Human Capital Efficiency in Manufacturing: A Data Envelopment Analysis Across Economic Activity Branches and Firm Sizes in Mexico
Abstract
1. Introduction
2. Literature Review
2.1. Human Capital and the Manufacturing Sector
2.2. Human Capital in Micro, SME, and Large Enterprises in the Manufacturing Sector
2.3. Human Capital in Chemical, Food, and Transportation Equipment Industries
2.4. DEA Applications in Sustainability
3. Methodology
3.1. CCR Input-Oriented Model
| DMU0 | unit under analysis | [-] |
| xij | quantity of input i used by DMUj | [units] |
| xio | quantity of input i used by the DMU0 | [units] |
| yrj | quantity of output r delivered by DMUj | [units] |
| xro | quantity of output r delivered by the DMU0 | [units] |
| λj | relationship importance between DMUj and the DMU0 | [-] |
| DMU0 optimal OTE | [-] | |
| input slack variable | [units] | |
| output slack variable | [units] |
3.2. BCC Input-Oriented Model
3.3. Data
- Annual average investments in training (TI): expenses made by firms to train their workers, including payments to internal or external instructors, training materials, and contributions to educational institutions (scholarships).
- Annual average wages (W): total compensation in cash or in kind, both ordinary and extraordinary, before taxes, paid to employees, including salaries, social benefits, and profit-sharing, whether calculated per working day or per task performed.
- Annual average working hours per day (H): number of daily working hours directly dedicated to the production process of the establishment.
- Average sales per year (S) income obtained from the production of goods and services.
- Step 1. Establishments with 1 to 10 full-time employees, 11 to 250 employees, and more than 250 employees were classified as micro, SMEs, and large enterprises, respectively [70]. As a result, three separate datasets were constructed: one for micro, one for SMEs, and one for large enterprises.
- Step 2. In each dataset, observation units that reported zero values in employees, training, wages, or sales were excluded from the sample.
- Step 3. Every dataset included four variables: three inputs—TI, W, and H—and one output—S.
- Step 4. To reduce the high variability present in the data, all variables were segmented into quartiles. Observations were grouped as follows: Group 1 = first quartile (x < 25%), Group 2 = second and third quartiles (25% ≤ x ≤ 75%), and Group 3 = fourth quartile (x > 75%). Since the coefficient of variation (CV) of the mean values in Groups 1 and 3 was greater than 1, only Group 2 was considered in the analysis, as its CV values were consistently below 1.
4. Results and Analysis
- Microenterprises
- SMEs
- Large Enterprises
5. Discussion of Contributions
6. Conclusions
- Microenterprises
- SMEs
- Large Enterprises
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BCC | Banker, Charnes and Cooper model |
| CCR | Charnes, Cooper and Rhodes model |
| CRS | Constant Returns to Scale |
| CV | Coefficient of Variation |
| DEA | Data Envelopment Analysis |
| DMU(s) | Decision-Making Unit(s) |
| EAIM | Annual Survey of the Manufacturing Industry (Encuesta Anual de la Industria Manufacturera) |
| EAB(s) | Economic Activity Branch(es) |
| HC | Human Capital |
| H | Hours (average working hours per day) |
| INEGI | National Institute of Statistics and Geography |
| NAICS | North American Industry Classification System |
| OTE | Overall Technical Efficiency |
| PTE | Pure Technical Efficiency |
| R&D | Research and Development |
| S | Sales (average sales per year) |
| SDG(s) | Sustainable Development Goal(s) |
| SDG 8 | Decent Work and Economic Growth |
| SDG 9 | Industry, Innovation, and Infrastructure |
| SE | Scale Efficiency |
| SME(s) | Small and Medium-sized Enterprise(s) |
| TI | Training Investment |
| W | Wages |
References
- Kirberg, S. Gestión Estratégica del Capital Humano en el Siglo XXI, 7th ed.; Digital publication by Amazon: Autoreseditores, Chile, 2016; ISBN 978-9563623307. [Google Scholar]
- Xhelili Krasniqi, F.; Mustafa Topxhiu, R. The Importance of Investment in Human Capital: Becker, Schutlz and Heckman. J. Knowl. Manag. Econ. Inf. Technol. 2016, 6, 1–18. [Google Scholar]
- Bayraktaroglu, A.E.; Calisir, F.; Baskak, M. Intellectual Capital and Firm Performance: An Extended VAIC Model. J. Intellect. Cap. 2019, 20, 406–425. [Google Scholar] [CrossRef]
- Carmona-Benítez, R.B.; Rosales-Córdova, A. Efficiency Analysis of Human Capital Investments at Micro and Large-Sized Enterprises in the Manufacturing Sector Using Data Envelopment Analysis. Economies 2024, 12, 213. [Google Scholar] [CrossRef]
- Kaluki Kyenzi, E.; Kinyili, J.; Nzioki, S. Human Resource Practices Influencing Employees Productivity in the Department of National Registration Bureau Nairobi County. Int. J. Humanit. Soc. Sci. Stud. 2020, VI, 98–105. [Google Scholar]
- Kim, H.S.; Jang, S.C. Minimum wage increase and firm productivity: Evidence from the restaurant industry. Tour. Manag. 2019, 71, 378–388. [Google Scholar] [CrossRef]
- Rosales-Córdova, A.; Llanos, L.F. Efecto de la inversión en capacitación en las ventas y sueldos de las PyMES. Investig. Adm. 2021, 50, 45–62. Available online: https://www.scielo.org.mx/scielo.php?pid=S2448-76782021000100007&script=sci_arttext (accessed on 15 April 2025).
- Fontanari, C. The role of wages in triggering innovation and productivity: A dynamic exploration for European economies. Econ. Model. 2024, 130, 106571. [Google Scholar] [CrossRef]
- Taymaz, E.; Voyvoda, E.; Yilmaz, K. Is there a virtous cycle between wages and productivity? Turkish experience after transition to democracy. World Dev. 2024, 175, 106474. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations General Assembly: New York, NY, USA, 2015; Available online: https://sdgs.un.org/2030agenda (accessed on 20 April 2025).
- Unger, J.M.; Rauch, A.; Frese, M.; Rosenbusch, N. Human Capital and Entrepreneurial Success: A Meta-Analytical Review. J. Bus. Ventur. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Chazhaeva, M.M.; Nizamov, A.A.; Midaeva, H.U. Investments in Human Capital And Economic Growth. Ekon. I Upr. Probl. Resheniya 2024, 11/1, 119–123. [Google Scholar] [CrossRef]
- Lundvall, K.; Battese, G.E. Firm Size, Age and Efficiency: Evidence from Kenyan Manufacturing Firms. J. Dev. Stud. 2000, 36, 146–163. [Google Scholar] [CrossRef]
- INEGI. Micro, Pequeña, Mediana y Gran Empresa. 2020. Available online: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825198657.pdf (accessed on 26 August 2025).
- Haraguchi, N.; Cheng, C.F.C.; Smeets, E. The Importance of Manufacturing in Economic Development: Has This Changed? World Dev. 2017, 93, 293–315. [Google Scholar] [CrossRef]
- Lautier, M. Manufacturing Still Matters for Developing Countries. Struct. Change Econ. Dyn. 2024, 70, 168–177. [Google Scholar] [CrossRef]
- Sánchez Juárez, I.L.; Moreno Brid, J.C. El Reto Del Crecimiento Económico En México: Industrias Manufactureras y Política Industrial. Rev. Finanz. Y Politica Econ. 2016, 8, 271–299. [Google Scholar] [CrossRef]
- Mendoza Ramos, M.d.C.; Díaz González, E. Análisis de la productividad total de factores en la industria de alta tecnología en México, 2003–2013. Análisis Económico 2019, 34, 65–89. [Google Scholar] [CrossRef]
- INEGI. Censos Económicos 2019; INEGI: Ciudad de México, México, 2019.
- INEGI. Sistema de Clasificación Industrial de América Del Norte, México SCIAN 2023; INEGI: Aguascalientes, México, 2023.
- INEGI. Nota Técnica Encuesta Anual de la Industria Manufacturera (EAIM); INEGI: Aguascalientes, México, 2021.
- Rosales-Córdova, A.; Carmona-Benítez, R.B. Evaluating the Efficiency of Human Capital at Small and Medium Enterprises in the Manufacturing Sector Using the DEA-Weight Russell Directional Distance Model. Economies 2023, 11, 261. [Google Scholar] [CrossRef]
- Mincer, J. Investment in Human Capital and Personal Income Distribution. J. Political Econ. 1958, 66, 281–302. [Google Scholar] [CrossRef]
- Schultz, T.W. Capital Formation by Education. J. Political Econ. 1960, 68, 571–583. [Google Scholar] [CrossRef]
- Becker, G.S. Investment in Human Capital: A Theoretical Analysis. J. Political Econ. 1962, 70, 9–49. [Google Scholar] [CrossRef]
- Kucharčíková, A.; Mičiak, M.; Tokarčíková, E.; Štaffenová, N. The Investments in Human Capital within the Human Capital Management and the Impact on the Enterprise’s Performance. Sustainability 2023, 15, 5015. [Google Scholar] [CrossRef]
- Younis, S.; Ramzan, S.; Gul, N. Assessing the Impact of Vocational and Technical Education (VTE) for Human Capital Development in Balochistan. Glob. Soc. Sci. Rev. 2020, V, 224–236. [Google Scholar] [CrossRef]
- Wright, P.M. Rediscovering the “Human” in Strategic Human Capital. Hum. Resour. Manag. Rev. 2021, 31, 100781. [Google Scholar] [CrossRef]
- Becker, G.S. Human Capital: A Theoretical and Empirical Analysis, with Special Reference to Education. University of Illinois at Urbana-Champaign’s Academy for Entrepreneurial Leadership Historical Research Reference in Entrepreneurship. 1964. Available online: https://papers.ssrn.com/abstract=1496221 (accessed on 14 April 2025).
- Rossi, F. Human Capital and Macro-Economic Development: A Review of the Evidence; Policy Research; World Bank: Washington, DC, USA, 2018. [CrossRef]
- Rahman, M.M.; Akhter, B. The Impact of Investment in Human Capital on Bank Performance: Evidence from Bangladesh. Future Bus. J. 2021, 7, 61. [Google Scholar] [CrossRef]
- Makalesi, A.; Wusiman, N.; Nulambeh Ndzembanteh, A. The Impact of Human Capital and Innovation Output on Economic Growth: Comparative Analysis of Malaysia and Turkey. J. Soc. Sci. Mus Alparslan Univ. 2020, 8, 231–242. [Google Scholar] [CrossRef]
- Nabilla, P.; Zuber, M.; Majid, A. The Role of Higher Education in Economic Growth in ASEAN: Systematic Literature Review. Int. J. Acad. Res. Econ. Manag. Sci. 2023, 12, 395–409. [Google Scholar] [CrossRef] [PubMed]
- Rendón Rojas, L.; Mejía Reyes, P.; Díaz Carreño, M.Á. Empleo Manufacturero de Los Estado Del Centro de México. Análisis Shift-Share Tradicional Con Modificación de Estructuras, 1998–2018. Paradig. Económico 2021, 1, 5–34. [Google Scholar] [CrossRef]
- Félix Armenta, J.; Soto Medina, N.; Acosta Haro, E. Estructura empresarial y sectorial de las manufacturas de México. Carta Económica Reg. 2024, 134, 37. [Google Scholar] [CrossRef]
- Brown, F.; Guzmán, A. Innovation and Productivity across Mexican Manufacturing Firms. J. Technol. Manag. Innov. 2014, 9, 36–52. [Google Scholar] [CrossRef]
- Rinawati, H.S. The Government Policy’s Influences on Entrepreneurship and Increasing Micro Industry Income to Reduce Poverty. Manag. Entrep. Trends Dev. 2019, 2, 88–103. [Google Scholar] [CrossRef]
- Zatsu, M.; Jamir, Y.T. An Economic Analysis of Micro and Small Manufacturing Enterprises in Nagaland. Econ. Aff. 2019, 64, 99–105. [Google Scholar] [CrossRef]
- United Nations Conference on Trade and development. Small- and Medium-Sized Enterprises (SMEs). In Investment Policy Review; United Nations Conference on Trade and development: Geneva, Switzerland, 2002; pp. 87–105. [Google Scholar] [CrossRef]
- Ibarra Cisneros, M.A.; Hernandez-Perlines, F. Intellectual Capital and Organization Performance in the Manufacturing Sector of Mexico. Manag. Decis. 2018, 56, 1818–1834. [Google Scholar] [CrossRef]
- Van Voorthuysen, E.; Olsen, J.; Langley, K.; Lipski, M.; Subramanian, K. Design for Scalability of Industrial Processes Using Modular Components. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 1464–1478. [Google Scholar] [CrossRef]
- Klang, M.; Ihlström, C.; Olsson, S. Overcoming Barriers: Why SMEs Should Consider Networks. Int. J. Serv. Technol. Manag. 2002, 3, 68–81. [Google Scholar] [CrossRef]
- Liao, Y.; Loures, E.R.; Deschamps, F.; Brezinski, G.; Venâncio, A. The Impact of the Fourth Industrial Revolution: A Cross-Country/Region Comparison. Production 2018, 28, 1–18. [Google Scholar] [CrossRef]
- Siddiqui, F. Human Capital Management: An Emerging Human Resource Management Practice. Int. J. Learn. Dev. 2012, 2, 353–367. [Google Scholar] [CrossRef]
- Ibarrola-Rivas, M.J.; Granados-Ramírez, R. Diversity of Mexican Diets and Agricultural Systems and Their Impact on the Land Requirements for Food. Land Use Policy 2017, 66, 235–240. [Google Scholar] [CrossRef]
- Stringer, T.; Ramírez-Melgarejo, M. Nearshoring to Mexico and US Supply Chain Resilience as a Response to the COVID-19 Pandemic. Findings 2023, 1, 1–8. [Google Scholar] [CrossRef]
- Arredondo-Hidalgo, M.G.; Ojeda-Hidalgo, J.F.; Covarrubias Garcia, M.G. Automotive Cluster and Territorial Development: Comparative Cases between Germany and Mexico. Bus. Manag. Econ. Res. 2020, 6, 36–47. [Google Scholar] [CrossRef]
- Bhattacharya, S. Supply Chain Management in Indian Automotive Industry: Complexities, Challenges and Way Ahead. Int. J. Manag. Value Supply Chain. 2014, 5, 49–62. [Google Scholar] [CrossRef]
- Jain, S.; Triantis, K.; Liu, S. Manufacturing Performance Measurement and Target Setting: A Data Envelopment Analysis Approach. Eur. J. Oper. Res. 2011, 214, 616–626. [Google Scholar] [CrossRef]
- Strange, N. Applications of DEA and SFA in Benchmarking Studies in Natural Resource Management. J. For. Econ. 2021, 35, 139–155. [Google Scholar] [CrossRef]
- Smriti, S.; Rahman, A.; Ali, M. Efficiency Analysis of Manufacturing Firms Using Data Envelopment Analysis. JDS J. Data Sci. 2022, 20, 617–636. [Google Scholar] [CrossRef]
- Mergoni, A.; Emrouznejad, A.; De Witte, K. Fifty Years of Data Envelopment Analysis. Eur. J. Oper. Res. 2024, 326, 389–412. [Google Scholar] [CrossRef]
- Bozec, R.; Dia, M. Board Structure and Firm Technical Efficiency: Evidence from Canadian State-Owned Enterprises. Eur. J. Oper. Res. 2007, 177, 1734–1750. [Google Scholar] [CrossRef]
- Fazlollahi, A.; Franke, U. Measuring the Impact of Enterprise Integration on Firm Performance Using Data Envelopment Analysis. Int. J. Prod. Econ. 2018, 200, 119–129. [Google Scholar] [CrossRef]
- Varas, M.; Basso, F.; Maturana, S.; Pezoa, R.; Weyler, M. Measuring Efficiency in the Chilean Wine Industry: A Robust DEA Approach. Appl. Econ. 2021, 53, 1092–1111. [Google Scholar] [CrossRef]
- Dey, B.K.; Jabbour, C.J.C.; Kumar, S.; Paul, U.K. Technical Efficiency in the Manufacturing Industry: A Meta-Regression Analysis. Glob. Bus. Organ. Excell. 2025, 44, 53–68. [Google Scholar] [CrossRef]
- Herrera Rendón-Nebel, M.T. Eficiencia Técnica y Empleo: Criterios de Elección de Progreso Técnico En El Sector Manufacturero de México. Rev. Análisis Económico 2012, 27, 149–196. [Google Scholar]
- Becerril Torres, O.U.; Álvarez Ayuso, I.C.; Vergara González, R. Disparidades En Eficiencia Técnica y Convergencia En Eficiencia En México: Un Análisis de Frontera. Quivera 2007, 9, 131–154. [Google Scholar]
- Becerril-Torres, O.U.; Álvarez Ayuso, I.C.; Vergara González, R.; del Moral Barrera, L.E. Frontera Tecnológica y Eficiencia Técnica Sectorial En México: Un Análisis Envolvente de Datos. Cienc. Económicas 2012, 30, 135–146. [Google Scholar] [CrossRef]
- Santos-Navarro, G.; Wong-González, P.; Martínez-Martínez, A. Technical Efficiency Measurement of the Automotive Industry through Data Envelope Analysis. Econ. Soc. Y Territ. 2019, 19, 173–201. [Google Scholar] [CrossRef]
- Basurto Hernández, S.; Sánchez Trujillo, G. Technical Efficiency in Small and Medium-Sized Firms in Mexico: A Stochastic Frontier Analysis. Estud. Económicos De El Col. De México 2022, 37, 103–147. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Goto, M. The intermediate approach to sustainability enhancement and scale-related measures in environmental assessment. Eur. J. Oper. Res. 2019, 276, 744–756. [Google Scholar] [CrossRef]
- Zeng, X.; Zhou, Z.; Liu, Q.; Xiao, H.; Liu, W. Environmental efficiency and abatement potential analysis with a two-stage DEA model incorporating the material balance principle. Comput. Ind. Eng. 2020, 148, 106647. [Google Scholar] [CrossRef]
- Martín-Gamboa, M.; Iribarren, D. Coupled life cycle thinking and data envelopment analysis for quantitative sustainability improvement. In Methods in Sustainability Science: Assessment, Prioritization, Improvement, Design and Optimization; Elsevier: Amsterdam, The Netherlands, 2021; pp. 295–320. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, R.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Kumar, S.; Gulati, R. An Examination of Technical, Pure Technical, and Scale Efficiencies in Indian Public Sector Banks using Data Envelopment Analysis. Euroasian J. Bus. Econ. 2008, 1, 33–69. [Google Scholar]
- Marjanovic, I.; Stankovic, J.J.; Popovic, Z. Efficiency Estimation of Commercial Banks Based on Financial Performance: Input Oriented DEA CRS/VRS Models. Econ. Themes 2018, 56, 239–252. [Google Scholar] [CrossRef]
- INEGI SNIEG. Sistema Nacional de Información Estadística y Geografía. Encuesta Anual de la Industria Manufacturera (EAIM). Uso de Microdatos Mediante Laboratorios de Microdatos del INEGI. Available online: https://www.inegi.org.mx/programas/eaim/2013/#microdatos (accessed on 28 August 2025).
- Diario Oficial de la Federación. Ley Para el Desarrollo de la Competitividad de la Micro, Pequeña y Mediana Empresa; Diario Oficial de la Federación: Ciudad de México, México, 2019; Available online: https://www.diputados.gob.mx/LeyesBiblio/pdf/LDCMPME.pdf (accessed on 29 August 2025).
- Alvarez, R.; Fuentes, R. Productividad y Apertura en Chile: 15 Años más Tarde; Documento de Trabajo N°164; Universidad de Chile: Santiago, Chile, 1999; Available online: https://repositorio.uchile.cl/bitstream/handle/2250/146041/Productividad-y-apertura.pdf?sequence=1 (accessed on 29 August 2025).
- Alvarez, R.; Crespi, G. Determinants of Technical Efficiency in Small Firms. Small Bus. Econ. 2003, 20, 233–244. [Google Scholar] [CrossRef]
- Dinh, H.L.; Nguyen, D.D.; Tran, T.H.; Tran, Q.H.; Tran, V.N. Technical Efficiency of Small-Scaled Manufacturing Enterprises in Six Different Sectors in Northern Vietnam. Manag. Sci. Lett. 2020, 10, 1119–1128. [Google Scholar] [CrossRef]
- Khan, M.R.; Abdulla. Dynamics of MSME Industry in Uttar Pradesh and Maharashtra: An Analysis of Sugar Firms. Small Enterp. Dev. Manag. Ext. J. (SEDME) 2019, 46, 235–247. [Google Scholar] [CrossRef]
- Ruiz, J.L.; Sirvent, I. Performance Evaluation through DEA Benchmarking Adjusted to Goals. Omega 2019, 87, 150–157. [Google Scholar] [CrossRef]
- Oferegbunam, E.T.; Okorafor, G.F. Effects of Human Capital Development on the Performance of Small and Medium Scaled Enterprises in the Southeastern Region of Nigeria. J. Sustain. Dev. Afr. 2010, 12, 49–58. [Google Scholar]
- Tran, N.P.; Vo, D.H. Human Capital Efficiency and Firm Performance across Sectors in an Emerging Market. Cogent Bus. Manag. 2020, 7, 1738832. [Google Scholar] [CrossRef]
- Ulkhaq, M.M.; Pratiwi, T.N. A Data Envelopment Analysis Approach to Assess Technical Efficiency of Large and Medium Manufacturing Industry in Central Java Province, Indonesia. Int. Econ. Financ. Rev. 2022, 1, 54–65. [Google Scholar] [CrossRef]
- Ulkhaq, M.M. Assessing Technical Efficiency of Large and Medium Manufacturing Industry in West Java Province, Indonesia: A Data Envelopment Analysis Approach. ES Manag. Bus. 2022, 1, 24–30. [Google Scholar]
- Erena, O.T.; Kalko, M.M.; Debele, S.A. Technical Efficiency, Technological Progress and Productivity Growth of Large and Medium Manufacturing Industries in Ethiopia: A Data Envelopment Analysis. Cogent Econ. Financ. 2021, 9, 1997160. [Google Scholar] [CrossRef]
- Cordero-Arroyo, G.; Segarra-Alméstica, E.V.; Correa-Matos, C.; Rodríguez-Roldán, N. Apoyos y Obstáculos Para El Desarrollo de Microempresas: Percepción de Sus Dueños. Fórum Empres. 2019, 24, 55–95. [Google Scholar] [CrossRef]
- Lara Salazar, J.R.; Lara Manjarrez, I.A.; Campos Sánchez, A. Elementos de Formación Emprendedora en el Uso de Herramientas para la Consolidación de Mipymes: Caso del Sector Restaurantero. Rev. De Investig. Apl. En Cienc. Empres. 2021, 10, 1. [Google Scholar] [CrossRef]
| Micro-Sized Enterprise | SMEs | Large-Sized Enterprise | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EAB | n | H 1 | W 2 | TI 3 | S 4 | n | H 1 | W 5 | TI 3 | S 4 | n | H 1 | W 5 | TI 3 | S 4 |
| 3111 | 5 | 8.32 | 223,760 | 12,200 | 11,917 | 228 | 8.09 | 13,775 | 68,430 | 209,156 | 106 | 8.01 | 76,481 | 253,321 | 423,355 |
| 3112 | 16 | 7.95 | 2,056,625 | 104,687 | 545,700 | 372 | 8.11 | 15,080 | 72,637 | 174,013 | 147 | 8 | 83,153 | 331,054 | 1,250,817 |
| 3113 | 11 | 7.9 | 995,363 | 318,000 | 221,837 | 231 | 8.12 | 13,128 | 52,949 | 82,912 | 371 | 8.02 | 126,490 | 272,038 | 1,012,259 |
| 3114 | — | — | — | — | — | 258 | 8.34 | 13,084 | 58,578 | 110,813 | 217 | 8.04 | 79,553 | 285,706 | 564,318 |
| 3115 | 6 | 10.99 | 455,666 | 11,500 | 30,237 | 228 | 8.16 | 10,012 | 36,438 | 83,985 | 140 | 8.06 | 101,407 | 248,454 | 921,669 |
| 3116 | 18 | 8.21 | 490,235 | 24,111 | 81,697 | 257 | 8.2 | 10,791 | 44,301 | 81,415 | 191 | 8.11 | 76,274 | 338,560 | 818,618 |
| 3117 | — | — | — | — | — | 112 | 8.2 | 9266 | 70,681 | 87,863 | 50 | 8.09 | 66,496 | 223,200 | 508,304 |
| 3118 | 14 | 8.37 | 779,769 | 8250 | 5693 | 257 | 8.14 | 9722 | 38,993 | 56,756 | 257 | 8.09 | 123,248 | 524,896 | 1,271,256 |
| 3119 | 12 | 7.95 | 1,712,750 | 26,666 | 24,142 | 318 | 8.16 | 15,354 | 76,173 | 132,321 | 190 | 7.98 | 97,299 | 552,032 | 884,395 |
| 3251 | 14 | 8.19 | 1,154,142 | 27,000 | 112,709 | 332 | 8.04 | 21,424 | 84,092 | 203,514 | 147 | 8.09 | 142,934 | 561,857 | 862,896 |
| 3252 | 8 | 8.72 | 550,375 | 309,500 | 615,114 | 170 | 8.04 | 25,923 | 143,326 | 285,695 | 71 | 8.02 | 93,353 | 355,451 | 549,593 |
| 3253 | 5 | 7.72 | 3200 | 308,250 | 651,174 | 103 | 8.05 | 19,079 | 153,198 | 190,863 | 38 | 7.66 | 121,300 | 847,842 | 1,036,295 |
| 3254 | 17 | 7.66 | 1,627,352 | 252,647 | 760,378 | 214 | 8.07 | 23,814 | 152,710 | 157,853 | 288 | 8.05 | 151,929 | 770,502 | 997,410 |
| 3255 | 11 | 8.26 | 365,000 | 57,000 | 14,060 | 239 | 8.18 | 18,003 | 93,678 | 147,381 | 85 | 8.11 | 105,334 | 431,647 | 736,614 |
| 3256 | 12 | 8 | 941.166 | 53,833 | 41,641 | 185 | 8.24 | 20,331 | 118,361 | 184,714 | 183 | 8.12 | 99,480 | 584,235 | 1,017,458 |
| 3259 | 8 | 8.28 | 1,280,500 | 26,000 | 64,225 | 175 | 8.18 | 12,894 | 62,517 | 137,902 | 89 | 8.03 | 121,944 | 336,205 | 886,033 |
| 3361 | — | — | — | — | — | 34 | 8.14 | 25,551 | 172,441 | 217,154 | 100 | 8.36 | 700,948 | 3,241,300 | 33,768,747 |
| 3362 | 10 | 8.649 | 1,206,600 | 63,100 | 171,449 | 153 | 8.38 | 16,793 | 74,922 | 111,307 | 105 | 8.58 | 116,509 | 418,095 | 598,051 |
| 3363 | 107 | 8.199 | 1,404,383 | 36,416 | 54,421 | 119 | 8.25 | 18,795 | 95,627 | 115,199 | 2091 | 8.2 | 152,527 | 567,922 | 719,092 |
| 3364 | 7 | 7.888 | 1,835,000 | 65,428 | 181,877 | 88 | 8.31 | 23,367 | 139,773 | 85,097 | 104 | 8.24 | 192,302 | 1,009,221 | 604,503 |
| 3365 | 8 | 8.056 | 3,072,857 | 60,125 | 8,092,420 | 24 | 8.02 | 22,467 | 118,542 | 226,792 | 32 | 8.9 | 377,466 | 2,092,844 | 1,563,000 |
| 3366 | 5 | 8.758 | 6,239,200 | 757,600 | 3,688,548 | 36 | 8.35 | 12,223 | 43,806 | 165,218 | 26 | 8.29 | 140,906 | 434,462 | 1,087,952 |
| 3369 | 4 | 9.796 | 576,750 | 3000 | 3831 | 38 | 8.19 | 10,322 | 27,575 | 93,852 | 56 | 8.33 | 156,244 | 533,375 | 979,277 |
| Micro-Sized Enterprise | SMEs | Large-Sized Enterprise | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| EAB | OTE | PTE | SE | RTS 1 | OTE | PTE | SE | RTS | OTE | PTE | SE | RTS 1 |
| 3111 | 0.20 | 1.00 | 0.20 | IRS | 1.00 | 1.00 | 1.00 | CRS | 0.16 | 1.00 | 0.16 | IRS |
| 3112 | 1.00 | 1.00 | 1.00 | IRS | 0.81 | 1.00 | 0.82 | IRS | 0.36 | 1.00 | 0.36 | IRS |
| 3113 | 0.34 | 1.00 | 0.34 | IRS | 0.46 | 1.00 | 0.46 | IRS | 0.36 | 1.00 | 0.36 | IRS |
| 3114 | — | — | — | — | 0.58 | 0.97 | 0.60 | IRS | 0.19 | 0.99 | 0.19 | IRS |
| 3115 | 0.50 | 1.00 | 0.50 | IRS | 0.62 | 1.00 | 0.62 | IRS | 0.36 | 1.00 | 0.36 | IRS |
| 3116 | 0.65 | 1.00 | 0.65 | — | 0.53 | 0.99 | 0.54 | IRS | 0.23 | 0.99 | 0.23 | IRS |
| 3117 | — | — | — | — | 0.62 | 1.00 | 0.62 | IRS | 0.22 | 1.00 | 0.22 | IRS |
| 3118 | 0.13 | 1.00 | 0.13 | — | 0.42 | 1.00 | 0.42 | IRS | 0.23 | 0.97 | 0.24 | IRS |
| 3119 | 0.17 | 1.00 | 0.17 | — | 0.61 | 0.99 | 0.61 | IRS | 0.19 | 0.99 | 0.19 | IRS |
| 3251 | 0.80 | 1.00 | 0.80 | — | 0.91 | 1.00 | 0.91 | IRS | 0.15 | 0.97 | 0.15 | IRS |
| 3252 | 1.00 | 1.00 | 1.00 | — | 1.00 | 1.00 | 1.00 | CRS | 0.15 | 0.99 | 0.15 | IRS |
| 3253 | 0.85 | 0.99 | 0.86 | — | 0.79 | 1.00 | 0.79 | IRS | 0.18 | 1.00 | 0.18 | IRS |
| 3254 | 1.00 | 1.00 | 1.00 | — | 0.58 | 0.99 | 0.58 | IRS | 0.14 | 0.96 | 0.14 | IRS |
| 3255 | 0.08 | 1.00 | 0.08 | — | 0.62 | 0.99 | 0.63 | IRS | 0.16 | 0.98 | 0.17 | IRS |
| 3256 | 0.16 | 1.00 | 0.16 | — | 0.73 | 0.98 | 0.75 | IRS | 0.21 | 0.97 | 0.22 | IRS |
| 3259 | 0.47 | 0.98 | 0.48 | — | 0.71 | 0.99 | 0.72 | IRS | 0.25 | 0.99 | 0.25 | IRS |
| 3361 | — | — | — | — | 0.76 | 0.99 | 0.77 | IRS | 1.00 | 1.00 | 1.00 | CRS |
| 3362 | 0.53 | 0.93 | 0.57 | — | 0.50 | 0.96 | 0.52 | IRS | 0.14 | 0.92 | 0.15 | IRS |
| 3363 | 0.29 | 0.98 | 0.29 | — | 0.48 | 0.98 | 0.49 | IRS | 0.12 | 0.96 | 0.13 | IRS |
| 3364 | 0.53 | 1.00 | 0.53 | — | 0.31 | 0.97 | 0.32 | IRS | 0.07 | 0.93 | 0.07 | IRS |
| 3365 | — | — | — | — | 0.87 | 1.00 | 0.87 | IRS | 0.09 | 0.86 | 0.10 | IRS |
| 3366 | — | — | — | — | 1.00 | 1.00 | 1.00 | CRS | 0.24 | 0.96 | 0.25 | IRS |
| 3369 | 0.24 | 1.00 | 0.24 | — | 0.90 | 1.00 | 0.90 | IRS | 0.18 | 0.95 | 0.19 | IRS |
| Sales | ||||||||
|---|---|---|---|---|---|---|---|---|
| Comparison | Mean Difference 1 | Confidence Interval (95%) | Comparison | Mean Difference 1 | Confidence Interval (95%) | Comparison | Mean Difference 1 | Confidence Interval (95%) |
| 3112 vs. 3111 | 534 * | [131, 923] | 3252 vs. 3111 | 603 * | [156, 1036] | 3254 vs. 3111 | 748 * | [349, 1134] |
| 3112 vs. 3113 | 324 * | [215, 626] | 3252 vs. 3113 | 393 * | [35, 752] | 3254 vs. 3113 | 539 * | [240, 837] |
| 3112 vs. 3118 | 540 * | [252, 828] | 3252 vs. 3118 | 609 * | [263, 956] | 3254 vs. 3118 | 755 * | [470, 1039] |
| 3112 vs. 3119 | 522 * | [227, 816] | 3252 vs. 3119 | 591 * | [239, 943] | 3254 vs. 3119 | 736 * | [445, 1027] |
| 3112 vs. 3255 | 532 * | [200, 805] | 3252 vs. 3255 | 601 * | [213, 930] | 3254 vs. 3255 | 746 * | [418, 1016] |
| 3112 vs. 3256 | 504 * | [147, 736] | 3252 vs. 3256 | 573 * | [158, 863] | 3254 vs. 3256 | 719 * | [365, 947] |
| 3112 vs. 3259 | 481 * | [138, 807] | 3252 vs. 3259 | 551 * | [156, 928] | 3254 vs. 3259 | 696 * | [356, 1018] |
| 3112 vs. 3363 | 491 * | [234, 648] | 3252 vs. 3363 | 561 * | [228, 794] | 3254 vs. 3363 | 706 * | [454, 857] |
| 3112 vs. 3369 | 542 * | [14, 973] | 3252 vs. 3369 | 611 * | [139, 1084] | 3254 vs. 3369 | 757 * | [328, 1186] |
| 3112 vs. 3252 | −69 | [−404, 265] | 3252 vs. 3254 | −145 | [−476, 186] | 3254 vs. 3112 | 215 | [−54, 484] |
| Training | ||||||||
| 3112 vs. 3111 | 92 | [−107, 292] | 3252 vs. 3111 | 297 * | [76, 519] | 3254 vs. 3111 | 240 * | [42, 438] |
| 3112 vs. 3113 | −213 * | [−365, −61] | 3252 vs. 3113 | −9 | [−189, 172] | 3254 vs. 3113 | −65 | [−216, 85] |
| 3112 vs. 3118 | 96 | [−41, 234] | 3252 vs. 3118 | 301 * | [133, 469] | 3254 vs. 3118 | 244 * | [109, 380] |
| 3112 vs. 3119 | 78 | [−70, 226] | 3252 vs. 3119 | 283 * | [106, 460] | 3254 vs. 3119 | 226 * | [80, 372] |
| 3112 vs. 3255 | 48 | [−97, 207] | 3252 vs. 3255 | 253 * | [79, 440] | 3254 vs. 3255 | 196 * | [52, 353] |
| 3112 vs. 3256 | 51 | [−98, 199] | 3252 vs. 3256 | 256 * | [78, 433] | 3254 vs. 3256 | 199 * | [52, 345] |
| 3112 vs. 3259 | 79 | [−69, 245] | 3252 vs. 3259 | 284 * | [109, 477] | 3254 vs. 3259 | 227 * | [81, 391] |
| 3112 vs. 3363 | 68 | [−36, 172] | 3252 vs. 3363 | 273 * | [131, 415] | 3254 vs. 3363 | 216 * | [115, 318] |
| 3112 vs. 3369 | 102 | [−143, 346] | 3252 vs. 3369 | 307 * | [44, 570] | 3254 vs. 3369 | 250 * | [6, 493] |
| 3112 vs. 3252 | −205 * | [−283, −12] | 3252 vs. 3254 | 57 | [−110, 223] | 3254 vs. 3112 | 148 * | [13, 283] |
| Wages | ||||||||
| 3112 vs. 3111 | 1833 * | [443, 3008] | 3252 vs. 3111 | 327 | [−1, 2] | 3254 vs. 3111 | 1404 * | [23, 2570] |
| 3112 vs. 3113 | 1061 * | [81, 2042] | 3252 vs. 3113 | −445 | [−2, 98] | 3254 vs. 3113 | 632 | [−336, 1600] |
| 3112 vs. 3118 | 1277 * | [342, 2211] | 3252 vs. 3118 | −229 | [−1, 2] | 3254 vs. 3118 | 847 | [−75, 1770] |
| 3112 vs. 3119 | 344 | [−612, 1300] | 3252 vs. 3119 | −1162 * | [−2305, −19] | 3254 vs. 3119 | −85 | [−1029, 858] |
| 3112 vs. 3255 | 1692 * | [195, 2156] | 3252 vs. 3255 | 186 | [−1832] | 3254 vs. 3255 | 1262 | [−222, 1715] |
| 3112 vs. 3256 | 1115 * | [160, 2071] | 3252 vs. 3256 | −391 | [−2752] | 3254 vs. 3256 | 686 | [−257, 1630] |
| 3112 vs. 3259 | 776 | [−308, 1860] | 3252 vs. 3259 | −730 | [−2521] | 3254 vs. 3259 | 347 | [−726, 1420] |
| 3112 vs. 3363 | 652 | [−18, 1323] | 3252 vs. 3363 | −854 | [−1771, 63] | 3254 vs. 3363 | 223 | [−431, 876] |
| 3112 vs. 3369 | 1480 * | [81, 2879] | 3252 vs. 3369 | −26 | [−1559, 1506] | 3254 vs. 3369 | 1051 | [340, 2441] |
| 3112 vs. 3252 | 1506 * | [422, 2590] | 3252 vs. 3254 | −1077 * | [−1559, −3, 88] | 3254 vs. 3112 | −429 | [−1, 443] |
| Sales | ||||||||
|---|---|---|---|---|---|---|---|---|
| Comparison | Mean Difference 1 | Confidence Interval (95%) | Comparison | Mean Difference 1 | Confidence Interval (95%) | Comparison | Mean Difference 1 | Confidence Interval (95%) |
| 3111 vs. 3113 | 126,243 * | [98,774, 153,713] | 3252 vs. 3113 | 202,783 * | [173,081, 232,484] | 3366 vs. 3113 | 82,306 * | [29,639, 134,972] |
| 3111 vs. 3118 | 152,400 * | [125,628, 179,172] | 3252 vs. 3118 | 228,939 * | [199,881, 232,484] | 3366 vs. 3118 | 108,462 * | [56,156, 160,769] |
| 3111 vs. 3363 | 93,956 * | [72,558, 115,354] | 3252 vs. 3363 | 170,496 * | [146,299, 194,692] | 3366 vs. 3363 | 50,018 * | [248, 99,789] |
| 3111 vs. 3364 | 124,059 * | [87,149, 160,968] | 3252 vs. 3364 | 200,598 * | [161,999, 239,198] | 3366 vs. 3364 | 80,121 * | [21,970, 138,272] |
| 3111 vs. 3252 | −76,539 * | [−106,351, 46,728] | 3252 vs. 3366 | 120,477 * | [66,551, 174,403] | 3366 vs. 3111 | −43,938 | [−96,667, 8791] |
| Training | ||||||||
| 3111 vs. 3113 | 15 | [−16,47] | 3252 vs. 3113 | 90 * | [56, 124] | 3366 vs. 3113 | −9 | [−69, 51] |
| 3111 vs. 3118 | 29 | [−1, 59] | 3252 vs. 3118 | 104 * | [71, 137] | 3366 vs. 3118 | 5 | [−55, 65] |
| 3111 vs. 3363 | −27 * | [−51,−3,0] | 3252 vs. 3363 | 48 * | [20, 75] | 3366 vs. 3363 | −52 | [−108, 5] |
| 3111 vs. 3364 | −71 * | [−113, 51, −29, 17] | 3252 vs. 3364 | 4 | [−40, 48] | 3366 vs. 3364 | −96 * | [−162, −29] |
| 3111 vs. 3252 | −74 * | [−108, 75, −41, 04] | 3252 vs. 3366 | 100 * | [38, 161] | 3366 vs. 3111 | −25 | [−85, 35] |
| Wages | ||||||||
| 3111 vs. 3113 | 647 | [−1657, 2952] | 3252 vs. 3113 | 12,795 * | [10,300, 15,291] | 3366 vs. 3113 | −905 | [−5, 3] |
| 3111 vs. 3118 | 4053 * | [1806, 6299] | 3252 vs. 3118 | 16,201 * | [13,760, 18,642] | 3366 vs. 3118 | 2500 | [−1893, 6894] |
| 3111 vs. 3363 | −5019 * | [−6813, −3225] | 3252 vs. 3363 | 7129 * | [5096, 9161] | 3366 vs. 3363 | −6572 * | [−10,753, −2390] |
| 3111 vs. 3364 | −9591 * | [−12,690, −6492] | 3252 vs. 3364 | 2556 | [−687, 5799] | 3366 vs. 3364 | −11,144 * | [−16,029, −6258] |
| 3111 vs. 3252 | −12,147 * | [−14,650, −9645] | 3252 vs. 3366 | 13,701 * | [9170, 18,231] | 3366 vs. 3111 | −1552 | [−5981, 2876] |
| Sales | Training | Wages | ||||
|---|---|---|---|---|---|---|
| Comparison | Mean Difference 1 | Confidence Interval (95%) | Mean Difference 2 | Confidence Interval (95%) | Mean Difference 1 | Confidence Interval (95%) |
| 3361 vs. 3111 | 33,345 * | [31,940, 34,750] | 2988 * | [2783, 3193] | 624,467 * | [593,097, 655,837] |
| 3361 vs. 3112 | 32,518 * | [31,212, 33,824] | 2910 * | [2720, 3101] | 617,795 * | [588,626, 646,965] |
| 3361 vs. 3113 | 32,756 * | [31,621, 33,892] | 2969 * | [2804, 3135] | 574,459 * | [549,104, 599,814] |
| 3361 vs. 3114 | 33,204 * | [31,986, 34,423] | 2956 * | [2778, 3133] | 621,395 * | [594,197, 648,593] |
| 3361 vs. 3115 | 32,847 * | [31,526, 34,169] | 2993 * | [2801, 3185] | 599,542 * | [570,079, 629,005] |
| 3361 vs. 3116 | 32,950 * | [31,706, 34,194] | 2903 * | [2721, 3084] | 624,675 * | [596,899, 652,451] |
| 3361 vs. 3117 | 33,260 * | [31,515, 35,006] | 3018 * | [2764, 3273] | 634,452 * | [595,476, 673,428] |
| 3361 vs. 3118 | 32,497 * | [31,310, 33,685] | 2716 * | [2543, 2889] | 577,700 * | [551,178, 604,222] |
| 3361 vs. 3119 | 32,884 * | [31,638, 34,131] | 2689 * | [2508, 2871] | 603,649 * | [575,848, 631,450] |
| 3361 vs. 3251 | 32,906 * | [31,599, 34,212] | 2679 * | [2489, 2870] | 558,015 * | [528,846, 587,184] |
| 3361 vs. 3252 | 33,219 * | [31,655, 34,783] | 2886 * | [2658, 3114] | 607,596 * | [572,673, 642,518] |
| 3361 vs. 3253 | 32,732 * | [30,812, 34,653] | 2393 * | [2114, 2673] | 579,648 * | [536,765, 622,531] |
| 3361 vs. 3254 | 32,771 * | [31,600, 33,943] | 2471 * | [2300, 2642] | 549,019 * | [522,900, 575,138] |
| 3361 vs. 3255 | 33,032 * | [31,545, 34,519] | 2810 * | [2593, 3026] | 595,614 * | [562,416, 628,812] |
| 3361 vs. 3256 | 32,751 * | [31,498, 34,005] | 2657 * | [2474, 2840] | 601,469 * | [573,485, 629,452] |
| 3361 vs. 3259 | 32,883 * | [31,410, 34,356] | 2905 * | [2690, 3120] | 579,004 * | [546,212, 61,796] |
| 3361 vs. 3362 | 33,171 * | [31,762, 34,579] | 2823 * | [2618, 3028] | 584,440 * | [552,923, 615,956] |
| 3361 vs. 3363 | 33,050 * | [32,018, 34,081] | 2673 * | [2523, 2824] | 548,422 * | [525,387, 571,456] |
| 3361 vs. 3364 | 33,164 * | [31,753, 34,576] | 2232 * | [2026, 2438] | 508,646 * | [477,130, 540,163] |
| 3361 vs. 3365 | 32,206 * | [30,159, 34,253] | 1148 * | [850, 1447] | 323,482 * | [277,779, 369,186] |
| 3361 vs. 3366 | 32,681 * | [30,462, 34,899] | 2807 * | [2483, 3130] | 560,043 * | [510,505, 609,581] |
| 3361 vs. 3369 | 32,789 * | [31,107, 34,472] | 2708 * | [2463, 2953] | 544,705 * | [507,146, 582,262] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosales-Córdova, A.; Carmona-Benítez, R.B. Human Capital Efficiency in Manufacturing: A Data Envelopment Analysis Across Economic Activity Branches and Firm Sizes in Mexico. Sustainability 2025, 17, 9195. https://doi.org/10.3390/su17209195
Rosales-Córdova A, Carmona-Benítez RB. Human Capital Efficiency in Manufacturing: A Data Envelopment Analysis Across Economic Activity Branches and Firm Sizes in Mexico. Sustainability. 2025; 17(20):9195. https://doi.org/10.3390/su17209195
Chicago/Turabian StyleRosales-Córdova, Aldebarán, and Rafael Bernardo Carmona-Benítez. 2025. "Human Capital Efficiency in Manufacturing: A Data Envelopment Analysis Across Economic Activity Branches and Firm Sizes in Mexico" Sustainability 17, no. 20: 9195. https://doi.org/10.3390/su17209195
APA StyleRosales-Córdova, A., & Carmona-Benítez, R. B. (2025). Human Capital Efficiency in Manufacturing: A Data Envelopment Analysis Across Economic Activity Branches and Firm Sizes in Mexico. Sustainability, 17(20), 9195. https://doi.org/10.3390/su17209195

