Assessment of the Energy Recovery Potential of Biomass Obtained from Non-Productive Lands in the Jiu Valley, Romania
Abstract
1. Introduction
2. Materials and Methods
2.1. Living Lab Location and Design
2.2. Theory of Selecting Biomass Samples
3. Results
- -
- mWet = mass of the wet sample (before drying), i.e., the sample as taken, also containing water.
- -
- mDried = mass of the dry sample (after drying at a standard temperature, usually 105 °C, to constant mass).
- -
- mWet = mass of the wet sample (as taken, with water).
- -
- mDried = mass of the sample dried at 105 °C (total dry matter = TS).
- -
- mBurned = mass of the residue remaining after incineration at 550 °C (ash, i.e., the inorganic mineral part).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Delivering the European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_ro (accessed on 13 June 2025).
- Sustainability of Crop Production from Polluted Lands. Energy, Ecology and Environment. Available online: https://link.springer.com/article/10.1007/s40974-016-0007-x (accessed on 13 June 2025).
- European Commission. Proposal for a Directive on Soil Monitoring and Resilience (Soil Monitoring Law), COM(2023)416 Final, 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52023PC0416 (accessed on 13 June 2025).
- Pancaldi, F.; Trindade, L.M. Marginal Lands to Grow Novel Bio-Based Crops: A Plant Breeding Perspective. Front. Plant Sci. 2020, 11, 227. [Google Scholar] [CrossRef]
- European Commission. EU Soil Strategy for 2030—Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate. Available online: https://eur-lex.europa.eu/legal-content/RO/TXT/?uri=CELEX:52021DC0699 (accessed on 13 June 2025).
- EPRC. Energy Transition in Europe’s Coal Regions: Issues for Regional Policy. Available online: https://eprc-strath.org/publication/energy-transition-in-europes-coal-regions-issues-for-regional-policy/ (accessed on 13 June 2025).
- Gomes, H.I.; Dias-Ferreira, C.; Ribeiro, A.B. Phytoremediation for Bioenergy: Challenges and Opportunities. Environ. Technol. Rev. 2013, 2, 1–26. [Google Scholar] [CrossRef]
- Regulation (EU) 2024/1735—Net-Zero Technology Manufacturing Ecosystem. Available online: http://data.europa.eu/eli/reg/2024/1735/oj/ron (accessed on 13 June 2025).
- Ahmadzai, H.; Tutundjian, S.; Elouafi, I. Policies for Sustainable Agriculture and Livelihood in Marginal Lands: A Review. Sustainability 2021, 13, 8692. [Google Scholar] [CrossRef]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal Agricultural Land Low-Input Systems for Biomass Production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef]
- An Overview of Process Monitoring for Anaerobic Digestion. Biosyst. Eng. 2021, 207, 106–119. [CrossRef]
- TRACER Project. Possible Transition Scenarios from Coal and Financing Opportunities for Jiu Valley Micro-Region. Available online: https://www.researchgate.net/ (accessed on 13 June 2025). [CrossRef]
- He, Y.; Jaiswal, D.; Liang, X.; Sun, C.; Long, S.P. Perennial biomass crops on marginal land improve both regional climate and agricultural productivity. GCB Bioenergy 2022, 14, 558–571. [Google Scholar] [CrossRef]
- Biomass Production from Neglected and Underutilised Tall Perennial Grasses on Marginal Lands in India: A Brief Review. Available online: https://www.researchgate.net/publication/325650688_Biomass_production_from_neglected_and_underutilized_tall_perennial_grasses_on_marginal_lands_in_India_a_brief_review (accessed on 13 June 2025).
- Malec, M. The Prospects for Decarbonisation in the Context of Reported Resources and Energy Policy Goals: The Case of Poland. Energy Policy 2022, 161, 112763. [Google Scholar] [CrossRef]
- Greening the Heartlands of Coal in Europe. Available online: https://www.researchgate.net/publication/320068825_Greening_the_Heartlands_of_Coal_in_Europe (accessed on 13 June 2025).
- VDI. VDI 4630—Fermentation of Organic Materials—Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests; Verein Deutscher Ingenieure: Düsseldorf, Germany, 2016; Available online: https://www.vdi.de/en/home/vdi-standards/details/vdi-4630-fermentation-of-organic-materials-characterization-of-the-substrate-sampling-collection-of-material-data-fermentation-tests (accessed on 13 June 2025).
- Morán-Alonso, N.; Viedma-Guiard, A.; Simón-Rojo, M.; Córdoba-Hernández, R. Agricultural Land Suitability Analysis for Land Use Planning: The Case of the Madrid Region. Land 2025, 14, 134. [Google Scholar] [CrossRef]
- Forage Crops in the Bioenergy Revolution: From Fields to Fuel. Available online: https://www.researchgate.net/publication/388209921_Forage_Crops_in_the_BioenergyRevolution_From_Fields_to_Fuel (accessed on 13 June 2025).
- Regulation (EU) 2019/1009—EU Fertilising Products. Available online: http://data.europa.eu/eli/reg/2019/1009/oj/ron (accessed on 13 June 2025).
- Sweet Sorghum—An Alternative Energy Crop. Available online: https://www.researchgate.net/publication/229013045_SWEET_SORGHUM-AN_ALTERNATIVE_ENERGY_CROP (accessed on 13 June 2025).
- Chen, W.; Xie, Q.; Guo, L. Innovative Approaches in Agricultural Sustainability and Environmental Impact Management: Challenges and Opportunities. Agriculture 2024, 14, 2316. [Google Scholar] [CrossRef]
- The Biogas Market in Southern and Eastern Europe: Promoting Biogas by Non-Technical Activities. Available online: https://www.researchgate.net/publication/229042957_The_biogas_market_in_Southern_and_Eastern_Europe_Promoting_biogas_by_non-technical_activities (accessed on 13 June 2025).
- Roman, A.; Bucura, F.; Botoran, O.R.; Radu, G.-L.; Niculescu, V.-C.; Soare, A.; Ion-Ebrasu, D.; Vagner, I.; Dunca, E.-C.; Șandru, C.; et al. Thermochemical Processing of Agricultural Waste into Biochar with Potential Application for Coal-Mining Degraded Soils. Results Eng. 2025, 26, 105497. [Google Scholar] [CrossRef]
- Restoration of Degraded Soil for Sustainable Agriculture. Available online: https://www.researchgate.net/publication/335382275_Restoration_of_Degraded_Soil_for_Sustainable_Agriculture (accessed on 13 June 2025).
- Singh, R.; Singh, O.V. Energy Crops and Their Implications on Soil and Environment. Agron. J. 2009, 101, 600–607. [Google Scholar] [CrossRef]
- Is Energy Cropping in Europe Compatible with Biodiversity?—Opportunities and Threats to Biodiversity from Land-Based Production of Biomass for Bioenergy Purposes. Available online: https://www.researchgate.net/publication/257421265_Is_energy_cropping_in_Europe_compatible_with_biodiversity__Opportunities_and_threats_to_biodiversity_from_land-based_production_of_biomass_for_bioenergy_purposes (accessed on 13 June 2025).
- Potential Land Availability for Energy Crops Production in Europe. Available online: https://www.researchgate.net/publication/259255432_Potential_land_availability_for_energy_crops_production_in_Europe (accessed on 13 June 2025).
- Zhang, J.; Chang, N.; Fagerholm, C.; Qiu, M.; Shuai, L.; Egan, R.; Yuan, C. Techno-economic and environmental sustainability of industrial-scale productions of perovskite solar cells. Renew. Sustain. Energy Rev. 2022, 158, 112146. [Google Scholar] [CrossRef]
- Perea-Moreno, M.-A.; Samerón-Manzano, E.; Perea-Moreno, A.-J. Biomass as Renewable Energy: Worldwide Research Trends. Sustainability 2019, 11, 863. [Google Scholar] [CrossRef]
- Hall, D.O. Biomass for Energy in the Developing Countries, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1981; Available online: https://shop.elsevier.com/books/biomass-for-energy-in-the-developing-countries/hall/978-0-08-028689-1 (accessed on 13 June 2025).
- Organic Waste Recycling: Technology, Management and Sustainability, 4th ed.; IWA Publishing: London, UK, 2016. [CrossRef]
- A Sustainable Second-Generation Biomass for Bioenergy. In Jatropha curcas L: A Potential 2G Energy Crop to Produce Biofuel in Bangladesh; Springer: Cham, Switzerland, 2025. [CrossRef]
- (PDF) A Review of Bioethanol Production from Plant-Based Waste Biomass by Yeast Fermentation. Available online: https://www.researchgate.net/publication/313236834_A_Review_of_Bioethanol_Production_from_Plant-based_Waste_Biomass_by_Yeast_Fermentation (accessed on 13 June 2025).
- Rupasinghe, R.L.; Perera, P.; Bandara, R.; Amarasekera, H.; Vlosky, R. Insights into Properties of Biomass-Energy Pellets Made from Mixtures of Woody and Non-Woody Biomass: A Meta-Analysis. Energies 2024, 17, 54. [Google Scholar] [CrossRef]
- Dida, G. Biotechnology Towards Energy Crops. CABI Agric. Biosci. 2024, 5, 24. [Google Scholar] [CrossRef]
- Batidzirai, B.E.; Smeets, M.W.; Faaij, A.P.C. Harmonising Bioenergy Resource Potentials—Methodological Lessons from Review of State-of-the-Art Bioenergy Potential Assessments. Renew. Sustain. Energy Rev. 2012, 16, 6598–6630. [Google Scholar] [CrossRef]
- (PDF) Land Use Requirements of Solar and Wind Power Generation: Understanding a Decade of Academic Research. Available online: https://www.researchgate.net/publication/345638945_Land_Use_Requirements_of_Solar_and_Wind_Power_Generation_Understanding_a_Decade_of_Academic_Research (accessed on 13 June 2025).
- Bioenergy Plants: A Sustainable Solution for Heavy Metal Phytoremediation. In Bioenergy Crops; CRC Press: Boca Raton, FL, USA, 2022. [CrossRef]
- Grippi, D.; Clemente, R.; Bernal, M.P. Chemical and Bioenergetic Characterisation of Biofuels from Plant Biomass: Perspectives for Southern Europe. Appl. Sci. 2020, 10, 3571. [Google Scholar] [CrossRef]
- Olguin-Maciel, E.; Singh, A.; Chable-Villacis, R.; Tapia-Tussell, R.; Ruiz, H.A. Consolidated Bioprocessing—An Innovative Strategy Towards Sustainability for Biofuels Production from Crop Residues: An Overview. Agronomy 2020, 10, 1834. [Google Scholar] [CrossRef]
- Masjedi, A.; Crawford, M.M.; Carpenter, N.R.; Tuinstra, M.R. Multi-Temporal Predictive Modelling of Sorghum Biomass Using UAV-Based Hyperspectral and LiDAR Data. Remote Sens. 2020, 12, 3587. [Google Scholar] [CrossRef]
- Jain, S.; Tembhurkar, A.R. Sustainable Amelioration of Fly-Ash Dumps Linking Bio-Energy Plantation, Bioremediation and Amendments: A Review. J. Environ. Manag. 2022, 314, 115124. [Google Scholar] [CrossRef]
- Manyi-Loh, C.E.; Lues, R. Anaerobic Digestion of Lignocellulosic Biomass: Substrate Characteristics (Challenge) and Innovation. Fermentation 2023, 9, 755. [Google Scholar] [CrossRef]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- Mussoline, W.; Esposito, G.; Giordano, A.; Lens, P.N.L. Anaerobic Digestion of Rice Straw: A Review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 895–915. [Google Scholar] [CrossRef]
- Biological and Biosystems Engineering for Processing of Switchgrass Feedstocks (for Biofuel Production). In Compendium of Bioenergy Plants; CRC Press: Boca Raton, FL, USA, 2014; Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/b16681-11/biological-biosystems-engineering-processing-switchgrass-feedstocks-biofuel-production-arpan-jain-terry-walker-karl-kelly (accessed on 13 June 2025).
- Potential Contribution of Biomass to the Sustainable Energy Development. Available online: https://www.researchgate.net/publication/223631907_Potential_Contribution_of_Biomass_to_the_Sustainable_Energ_Development (accessed on 13 June 2025).
- Susilawati, S.; Surdianto, Y.; Erythrina, E.; Bhermana, A.; Liana, T.; Syafruddin, S.; Anshori, A.; Nugroho, W.A.; Hidayanto, M.; Widiastuti, D.P.; et al. Strategic, Economic, and Potency Assessment of Sorghum Development in the Tidal Swamplands of Central Kalimantan, Indonesia. Agronomy 2023, 13, 2559. [Google Scholar] [CrossRef]
- The Impact of Drought on Sorghum Production, and Farmers’ Varietal and Trait Preferences, in North-Eastern Ethiopia: Implications for Breeding. Available online: https://www.researchgate.net/publication/322003237_The_impact_of_drought_on_sorghum_production_and_farmer’s_varietal_and_trait_preferences_in_the_north_eastern_Ethiopia_implications_for_breeding (accessed on 13 June 2025).
- Nieman, C.C.; Franco, J.G.; Raper, R.L. Inconsistent Yield Response of Forage Sorghum to Tillage and Row Arrangement. Agronomy 2024, 14, 1510. [Google Scholar] [CrossRef]
- Grain Sorghum Response to NPK Fertiliser in the Guinea Savanna of Ghana. Available online: https://www.researchgate.net/publication/230744602_Grain_Sorghum_Response_to_NPK_Fertilizer_in_the_Guinea_avanna_of_Ghana (accessed on 13 June 2025).
- Biological Characteristics and Productivity of Sweet Sorghum Varieties under Arid Conditions in South-Eastern Kazakhstan. Available online: https://ibn.idsi.md/ro/vizualizare_articol/134084 (accessed on 13 June 2025).
- Effect of Tithonia Biomass and Mineral Fertiliser Application on Soybean Performance in Degraded Technosols from Tantalum Mining in Gatumba, Rwanda. Available online: https://ir-library.ku.ac.ke/items/4c34921b-5ccb-44eb-8b16-473549afede8 (accessed on 13 June 2025).
- Shortall, O.K. “Marginal Land” for Energy Crops: Exploring Definitions and Embedded Assumptions. Energy Policy 2013, 62, 19–27. [Google Scholar] [CrossRef]
- Dale, V.H.; Efroymson, R.A.; Kline, K.L. The Land Use–Climate Change–Energy Nexus. Landsc. Ecol. 2012, 27, 909–930. [Google Scholar] [CrossRef]
- Muth, D.J., Jr.; Bryden, K.M. An Integrated Model for Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems. Environ. Model. Softw. 2013, 39, 50–69. [Google Scholar] [CrossRef]
- Bioenergy Crops in the Perspective of Climate Change. In Biotechnology and Omics Approaches for Bioenergy Crops; Springer: Singapore, 2024. [CrossRef]
- An Integrated Landscape Management Approach to Sustainable Bioenergy Production. Available online: https://www.researchgate.net/publication/318041494_An_Integrated_Landscape_Management_Approach_to_Sustaiable_Bioenergy_Production (accessed on 13 June 2025).
- Shilpi, S.; Lamb, D.; Bolan, N.; Seshadri, B.; Choppala, G.; Naidu, R. Waste to Watt: Anaerobic Digestion of Wastewater-Irrigated Biomass for Energy and Fertiliser Production. J. Environ. Manag. 2019, 239, 73–83. [Google Scholar] [CrossRef]
- Fertiliser Microdosing Technology in Sorghum, Millet and Maize Production at Small-Scale Level in Africa: A Review. Available online: https://www.researchgate.net/publication/325149697_Fertilizer_Microdosing_Technology_in_Sorghum_Millet_and_Maize_Production_at_Small-Scale_Level_in_Africa_A_Review (accessed on 13 June 2025).
- The Environmental Sustainability of Anaerobic Digestion as a Biomass Valorisation Technology. Available online: https://www.researchgate.net/publication/230619254_The_environmental_sustainability_of_anaerobic_digestion_as_a_biomass_valorization_technology (accessed on 13 June 2025).
- Gerwin, W.; Repmann, F.; Galatsidas, S.; Vlachaki, D.; Gounaris, N.; Baumgarten, W.; Volkmann, C.; Keramitzis, D.; Kiourtsis, F.; Freese, D. Assessment and Quantification of Marginal Lands for Biomass Production in Europe Using Soil-Quality Indicators. SOIL 2018, 4, 267–290. [Google Scholar] [CrossRef]
- Tampio, E.; Marttinen, S.; Rintala, J. Liquid Fertiliser Products from Anaerobic Digestion of Food Waste: Mass, Nutrient and Energy Balance of Four Digestate Liquid Treatment Systems. J. Clean. Prod. 2016, 125, 22–32. [Google Scholar] [CrossRef]
- Kiesel, A.; von Cossel, M.; Clifton-Brown, J.; Lewandowski, I. Valorisation of marginal agricultural land in the bioeconomy. GCB Bioenergy 2023, 15, 1418–1423. [Google Scholar] [CrossRef]
- Biomass Production on Trace Element-Contaminated Land: A Review. Available online: https://www.researchgate.net/publication/277520351_Biomass_Production_on_Trace_Element-Contaminated_Land_A_Review (accessed on 13 June 2025).
- Concepts of Agricultural Marginal Lands and Their Utilisation: A Review. Available online: https://www.researchgate.net/publication/365426629_Concepts_of_agricultural_marginal_lands_and_their_utilisation_A_review (accessed on 13 June 2025).
- Growing Dedicated Energy Crops on Marginal Lands and Ecosystem Services. Available online: https://www.researchgate.net/publication/305786328_Growing_Dedicated_Energy_Crops_on_Marginal_Lands_and_Ecosystem_Services (accessed on 13 June 2025).
- Slade, R.; Bauen, A.; Gross, R. Global Bioenergy Resources. Nat. Clim. Chang. 2014, 4, 99–105. [Google Scholar] [CrossRef]
- University of Petroșani. PNRR—CeSoH Project Page. Available online: https://www.upet.ro/cesoh-p1-upet (accessed on 13 June 2025).
- Midden, C.; Harris, J.; Shaw, L.; Sizmur, T.; Pawlett, M. The Impact of Anaerobic Digestate on Soil Life: A Review. Appl. Soil Ecol. 2023, 191, 105066. [Google Scholar] [CrossRef]
- Thornton, P.K.; Jones, P.G.; Ericksen, P.J.; Challinor, A.J. Agriculture and Food Systems in Sub-Saharan Africa in a 4 °C+ World. Phil. Trans. R. Soc. A 2011, 369, 1033–1055. [Google Scholar] [CrossRef] [PubMed]
- Economy and Forecast—Article. Available online: https://econ-forecast.org.ua/?page_id=523&lang=uk (accessed on 13 June 2025).
- Sun, Z.; Liu, Q.; Li, Y.; Pan, J. Deciphering the Impact of Lignin on Anaerobic Digestion: Focus on Inhibition Mechanisms and Methods for Alleviating Inhibition. ACS Omega 2024, 9, 25018–25031. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wang, M.; Zhou, D.; Pan, S. Methane Yield Predictive Model Based on the Composition of Biomass: Focus on the Anaerobic Digestion Mode and Regression Method. BioResources 2020, 15, 3850–3858. [Google Scholar] [CrossRef]
- Herrmann, C.; Idler, C.; Heiermann, M. Biogas Crops Grown on Marginal Lands: Cultivation Practice, Biogas Production and Costs. Biosyst. Eng. 2016, 152, 12–26. [Google Scholar] [CrossRef]
- McKendry, P. Energy Production from Biomass (Part 1): Overview of Biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Popp, J.; Lakner, Z.; Harangi-Rákos, M.; Fári, M. The Effect of Bioenergy Expansion: Food, Energy, and Environment. Renew. Sustain. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef]
- Schröder, P.; Beckers, B.; Daniels, S.; Gnädinger, F.; Maestri, E.; Marmiroli, N.; Mench, M.; Millan, R.; Obermeier, M.M.; Oustriere, N.; et al. Intensify Production, Transform Biomass to Energy and Novel Goods and Protect Soils in Europe—A Vision How to Mobilise Marginal Lands. Sci. Total Environ. 2018, 616–617, 1101–1123. [Google Scholar] [CrossRef] [PubMed]







| Cosubstrate | Oven: 20 h at 105 °C | Result | Entry Date BRS | Standard Deviation (SD) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| The Dry Substance (TS) | Average Values | |||||||||
| No | Biomass | Sample | Crucible [g] | mWet + Crucible [g] | mWet [g] | mDried+ Crucible [g] | mDried [g] | (TS) % (by Mass) | (TS) % (by Mass) | (SD) % (by Mass) |
| 1 | maize | P1 | 90.7900 | 91.6000 | 0.8100 | 91.4600 | 0.6700 | 82.716 | 78.5046 | 1.2 |
| P2 | 90.2800 | 91.3900 | 1.1100 | 91.2100 | 0.9300 | 83.783 | 1.1 | |||
| P3 | 91.7000 | 91.1300 | 1.4200 | 92.6900 | 0.9800 | 69.014 | 1.6 | |||
| 2 | soybean | P4 | 94.7400 | 98.8700 | 4.1300 | 96.6900 | 1.9500 | 47.2155 | 47.5235 | 0.7 |
| P5 | 97.3700 | 101.5500 | 4.1800 | 99.3100 | 1.9400 | 46.4115 | 0.8 | |||
| P6 | 78.6900 | 84.3700 | 5.6800 | 81.4700 | 2.7800 | 48.9437 | 0.9 | |||
| 3 | sorghum | P7 | 94.7400 | 98.8700 | 4.1300 | 96.6900 | 1.9500 | 43.3333 | 45.2583 | 1.3 |
| P8 | 97.3700 | 101.5500 | 4.1800 | 99.3100 | 1.9400 | 47.1660 | 1.2 | |||
| P9 | 78.6900 | 84.3700 | 5.6800 | 81.4700 | 2.7800 | 45.2756 | 1.4 | |||
| 4 | inoculum | P10 | 90.7623 | 151.3088 | 60.5465 | 115.0553 | 24.2930 | 40.1229 | 40.6772 | 0.5 |
| P11 | 87.6290 | 143.0318 | 55.4028 | 106.9854 | 19.3564 | 34.9376 | 0.6 | |||
| P12 | 95.3392 | 153.7098 | 58.3706 | 122.7565 | 27.4173 | 46.9711 | 0.5 | |||
| Cosubstrate | Calciner 550 °C | Result | Entry Date BRS | Standard Deviation (SD) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Volatile Solids (VS) | Measurements | Average Values (VS) | ||||||||
| No | Biomass | Sample | mBurned + Crucible [g] | mBurned [g] | mDried [g] | mWet [g] | mBWet [g] | (VS) % (by Mass) | (VS) % (by Mass) | (SD) % (by Mass) |
| 1 | maize | P1 | 90.8400 | 0.0500 | 0.8100 | 0.6700 | 0.0500 | 76.5432 | 71.9319 | 0.6 |
| P2 | 90.3600 | 0.0800 | 1.1100 | 0.9300 | 0.0800 | 76.5766 | 0.5 | |||
| P3 | 91.8000 | 0.0900 | 1.4200 | 0.9800 | 0.0900 | 62.6761 | 0.7 | |||
| 2 | soybean | P4 | 95.2300 | 0.4900 | 4.1300 | 1.9500 | 0.4900 | 35.3511 | 36.0739 | 0.4 |
| P5 | 97.7800 | 0.4100 | 4.1800 | 1.9400 | 0.4100 | 36.6029 | 0.3 | |||
| P6 | 78.4100 | 0.7200 | 5.6800 | 2.7800 | 0.7200 | 36.2676 | 0.4 | |||
| 3 | sorghum | P7 | 91.4300 | 0.4100 | 5.1000 | 2.2100 | 0.4100 | 35.2941 | 37.1874 | 0.6 |
| P8 | 85.7900 | 0.4100 | 4.9400 | 2.3300 | 0.4100 | 38.8664 | 0.7 | |||
| P9 | 90.2900 | 0.4000 | 5.0800 | 2.3000 | 0.4000 | 37.4016 | 0.6 | |||
| 4 | inoculum | P10 | 94.5029 | 3.7406 | 60.5465 | 24.2930 | 3.7406 | 33.9448 | 37.671 | 0.2 |
| P11 | 88.8898 | 1.2608 | 55.4028 | 19.3564 | 1.2608 | 32.6619 | 0.2 | |||
| P12 | 96.7263 | 1.3871 | 58.3706 | 27.4173 | 1.3871 | 44.5947 | 0.3 | |||
| No | Cosubstrate | Water (W) | The Dry Substance (TS) | Volatile Solids (VS) | Ashes (A) | Standard Deviation (SD) | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| [g] | % (by Mass) | [g] | % (by Mass) | [g] | % (by Mass) | [g] | % (by Mass) | (SD) % (by Mass) | |||
| 1 | maize | P1 | 0.1400 | 17.2840 | 0.6700 | 82.7160 | 0.6200 | 76.5432 | 0.0500 | 6.1728 | 1.2 |
| P2 | 0.1800 | 16.2162 | 0.9300 | 83.7838 | 0.8500 | 76.5766 | 0.0800 | 7.2072 | 1.1 | ||
| P3 | 0.4400 | 30.9859 | 0.9800 | 69.0141 | 0.8900 | 62.6761 | 0.0900 | 6.3380 | 2.0 | ||
| 2 | soybean | P4 | 2.1800 | 52.7845 | 1.9500 | 47.2155 | 1.4600 | 35.3511 | 0.4900 | 11.8644 | 2.2 |
| P5 | 2.2400 | 53.5885 | 1.9400 | 46.4115 | 1.5300 | 36.6029 | 0.4100 | 9.8086 | 2.0 | ||
| P6 | 2.900 | 51.0563 | 2.7800 | 48.9437 | 2.0600 | 36.2676 | 0.7200 | 12.6761 | 2.3 | ||
| 3 | sorghum | P7 | 2.8900 | 56.6667 | 2.2100 | 43.3333 | 1.8000 | 35.2941 | 0.4100 | 8.0392 | 2.4 |
| P8 | 2.6100 | 52.8340 | 2.3300 | 47.1660 | 1.9200 | 38.8664 | 0.4100 | 8.2996 | 2.1 | ||
| P9 | 2.7800 | 54.7244 | 2.3300 | 45.2756 | 1.9000 | 37.4016 | 0.4000 | 7.8740 | 2.5 | ||
| 4 | inoculum | P10 | 36.2535 | 59.8771 | 24.2930 | 40.1229 | 20.5524 | 33.9448 | 3.7406 | 6.17881 | 2.0 |
| P11 | 36.0464 | 65.0624 | 19.3564 | 34.9376 | 18.0956 | 32.6619 | 1.2608 | 2.2757 | 2.1 | ||
| P12 | 30.9533 | 53.0289 | 27.4173 | 46.9711 | 26.0302 | 44.5947 | 1.3871 | 2.3764 | 1.9 | ||
| Sample Group | Selected Sample |
|---|---|
| A1 | A1-1—maize |
| A1-5—soybean | |
| A1-8—sorghum | |
| B1 | B1-1—maize |
| B1-5—soybean | |
| B1-8—sorghum | |
| B2 | B2-1—maize |
| B2-5- soybean | |
| B2-8—sorghum | |
| C1 | C1-1—maize |
| C1-5—soybean | |
| C1-8—sorghum | |
| C2 | C2-1—maize |
| C2-5—soybean | |
| C2-8—sorghum |
| Cosubstrate | Parameter | |||||||
|---|---|---|---|---|---|---|---|---|
| (W) | (TS) | (VS) | (A) | Verification | ||||
| LOT | Name | Sample | Water | Dry Matter | Volatile Solids | Ashes | (mWet = TS + W) | (mWet = W+VS + A) |
| (%) (by Mass) | (%) (by Mass) | (%) (by Mass) | (%) (by Mass) | (%) (by Mass) | (%) (by Mass) | |||
| 1 | Maize | 21.4954 | 78.5046 | 71.9319 | 6.5727 | 100.00 | 100.00 | |
| 2 | Soybean | 52.4765 | 47.5235 | 36.0739 | 11.4497 | 100.00 | 100.00 | |
| 3 | Sorghum | 54.7417 | 45.2583 | 37.1874 | 8.0709 | 100.00 | 100.00 | |
| 4 | Inoculum | 59.3228 | 40.6772 | 37.0671 | 3.6100 | 100.00 | 100.00 | |
| Parameters of the Analysed Sample | Symbol | Value | Unit | |
|---|---|---|---|---|
| Volatile substance content (VSi) | VS1 | 37.0671 | % (by mass) | |
| Dry matter content (TSi) | TS1 | 40.6772 | % (by mass) | |
| Cosubstrate | ||||
| Maize | % (by mass) | m1 | 52.8735 | g |
| Volatile substance content (VSi) | 50.0045 | VS1 | 26.44 | g |
| Dry matter content (TSi) | 95.4993 | TS1 | 50.49 | g |
| Sample Mixture Recipe | ||||
| Digestate mass (bioreactor loading mass) | md | 1800 | g | |
| Required VS inoculum relative to digested mass (1.5–2% md) | VSi | 36.00 | g | |
| Inoculum TS content relative to digested mass | TSi | 39.51 | g | |
| Required amount of inoculum in the digester (mi) | mi | 97.12 | g | |
| Necessary VS cosubstrate (VS < 0.5 VSI) | VSs | 18.00 | g | |
| Dry matter content (TSmd) digester (max. 10% dm) | TSmd | 90.00 | g | |
| Dry matter content (TSs) co-substrates | TSs | 50.49 | g | |
| Required cosubstrateTS1 (100%-maize) | TS1 | 50.49 | g | |
| Additional water required | mW | 1650.01 | g | |
| Input Data BRS | ||||
| Inoculum concentration relative to digestate mass (% w/w) | Ic | 5.39561 | % (by mass) | |
| Cosubstrate concentration relative to digestate mass (% w/w) | Sc | 2.94 | % (by mass) | |
| Parameters of the Analysed Sample | Symbol | Value | Unit | |
|---|---|---|---|---|
| Volatile substance content(VSi) | VSi | 37.0671 | % (by mass) | |
| Dry matter content (TSi) | TSi | 40.6772 | % (by mass) | |
| Cosubstrate | ||||
| Soybean | % (by mass) | m2 | 54.8064 | g |
| Volatile substance content (VSi) | 65.8735 | VSi | 36.10 | g |
| Dry matter content(TSi) | 92.1314 | TSi | 50.49 | g |
| Sample Mixture Recipe | ||||
| Digestate mass (bioreactor loading mass) | md | 1800 | g | |
| Required VS inoculum relative to digested mass (1.5–2% md) | VSi | 36.00 | g | |
| Inoculum TS content relative to digested mass | TSi | 39.51 | g | |
| Required amount of inoculum in the digester (mi) | mi | 97.12 | g | |
| Necessary VS cosubstrate (VS < 0.5 VSI) | VSs | 18.00 | g | |
| Dry matter content (TSmd) digester (max. 10% dm) | TSmd | 90.00 | g | |
| Dry matter content (TSs) co-substrates | TSs | 50.49 | g | |
| Required cosubstrateTS1 (100%-soybean) | TS1 | 50.49 | g | |
| Additional water required | mW | 1648.07 | g | |
| Input Data BRS | ||||
| Inoculum concentration relative to digestate mass (% w/w) | Ic | 5.39561 | % (by mass) | |
| Cosubstrate concentration relative to digestate mass (% w/w) | Sc | 3.04 | % (by mass) | |
| Parameters of the Analysed Sample | Symbol | Value | Unit | |
|---|---|---|---|---|
| Volatile substance content(VSi) | VSi | 37.0671 | % (by mass) | |
| Dry matter content (TSi) | TSi | 40.6772 | % (by mass) | |
| Cosubstrate | ||||
| Sorghum | % (by mass) | m2 | 53.679 | g |
| Volatile substance content (VSi) | 62.2214 | VSi | 33.40 | g |
| Dry matter content (TSi) | 94.0663 | TSi | 53.49 | g |
| Sample Mixture Recipe | ||||
| Digestate mass (bioreactor loading mass) | md | 1800 | g | |
| Required VS inoculum relative to digested mass (1.5–2% md) | VSi | 36.00 | g | |
| Inoculum TS content relative to digested mass | TSi | 39.51 | g | |
| Required amount of inoculum in the digester (mi) | mi | 97.12 | g | |
| Necessary VS cosubstrate (VS < 0.5 VSI) | VSs | 18.00 | g | |
| Dry matter content (TSmd) digester (max. 10% dm) | TSmd | 90.00 | g | |
| Dry matter content (TSs) co-substrates | TSs | 50.49 | g | |
| Required cosubstrateTS1 (100%-sorghum) | TS1 | 50.49 | g | |
| Additional water required | mW | 1649.20 | g | |
| Input Data BRS | ||||
| Inoculum concentration relative to digestate mass (% w/w) | Ic | 5.39561 | % (by mass) | |
| Cosubstrate concentration relative to digestate mass (% w/w) | Sc | 2.98 | % (by mass) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunca, E.C.; Ioniță, M.F.; Varga, L.A.; Radu, S.M.; Ionel, I.; Halmaciu, I.A.; Istrate, I.A.; Cocârță, D.M.; Botoran, O.R.; Irimie, S.I. Assessment of the Energy Recovery Potential of Biomass Obtained from Non-Productive Lands in the Jiu Valley, Romania. Sustainability 2025, 17, 9380. https://doi.org/10.3390/su17219380
Dunca EC, Ioniță MF, Varga LA, Radu SM, Ionel I, Halmaciu IA, Istrate IA, Cocârță DM, Botoran OR, Irimie SI. Assessment of the Energy Recovery Potential of Biomass Obtained from Non-Productive Lands in the Jiu Valley, Romania. Sustainability. 2025; 17(21):9380. https://doi.org/10.3390/su17219380
Chicago/Turabian StyleDunca, Emilia C., Mădălina F. Ioniță, Lucia A. Varga, Sorin M. Radu, Ioana Ionel, Ioana A. Halmaciu, Irina A. Istrate, Diana M. Cocârță, Oana R. Botoran, and Sabin I. Irimie. 2025. "Assessment of the Energy Recovery Potential of Biomass Obtained from Non-Productive Lands in the Jiu Valley, Romania" Sustainability 17, no. 21: 9380. https://doi.org/10.3390/su17219380
APA StyleDunca, E. C., Ioniță, M. F., Varga, L. A., Radu, S. M., Ionel, I., Halmaciu, I. A., Istrate, I. A., Cocârță, D. M., Botoran, O. R., & Irimie, S. I. (2025). Assessment of the Energy Recovery Potential of Biomass Obtained from Non-Productive Lands in the Jiu Valley, Romania. Sustainability, 17(21), 9380. https://doi.org/10.3390/su17219380

