on 10 April 2024).
- Shi, C.; Li, Y.; Zhang, J.; Li, W.; Chong, L.; Xie, Z. Performance enhancement of recycled concrete aggregate—A review. J. Clean. Prod. 2015, 112, 466–472. [Google Scholar] [CrossRef]
- Contreras, M.; Teixeira, S.; Lucas, M.; Lima, L.; Cardoso, D.; Da Silva, G.; Gregório, G.; De Souza, A.; Santos, A.D. Recycling of construction and demolition waste for producing new construction material (Brazil case-study). Constr. Build. Mater. 2016, 123, 594–600. [Google Scholar] [CrossRef]
- Jamil, S.; Idrees, M.; Akbar, A.; Ahmed, W. Investigating the Mechanical and Durability Properties of Carbonated Recycled Aggregate Concrete and Its Performance with SCMs. Buildings 2025, 15, 201. [Google Scholar] [CrossRef]
- Junior, G.A.F.; Leite, J.C.T.; Mendez, G.d.P.; Haddad, A.N.; Silva, J.A.F.; da Costa, B.B.F. A Review of the Characteristics of Recycled Aggregates and the Mechanical Properties of Concrete Produced by Replacing Natural Coarse Aggregates with Recycled Ones—Fostering Resilient and Sustainable Infrastructures. Infrastructures 2025, 10, 213. [Google Scholar] [CrossRef]
- Grigorjev, V.; Azenha, M.; De Belie, N. Towards Sustainable Masonry Construction Through Natural Aggregate Replacement by Fine Recycled Aggregates in Cement–Lime Mortars. Sustainability 2025, 17, 1269. [Google Scholar] [CrossRef]
- Yan, J.; Gao, Y.; Fan, T.; Xu, Q.; Yuan, W.; Zhao, X. Experimental study on flexural performance of recycled steel fiber concrete beams. Buildings 2023, 13, 3046. [Google Scholar] [CrossRef]
- Kong, X.; Yao, Y.; Wu, B.; Zhang, W.; He, W.; Fu, Y. The impact resistance and mechanical properties of recycled aggregate concrete with hooked-end and crimped steel fiber. Materials 2022, 15, 7029. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, I.T.; Qian, Y.; Gunawardena, T.; Mendis, P.; Belleville, B. Composite Panels from Wood Waste: A Detailed Review of Processes, Standards, and Applications. J. Compos. Sci. 2024, 8, 417. [Google Scholar] [CrossRef]
- Silva, R.V.; de Brito, J.; Dhir, R.K. Availability and processing of recycled aggregates within the construction and demolition supply chain: A review. J. Clean. Prod. 2017, 143, 598–614. [Google Scholar] [CrossRef]
- Li, X.; Huang, R.; Dai, J.; Li, J.; Shen, Q. Research on the evolutionary game of construction and demolition waste (CDW) recycling units’ green behavior, considering remanufacturing capability. Int. J. Environ. Res. Public Health 2021, 18, 9268. [Google Scholar] [CrossRef]
- Cochran, K.; Townsend, T.; Reinhart, D.; Heck, H. Estimation of regional building-related C&D debris generation and composition: Case study for Florida, US. Waste Manag. 2007, 27, 921–931. [Google Scholar] [CrossRef]
- Christensen, T.B.; Johansen, M.R.; Buchard, M.V.; Glarborg, C.N. Closing the material loops for construction and demolition waste: The circular economy on the island Bornholm, Denmark. Resour. Conserv. Recycl. Adv. 2022, 15, 200104. [Google Scholar] [CrossRef]
- Coelho, A.; de Brito, J. Distribution of materials in construction and demolition waste in Portugal. Waste Manag. Res. J. A Sustain. Circ. Econ. 2010, 29, 843–853. [Google Scholar] [CrossRef]
- Tokazhanov, G.; Galiyev, O.; Lukyanenko, A.; Nauyryzbay, A.; Ismagulov, R.; Durdyev, S.; Turkyilmaz, A. Circularity assessment tool development for construction projects in emerging economies. J. Clean. Prod. 2022, 362, 132293. [Google Scholar] [CrossRef]
- Li, D.; Peng, Y.; Guo, C.; Tan, R. Pricing Strategy of Construction and Demolition Waste Considering Retailer Fairness Concerns under a Governmental Regulation Environment. Int. J. Environ. Res. Public Health 2019, 16, 3896. [Google Scholar] [CrossRef]
- European Commission. Guidelines for the Waste Audits before Demolition and Renovation Works of Buildings; EU Construction and Demolition Waste Management: Brussels, Belgium, 2018. [Google Scholar]
- Petrović, E.K.; Thomas, C.A. Global Patterns in Construction and Demolition Waste (C&DW) Research: A Bibliometric Analysis Using VOSviewer. Sustainability 2024, 16, 1561. [Google Scholar] [CrossRef]
- Marcellus-Zamora, K.A.; Gallagher, P.M.; Spatari, S. Can Public Construction and Demolition Data Describe Trends in Building Material Recycling? Observations From Philadelphia. Front. Built Environ. 2020, 6, 131. [Google Scholar] [CrossRef]
- Butera, S.; Christensen, T.H.; Astrup, T.F. Life cycle assessment of construction and demolition waste management. Waste Manag. 2015, 44, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Barbhuiya, S.; Das, B.B. Life cycle assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making. Case Stud. Constr. Mater. 2023, 19, e02326. [Google Scholar] [CrossRef]
- Younis, A.; Dodoo, A. Cross-laminated timber for building construction: A life-cycle-assessment overview. J. Build. Eng. 2022, 52, 104482. [Google Scholar] [CrossRef]
- Duan, Z.; Huang, Q.; Zhang, Q. Life cycle assessment of mass timber construction: A review. Build. Environ. 2022, 221, 109320. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Hong, W.-H.; Park, J.-W.; Cha, G.-W. An estimation framework for building information modeling (BIM)-based demolition waste by type. Waste Manag. Res. 2017, 35, 1289–1300. [Google Scholar] [CrossRef]
- Han, D.; Kalantari, M.; Rajabifard, A. Building Information Modeling (BIM) for Construction and Demolition Waste Management in Australia: A Research Agenda. Sustainability 2021, 13, 12983. [Google Scholar] [CrossRef]
- Eadie, R.; Browne, M.; Odeyinka, H.; McKeown, C.; McNiff, S. BIM implementation throughout the UK construction project lifecycle: An analysis. Autom. Constr. 2013, 36, 145–151. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Lin, Y.-H.; Guo, Y. BIM-driven digital twin for demolition waste management of existing residential buildings. Sci. Rep. 2025, 15, 28989. [Google Scholar] [CrossRef]
- Ortlepp, R.; Gruhler, K.; Schiller, G. Materials in Germany’s domestic building stock: Calculation model and uncertainties. Build. Res. Inf. 2016, 46, 164–178. [Google Scholar] [CrossRef]
- Blengini, G.A. Life cycle of buildings, demolition and recycling potential: A case study in Turin, Italy. Build. Environ. 2009, 44, 319–330. [Google Scholar] [CrossRef]
- Ortlepp, R.; Gruhler, K.; Schiller, G. Material stocks in Germany’s non-domestic buildings: A new quantification method. Build. Res. Inf. 2015, 44, 840–862. [Google Scholar] [CrossRef]
- Kleemann, F.; Lederer, J.; Aschenbrenner, P.; Rechberger, H.; Fellner, J. A method for determining buildings’ material composition prior to demolition. Build. Res. Inf. 2014, 44, 51–62. [Google Scholar] [CrossRef]
- Kleemann, F.; Lederer, J.; Rechberger, H.; Fellner, J. GIS-based analysis of Vienna’s material stock in buildings. Res. Anal. 2016, 21, 368–380. [Google Scholar] [CrossRef]
- Tanikawa, H.; Managi, S.; Lwin, C.M. Estimates of lost material stock of buildings and roads due to the Great East Japan Earthquake and Tsunami. J. Ind. Ecol. 2014, 18, 421–431. [Google Scholar] [CrossRef]
- Bureau of National Statistics. Demography. 2025. Available online: https://stat.gov.kz/en/industries/social-statistics/demography/ (accessed on 22 January 2025).
- Akanbi, L.A.; Oyedele, L.O.; Akinade, O.O.; Ajayi, A.O.; Delgado, M.D.; Bilal, M.; Bello, S.A. Salvaging building materials in a circular economy: A BIM-based whole-life performance estimator. Resour. Conserv. Recycl. 2017, 129, 175–186. [Google Scholar] [CrossRef]
- Department of Housing and Housing Inspection of the City of Astana. List of Dilapidated Houses in the City of Astana Subject to Demolition as Part of the Implementation of the Housing Renovation Project for 2023–2029. 2023. Available online: https://www.gov.kz/memleket/entities/astana-uzh/press/news/details/586289?lang=ru (accessed on 3 July 2024).
- Smailov, A. On Approval of the State Renovation Program and Modernization of the Housing Stock of the City of Astana Until 2028. 2023. Available online: https://legalacts.egov.kz/npa/view?id=14706114 (accessed on 12 June 2024).
- Wu, H.; Duan, H.; Zheng, L.; Wang, J.; Niu, Y.; Zhang, G. Demolition waste generation and recycling potentials in a rapidly developing flagship megacity of South China: Prospective scenarios and implications. Constr. Build. Mater. 2016, 113, 1007–1016. [Google Scholar] [CrossRef]
- Yu, B.; Wang, J.; Li, J.; Zhang, J.; Lai, Y.; Xu, X. Prediction of large-scale demolition waste generation during urban renewal: A hybrid trilogy method. Waste Manag. 2019, 89, 1–9. [Google Scholar] [CrossRef]
- Li, J.; Ding, Z.; Mi, X.; Wang, J. A model for estimating construction waste generation index for building projects in China. Resour. Conserv. Recycl. 2013, 74, 20–26. [Google Scholar] [CrossRef]
- Llatas, C. A model for quantifying construction waste in projects according to the European Waste List. Waste Manag. 2011, 31, 1261–1276. [Google Scholar] [CrossRef]
- Reixach, F.M.; Gonzàlez, J.M.; Sagrera, A.; Casado, I. Plan de Gestión de Residuos en las Obras de Construcción y Demolición: Proyecto LIFE 98/351, Programa de Acciones Técnicas Para Fomentar la Valorización, Minimización y Selección de Residuos Originados en las Obras de Construcción y Demolición; Institut de Tecnologia de la Construcció de Catalunya (ITeC): Barcelona, Spain, 2000; ISBN 84-7853-393-1. [Google Scholar]
- Villoria Sáez, P.; Porras-Amores, C.; del Río Merino, M. New quantification proposal for construction waste generation in new residential constructions. J. Clean. Prod. 2015, 102, 58–65. [Google Scholar] [CrossRef]
- Coelho, A.; de Brito, J. Generation of construction and demolition waste in Portugal. Waste Manag. Res. J. A Sustain. Circ. Econ. 2011, 29, 739–750. [Google Scholar] [CrossRef]
- Cochran, K.M.; Townsend, T.G. Estimating construction and demolition debris generation using a materials flow analysis approach. Waste Manag. 2010, 30, 2247–2254. [Google Scholar] [CrossRef]
- General Secretariat of the Environment. Plan Nacional de Residuos de Construcción y Demolición (PNRCD) 2001–2006. Boletín Of. Estado (BOE) 2001, 145, 21855–21863. [Google Scholar]
- Carpio, M.; Roldán-Fontana, J.; Pacheco-Torres, R.; Ordóñez, J. Construction waste estimation depending on urban planning options in the design stage of residential buildings. Constr. Build. Mater. 2016, 113, 561–570. [Google Scholar] [CrossRef]
- Pacheco-Torres, R.; Jadraque, E.; Roldán-Fontana, J.; Ordóñez, J. Analysis of CO2 emissions in the construction phase of single-family detached houses. Sustain. Cities Soc. 2014, 12, 63–68. [Google Scholar] [CrossRef]
- Asif, M.; Muneer, T.; Kelley, R. Life cycle assessment: A case study of a dwelling home in Scotland. Build. Environ. 2007, 42, 1391–1394. [Google Scholar] [CrossRef]
- Villoria Sáez, P.; Santa Cruz Astorqui, J.; del Río Merino, M.; del Pilar Mercader Moyano, M.; Rodríguez Sánchez, A. Estimation of construction and demolition waste in building energy efficiency retrofitting works of the vertical envelope. J. Clean. Prod. 2018, 172, 2978–2985. [Google Scholar] [CrossRef]
- Hollberg, A.; Tschetwertak, J.; Schneider, S.; Habert, G. Design-integrated LCA using early BIM. Des. Sustain. Technol. Prod. Policies 2018, 269–279. [Google Scholar] [CrossRef]
- SNiP 2.08.01-89; Жилые Здания (Residential Buildings). Gosstroy Rossii: Moscow, Russia, 1999.
- NTP RK 02-01-1.1-2011; Design of Concrete and Reinforced Concrete Structures from Heavy Concrete Without Pre-Stressing Reinforcement. KazNIISA: Almaty, Kazakhstan, 2011.
- GOST 530-2012; Ceramic Brick And Stone. General Specifications. Interstate Standard: Moscow, Russia, 2012.
- GOST 2140-81; Visible Defects in Wood Classification, Terms and Definitions, Methods of Measurement. Interstate standard: Moscow, Russia, 2006.
- STB 1704-2012; Non-Prestressed Reinforcement for Reinforced Concrete Structures. Gosstandart of the Republic of Belarus: Minsk, Belarus, 2012.
- Waste & Resources Action Programme. WRAP Reclaimed Building Products Guide; Waste & Resources Action Programme: Banbury, UK; Oxon, UK, 2008; pp. 1–80. [Google Scholar]
- Cooper, D.R.; Allwood, J.M. Reusing steel and aluminum components at end of product life. Environ. Sci. Technol. 2012, 46, 10334–10340. [Google Scholar] [CrossRef]
- Schultmann, F. Sustainable Deconstruction of Buildings. In Smart & Sustainable Built Environments; Yang, J., Brandon, P.S., Sidwell, A.C., Eds.; Blackwell Publishing: Oxford, UK, 2005; pp. 148–160. [Google Scholar]
- Nakajima, S.; Arikawa, S.; Koga, J. The State of Deconstruction in Japan. In Deconstruction and Materials Reuse: An International Overview; Chini, A.R., Ed.; Building Research Establishment (BRE): Watford, UK, 2005; CIB Publication 300; pp. 100–140. [Google Scholar]
- Eunomia Research & Consulting Ltd. Study to Identify Member States at Risk of Non-Compliance with the 2020 Target of the Waste Framework Directive and to Follow-Up Phase 1 and 2 of the Compliance Promotion Exercise—Final Report; European Commission, DG Environment: Brussels, Belgium, 2018; Contract No. 070201/2017/766886/SER/ENV.B.3; Available online: https://eedsa.gr/site/wp-content/uploads/2019/01/Early-Warning-System_Final_Report.pdf (accessed on 3 April 2024).
- Eurostat. The Recovery Rate of Construction and Demolition Waste. 2023. Available online: https://data.europa.eu/data/datasets/uczdo4z1o5qcllbdtbkhq?locale=en (accessed on 3 April 2024).
- Deloitte. Resource Efficient Use of Mixed Wastes: Improving Management of Construction and Demolition Waste—Final Report; European Commission, DG ENV: Brussels, Belgium, 2017; Specific Contract No. 07.027727/2014/S12.697004 IETUJENV.A2; Available online: https://op.europa.eu/en/publication-detail/-/publication/78e42e6c-d8a6-11e7-a506-01aa75ed71a1/language-en (accessed on 3 April 2024).
- Galán, B.; Viguri, J.R.; Cifrian, E.; Dosal, E.; Andres, A. Influence of input streams on the construction and demolition waste (CDW) recycling performance of basic and advanced treatment plants. J. Clean. Prod. 2019, 236, 117523. [Google Scholar] [CrossRef]
- Dahlbo, H.; Bachér, J.; Lähtinen, K.; Jouttijärvi, T.; Suoheimo, P.; Mattila, T.; Sironen, S.; Myllymaa, T.; Saramäki, K. Construction and demolition waste management—A holistic evaluation of environmental performance. J. Clean. Prod. 2015, 107, 333–341. [Google Scholar] [CrossRef]
- Hurley, J.; Hobbs, G. Deconstruction and Materials Reuse: An International Overview. In Deconstruction and Materials Reuse: An International Overview; Chini, A.R., Ed.; Building Research Establishment (BRE): Watford, UK, 2005; CIB Publication 300; pp. 1–413. [Google Scholar]
- Moschen-Schimek, J.; Kasper, T.; Huber-Humer, M. Critical review of the recovery rates of construction and demolition waste in the European Union—An analysis of influencing factors in selected EU countries. Waste Manag. 2023, 167, 150–164. [Google Scholar] [CrossRef] [PubMed]
- BIO Service Contract on Management of Construction and Demolition Waste—SR1. 2011. Available online: https://www.btbab.com/wp-content/uploads/documentos/legislacion/UE-BIO_Construction_and_demolition_waste_final_report_09022011.pdf (accessed on 3 April 2024).
- Lu, W.; Tam, V.W.Y. Construction waste management policies and their effectiveness in Hong Kong: A longitudinal review. Renew. Sustain. Energy Rev. 2013, 23, 214–223. [Google Scholar] [CrossRef]
- Villoria Sáez, P.; Porras-Amores, C.; del Río Merino, M. Estimation of construction and demolition waste. In Construction and Demolition Waste; Elsevier: Amsterdam, The Netherlands, 2020; pp. 13–30. [Google Scholar] [CrossRef]
- Tam, V.; Lu, W. Construction waste management profiles, practices, and performance: A cross-jurisdictional analysis in four countries. Sustainability 2016, 8, 190. [Google Scholar] [CrossRef]
- Wijayasundara, M.; Mendis, P.; Zhang, L.; Sofi, M. Financial assessment of manufacturing recycled aggregate concrete in ready-mix concrete plants. Resour. Conserv. Recycl. 2016, 109, 187–201. [Google Scholar] [CrossRef]
- Trading Economics. Kazakhstan GDP from Construction. 2024. Available online: https://tradingeconomics.com/kazakhstan/gdp-from-construction (accessed on 3 April 2024).
- Bureau of National Statistics. Environmental Protection in the Republic of Kazakhstan. 2023. Available online: https://stat.gov.kz/en/ (accessed on 2 April 2024).
- Eurostat. Generation of Waste by Waste Category, Hazardousness, and NACE Rev. 2 Activity. 2024. Available online: https://ec.europa.eu/eurostat/databrowser/view/env_wasgen__custom_15055430/default/table?lang=en (accessed on 19 January 2025).
- Akimat of the City of Astana. Construction Collection Site Launched in Astana. 2023. Available online: https://www.gov.kz/memleket/entities/astana/press/news/details/526466?lang=ru (accessed on 21 July 2024).
- Astana Recycling Development. The First Sanctioned Place in the Republic of Kazakhstan—Site for Storing and Processing Construction Waste in Astana. 2023. Available online: https://astanard.kz/ (accessed on 20 June 2024).
- Turkyilmaz, A.; Guney, M.; Karaca, F.; Bagdatkyzy, Z.; Sandybayeva, A.; Sirenova, G. A Comprehensive Construction and Demolition Waste Management Model using PESTEL and 3R for Construction Companies Operating in Central Asia. Sustainability 2019, 11, 1593. [Google Scholar] [CrossRef]
- № 400-VI; Ecological Code of the Republic of Kazakhstan. Parliament of the Republic of Kazakhstan: Astana, Kazakhstan, 2021. Available online: https://adilet.zan.kz/rus/docs/K2100000400 (accessed on 26 June 2024).
- Official Information Source of the Prime Minister of the Republic of Kazakhstan. 37 New Solid Waste Treatment Plants to be Launched in Kazakhstan. 2024. Available online: https://primeminister.kz/en/news/37-new-solid-waste-treatment-plants-to-be-launched-in-kazakhstan-27502 (accessed on 20 June 2024).
- Nadeem, A.; Khamatova, A.; Hossain, M.A.; Leung, H.Y. Construction and demolition waste management on construction sites in Kazakhstan. In Advances in Science, Technology & Innovation/Advances in Science, Technology & Innovation; Springer: Cham, Switzerland, 2020; pp. 57–62. [Google Scholar] [CrossRef]
- Ajdukiewicz, A.; Kliszczewicz, A. Influence of recycled aggregates on mechanical properties of HS/HPC. Cem. Concr. Compos. 2002, 24, 269–279. [Google Scholar] [CrossRef]
- Evangelista, L.; Brito, J. Mechanical behaviour of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 2007, 29, 397–401. [Google Scholar] [CrossRef]
- Cardoso, R.; Silva, R.V.; de Brito, J.; Dhir, R. Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review. Waste Manag. 2016, 49, 131–145. [Google Scholar] [CrossRef]
- Azevedo, A.R.G.; Cecchin, D.; Carmo, D.F.; Silva, F.C.; Campos, C.M.O.; Shtrucka, T.G.; Marvila, M.T.; Monteiro, S.N. Analysis of the compactness and properties of the hardened state of mortars with recycling of construction and demolition waste (CDW). J. Mater. Res. Technol. 2020, 9, 5942–5952. [Google Scholar] [CrossRef]
- Ulsen, C.; Antoniassi, J.L.; Martins, I.M.; Henrique, K. High quality recycled sand from mixed CDW: Is that possible? J. Mater. Res. Technol. 2021, 12, 29–42. [Google Scholar] [CrossRef]
- Zhao, Z.; Courard, L.; Groslambert, S.; Jehin, T.; Leonard, A.; Xiao, J. Use of recycled concrete aggregates from precast block for the production of new building blocks: An industrial scale study. Resour. Conserv. Recycl. 2020, 157, 104786. [Google Scholar] [CrossRef]




| Type 1 | Type 2 | Type 3 | Type 4 | |||||
|---|---|---|---|---|---|---|---|---|
| Type 1-1 | Type 1-2 | Type 2-1 | Type 2-2 | Type 2-3 | Type 3-1 | Type 4-1 | Type 4-2 | |
| Steel | 3.11% | 3.06% | 2.39% | 2.38% | 2.37% | 2.72% | 3.90% | 3.88% |
| Concrete | 51.99% | 52.29% | 55.50% | 55.16% | 55.16% | 56.24% | 58.10% | 58.25% |
| Brick | 16.56% | 18.46% | 13.04% | 12.95% | 12.96% | 16.99% | 13.01% | 12.96% |
| Wood | 10.53% | 8.48% | 11.09% | 11.12% | 11.12% | 7.06% | 7.52% | 7.49% |
| Misc | 17.80% | 17.71% | 17.98% | 18.40% | 18.40% | 16.99% | 17.49% | 17.42% |
| Total | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% |
| Material | RR | Building Type | Location | Study | Remarks |
|---|---|---|---|---|---|
| Bricks | 68% | Rural house | Denmark | [21] | The study was performed on a rural house in the remote island of Bornholm, Denmark. The study mostly focused on the deconstruction of buildings and the use of materials for the construction of new buildings on an island (closed-loop system on an island scale). |
| Stones | 86% | Rural house | Denmark | ||
| Wooden components (structural beams, wooden floorboard) | 71% | Rural house | Denmark | ||
| Bricks (cement) | 6% | General | UK | [60] | The study was performed by a governmental agency in the UK. The study examined CDW from both demolition and deconstruction. Data for bricks specifically included demolition. |
| Steel rebars | 22% | General | UK | [61] | The study specifically considers the reuse of metal elements on a broad scale (not specifically in construction). |
| Concrete (structural) | 80% | General | EU | [71] | The study was performed by an EU governmental agency and considers CDW on a broad scale. |
| Concrete (in situ) | 97% | General | Germany | [62] | The study was performed on a broad scale in Germany; however, the study covers only deconstruction and provides vague terms such as “up to 97%”. |
| Concrete (non-structural) | 96% | General | Japan | [63] | Official governmental reports of Japan. |
| Wooden Components (wood, general) | 38% | General | Japan | ||
| Wooden components (beams) | 30% | General | UK | [60] | The study mentions the term “salvageable”, interpreted as “recycling” or “reusing”. |
| Study | Location | RR |
|---|---|---|
| [6] | Denmark | 40% |
| [64] | Bulgaria | 54% |
| [65] | Croatia | 69% |
| [66] | Portugal | 35% |
| [67] | Spain | 46% |
| [68] | EU | 47% |
| [69] | UK | 35% |
| [70] | Austria | 90% |
| [70] | Belgium | 98% |
| [70] | Germany | 92% |
| [71] | Hungary | 16% |
| DW Type | Total Mass for Years 2023–2029, 106 kg | Average Mass per Year, 106 kg | Density, kg/m3 | Average Volume per Year, m3 |
|---|---|---|---|---|
| Wood | 139.58 | 23.26 | 700 | 33,228 |
| Brick | 289.22 | 48.20 | 1600 | 30,125 |
| Concrete | 1071.58 | 178.59 | 2350 | 75,995 |
| Total | - | 139,348 | ||
| Demolition Waste Constituent | Number of Reference Values Taken from the Literature | Mean | Relative Standard Deviation (as %) | Comments on Variability/Uncertainty |
|---|---|---|---|---|
| Concrete | 3 | 91 | 10.5 | Fairly consistent and low RSD, relatively low variability; values typical for measured physical properties |
| Wood | 3 | 46 | 47.2 | Moderate RSD but higher than that of concrete, moderate variability; higher variability may be due to naturally varying material properties |
| Brick | 2 | 37 | 118 | High RSD, high variability; only two reference values, implying uncertainty |
| Steel | 1 | Not available | Not available | Only one reference value, implying uncertainty |
| Miscellaneous | 11 | 57 | 47.4 | Moderate RSD, moderate variability; uncertainty (as well as variability) incorporated due to diverse material types grouped under this category |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nauyryzbay, A.; Kumisbek, A.; Amangeldiyeva, A.; Kim, J.R.; Guney, M. Estimating Demolition Waste Recoverable Fractions in Rapidly Transforming Urban Zones. Sustainability 2025, 17, 9686. https://doi.org/10.3390/su17219686
Nauyryzbay A, Kumisbek A, Amangeldiyeva A, Kim JR, Guney M. Estimating Demolition Waste Recoverable Fractions in Rapidly Transforming Urban Zones. Sustainability. 2025; 17(21):9686. https://doi.org/10.3390/su17219686
Chicago/Turabian StyleNauyryzbay, Aslan, Aiganym Kumisbek, Arna Amangeldiyeva, Jong Ryeol Kim, and Mert Guney. 2025. "Estimating Demolition Waste Recoverable Fractions in Rapidly Transforming Urban Zones" Sustainability 17, no. 21: 9686. https://doi.org/10.3390/su17219686
APA StyleNauyryzbay, A., Kumisbek, A., Amangeldiyeva, A., Kim, J. R., & Guney, M. (2025). Estimating Demolition Waste Recoverable Fractions in Rapidly Transforming Urban Zones. Sustainability, 17(21), 9686. https://doi.org/10.3390/su17219686

