Modeling and Optimization of Argon-Activated Electrohydraulic Plasma Discharge Process for p-Nitrophenol Remediation
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Improved Reactor Design
2.2. Experimental Design
2.3. Analytical Methods
2.4. Radical Scavenging Experiments
3. Results and Discussion
3.1. Operating Factor Screening by Fractional Factorial Design and Analysis
3.2. Optimization of p-NP Degradation by EHPD
3.3. Degradation Efficiency and Energy Yield Model
Degradation efficiency (%) | = | 54.85 + 14.01 Argon + 0.1449 Power −0.900 Argon × Argon- 0.000098 Power × Power −0.0304 Argon × Power | (5) |
Energy yield (g/kWh) | = | 0.33639 + 0.02638 Argon − 0.001578 Power −0.00152 Argon × Argon + 0.000002 Power × Power −0.000067 Argon × Power | (6) |
3.4. Graphical Interpretation and Optimization of Operating Parameters
4. Mechanistic Study of p-NP Degradation by EHPD
4.1. Proposed p-NP Degradation Pathway
4.2. Comparative Studies for p-NP Degradation by Nonthermal Plasma Processes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, B.; Zhang, Y.; Chen, Z.; Yang, P.; Zhou, Y.; Wang, J. Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron–copper (Fe/Cu) bimetallic particles. Appl. Catal. B Environ. 2014, 144, 816–830. [Google Scholar] [CrossRef]
- Rodrigues, C.S.D.; Madeira, L.M. p-Nitrophenol degradation by activated persulfate. Environ. Technol. Innov. 2020, 21, 101265. [Google Scholar] [CrossRef]
- Tchieno, F.M.M.; Tonle, I.K. p-Nitrophenol determination and remediation: An overview. Rev. Anal. Chem. 2018, 37, 20170019. [Google Scholar] [CrossRef]
- Wang, T.C.; Lu, N.; Li, J.; Wu, Y. Plasma-TiO2 Catalytic Method for High-Efficiency Remediation of p-Nitrophenol Contaminated Soil in Pulsed Discharge. Environ. Sci. Technol. 2011, 45, 9301–9307. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Xue, L.; Zhou, Y.; Zhang, Y.; Huang, K. A microwave atmospheric plasma strategy for fast and efficient degradation of aqueous p-nitrophenol. J. Hazard. Mater. 2020, 409, 124473. [Google Scholar] [CrossRef]
- Saka, E.T.; Tekintas, K. Light driven photodegradation of 4-nitrophenol with novel Co and Cu phthalocyanine in aqueous media. J. Mol. Struct. 2020, 1215, 128189. [Google Scholar] [CrossRef]
- Yadav, V.; Verma, P.; Sharma, H.; Tripathy, S.; Saini, V.K. Photodegradation of 4-nitrophenol over B-doped TiO2 nanostructure: Effect of dopant concentration, kinetics, and mechanism. Environ. Sci. Pollut. Res. 2020, 27, 10966–10980. [Google Scholar] [CrossRef]
- Wang, N.; Lv, G.; He, L.; Sun, X. New insight into photodegradation mechanisms, kinetics and health effects of p-nitrophenol by ozonation in polluted water. J. Hazard. Mater. 2021, 403, 123805. [Google Scholar] [CrossRef]
- Vanraes, P.; Nikiforov, A.Y.; Leys, C. Electrical discharge in water treatment technology for micropollutant decomposition. Plasma Sci. Technol. Prog. Phys. States Chem. React. 2016, 428–478. [Google Scholar]
- Yang, C.; Guangzhou, Q.; Tengfei, L.; Nan, J.; Tiecheng, W. Review on reactive species in water treatment using electrical discharge plasma: Formation, measurement, mechanisms and mass transfer. Plasma Sci. Technol. 2018, 20, 103001. [Google Scholar] [CrossRef]
- Shang, K.; Li, W.; Wang, X.; Lu, N.; Jiang, N.; Li, J.; Wu, Y. Degradation of p-nitrophenol by DBD plasma/Fe2+/persulfate oxidation process. Sep. Purif. Technol. 2019, 218, 106–112. [Google Scholar] [CrossRef]
- Borges, K.A.; Santos, L.M.; Paniago, R.M.; Neto, N.M.B.; Schneider, J.; Bahnemann, D.W.; Patrocinio, A.O.T.; Machado, A.E.H. Characterization of a highly efficient N-doped TiO2 photocatalyst prepared via factorial design. New J. Chem. 2016, 40, 7846–7855. [Google Scholar] [CrossRef]
- Younis, S.A.; Amdeha, E.; El-Salamony, R.A. Enhanced removal of p-nitrophenol by ꞵ-Ga2O3-TiO2 photocatalyst immobilized onto rice straw-based SiO2 via factorial optimization of the synergy between adsorption and photocatalysis. J. Environ. Chem. Eng. 2021, 9, 104619. [Google Scholar] [CrossRef]
- Wu, S.; Krousuri, A. Removing methylene blue contained in dye wastewater using a novel liquid-phase plasma discharge process. J. Environ. Sci. Health Part A 2020, 55, 1032–1039. [Google Scholar] [CrossRef]
- Wu, S.; Deng, S.; Zhu, J.; Bashir, M.A.; Izuno, F. Optimization of a novel liquid-phase plasma discharge process for continuous production of biodiesel. J. Clean. Prod. 2019, 228, 405–417. [Google Scholar] [CrossRef]
- Krosuri, A.; Wu, S.; Bashir, M.A.; Walquist, M. Efficient degradation and mineralization of methylene blue via continuous-flow electrohydraulic plasma discharge. J. Water Process Eng. 2021, 40, 101926. [Google Scholar] [CrossRef]
- Wu, S.; Krosuri, A. A novel continuous-flow electrohydraulic discharge process for handling high-conductivity wastewaters. Int. J. Environ. Sci. Technol. 2020, 17, 615–624. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; et al. Plasma–liquid interactions: A review and roadmap. Plasma Sources Sci. Technol. 2016, 25, 053002. [Google Scholar] [CrossRef]
- De Coninck, J.; Leclercq, B.; Exbrayat, J.M.; Duyme, F. Factorial designs: An efficient approach to choosing the main factors influencing growth and hydrolase production by Tetrahymena thermophila. J. Ind. Microbiol. Biotechnol. 2004, 31, 204–208. [Google Scholar] [CrossRef]
- Reddy, P.M.K.; Raju, B.R.; Karuppiah, J.; Reddy, E.L.; Subrahmanyam, C. Degradation and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor. Chem. Eng. J. 2013, 217, 41–47. [Google Scholar] [CrossRef]
- Khourshidi, A.; Ajam, F.; Rabieian, M.; Taghavijeloudar, M. Efficient degradation of p-nitrophenol from water by enhancing dielectric barrier discharge (DBD) plasma through ozone circulation: Optimization, kinetics and mechanism. Chemosphere 2024, 362, 142749. [Google Scholar] [CrossRef]
- David, I.J.; Adubisi, O.D.; Ogbaji, O.E.; Eghwerido, J.T.; Umar, Z.A. Resistant measures in assessing the adequacy of regression models. Sci. Afr. 2020, 8, e00437. [Google Scholar] [CrossRef]
- Jacob Kizhakedathil, M.P.; Suvarna, S.; Belur, P.D.; Wongsagonsup, R.; Agoo, E.M.G.; Janairo, J.I.B. Optimization of oxalate-free starch production from Taro flour by oxalate oxidase assisted process. Prep. Biochem. Biotechnol. 2021, 51, 105–111. [Google Scholar] [CrossRef]
- García, M.C.; Mora, M.; Esquivel, D.; Foster, J.E.; Rodero, A.; Jiménez-Sanchidrián, C.; Romero-Salguero, F.J. Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene blue as a model dye. Chemosphere 2017, 180, 239–246. [Google Scholar] [CrossRef]
- Hamdan, A.; Liu, J.L.; Cha, M.S. Microwave Plasma Jet in Water: Characterization and Feasibility to Wastewater Treatment. Plasma Chem. Plasma Process. 2018, 38, 1003–1020. [Google Scholar] [CrossRef]
- Lamichhane, P.; Ghimire, B.; Mumtaz, S.; Paneru, R.; Ki, S.H.; Choi, E.H. Control of hydrogen peroxide production in plasma activated water by utilizing nitrification. J. Phys. D Appl. Phys. 2019, 52, 265206. [Google Scholar] [CrossRef]
- Joshi, A.A.; Locke, B.R.; Arce, P.; Finney, W.C. Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution. J. Hazard. Mater. 1995, 41, 3–30. [Google Scholar] [CrossRef]
- Malik, M.A.; Ghaffar, A.; Malik, S.A. Water purification by electrical discharges. Plasma Sources Sci. Technol. 2001, 10, 82. [Google Scholar] [CrossRef]
- Di Paola, A.; Augugliaro, V.; Palmisano, L.; Pantaleo, G.; Savinov, E. Heterogeneous photocatalytic degradation of nitrophenols. J. Photochem. Photobiol. A Chem. 2003, 155, 207–214. [Google Scholar] [CrossRef]
- Wang, T.; Qu, G.; Sun, Q.; Liang, D.; Hu, S. Evaluation of the potential of p-nitrophenol degradation in dredged sediment by pulsed discharge plasma. Water Res. 2015, 84, 18–24. [Google Scholar] [CrossRef]
- Sun, S.-P.; Lemley, A.T. p-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: Process optimization, kinetics, and degradation pathways. J. Mol. Catal. A Chem. 2011, 349, 71–79. [Google Scholar] [CrossRef]
- Zheng, H.; Guo, Y.; Zhu, H.; Pan, D.; Pan, L.; Liu, J. p-Nitrophenol Enhanced Degradation in High-Voltage Pulsed Corona Discharges Combined with Ozone System. Plasma Chem. Plasma Process. 2013, 33, 1053–1062. [Google Scholar] [CrossRef]
Factor | Low Level (−1) | High Level (+1) |
---|---|---|
Gas flow rate (L/min) | 0.4 | 1 |
pH | 5 | 9 |
Applied power (W) | 200 | 300 |
Persulfate conc. (mg/L) | 50 | 250 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Response 1: degradation efficiency | ||||||
Model | 233.77 | 5 | 46.75 | 28.75 | 0.0002 | Significant |
A-argon | 93.92 | 1 | 93.92 | 57.76 | 0.0001 | |
B-power | 122.62 | 1 | 122.62 | 75.41 | <0.0001 | |
AB | 13.32 | 1 | 13.32 | 8.19 | 0.0243 | |
A2 | 2.31 | 1 | 2.31 | 1.42 | 0.2723 | |
B2 | 2.11 | 1 | 2.11 | 1.30 | 0.2919 | |
Residual | 11.38 | 7 | 1.63 | |||
Lack of fit | 7.93 | 3 | 2.64 | 3.06 | 0.1541 | Not significant |
Pure error | 3.45 | 4 | 0.8636 | |||
Cor total | 245.15 | 12 | ||||
Response 2: energy yield | ||||||
Model | 0.0159 | 5 | 0.0032 | 792.25 | <0.0001 | Significant |
A-argon | 0.0002 | 1 | 0.0002 | 54.29 | 0.0002 | |
B-power | 0.0142 | 1 | 0.0142 | 3536.83 | <0.0001 | |
AB | 0.0001 | 1 | 0.0001 | 15.91 | 0.0053 | |
A2 | 6.545 × 10−6 | 1 | 6.545 × 10−6 | 1.63 | 0.2428 | |
B2 | 0.0014 | 1 | 0.0014 | 340.42 | <0.0001 | |
Residual | 0.0000 | 7 | 4.022 × 10−6 | |||
Lack of fit | 0.0000 | 3 | 7.642 × 10−6 | 5.84 | 0.0606 | Not significant |
Pure error | 5.232 × 10−6 | 4 | 1.308 × 10−6 | |||
Cor total | 0.016 | 12 |
Methods | Initial p-NP Concentration (mg/L) | Time (min) | Degradation Efficiency (n%) | Discharge Power | Energy Yield (g/kWh) | Reference |
---|---|---|---|---|---|---|
DBD plasma | 5 | 50 | 34.38 | 4.2 W | 0.1 | [11] |
Plasma + persulfate | 5 | 50 | 63.6 | 4.2 W | 0.18 | [11] |
Plasma + persulfate + Fe2+ | 5 | 50 | 81.1 | 4.2 W | 0.23 | [11] |
Microwave plasma | 100 | 12 | 100 | 380 W | 0.07 | [5] |
EHPD | 50 | 10 | 94.23 | 128.6 W | 0.22 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krosuri, A.; Zhou, Y.; Bashir, M.A.; Ndeddy Aka, R.J.; Wu, S. Modeling and Optimization of Argon-Activated Electrohydraulic Plasma Discharge Process for p-Nitrophenol Remediation. Sustainability 2025, 17, 9275. https://doi.org/10.3390/su17209275
Krosuri A, Zhou Y, Bashir MA, Ndeddy Aka RJ, Wu S. Modeling and Optimization of Argon-Activated Electrohydraulic Plasma Discharge Process for p-Nitrophenol Remediation. Sustainability. 2025; 17(20):9275. https://doi.org/10.3390/su17209275
Chicago/Turabian StyleKrosuri, Anilkumar, Yunfei Zhou, Muhammad Aamir Bashir, Robinson Junior Ndeddy Aka, and Sarah Wu. 2025. "Modeling and Optimization of Argon-Activated Electrohydraulic Plasma Discharge Process for p-Nitrophenol Remediation" Sustainability 17, no. 20: 9275. https://doi.org/10.3390/su17209275
APA StyleKrosuri, A., Zhou, Y., Bashir, M. A., Ndeddy Aka, R. J., & Wu, S. (2025). Modeling and Optimization of Argon-Activated Electrohydraulic Plasma Discharge Process for p-Nitrophenol Remediation. Sustainability, 17(20), 9275. https://doi.org/10.3390/su17209275