Quantifying Travel Time Impacts of Rainfall-Induced Cut-Slope Failures on Road Networks
Abstract
1. Introduction
2. Proposed Methodology to Assess Precipitation-Induced Cut-Slope Failure Risk in Road Networks
2.1. Hazard Modeling
2.1.1. Meteorological Data Analysis
2.1.2. Rainfall Model
2.1.3. Rainfall Scenarios
2.2. Road Network Vulnerability Evaluation
2.2.1. Cut-Slope Characterization
2.2.2. Cut-Slope Stability Modeling
2.2.3. Cut-Slope Fragility Probability Curves
2.2.4. Road-Disrupted Section
- Low: If the slope has a height of less than 8 m, the soil covers only part of the clear zone of the road and the shoulder, so there is no traffic interruption. The capacity does not change.
- Medium: If the slope is between 8 and 16 m high, the soil covers part of a road lane, reducing the capacity between 30% and 60%. The speed is assumed to be 20 km per hour (km/h), considering that a work area has been implemented to remove the material.
- Extensive: If the slope is higher than 16 m, the soil covers two lanes, i.e., capacity and speed are restricted.
2.2.5. Road Sections Affected by Cut-Slope Failures
2.3. Risk Modeling
2.3.1. Operational Parameters Under Normal and Restricted Conditions
2.3.2. Travel Time Estimation
2.3.3. Road Network Risk Assessment
3. Application to the Biobío Region, Southern Chile
3.1. Study Area Description
3.2. Rainfall Modeling
3.3. Road Network Vulnerability
3.3.1. Cut-Slope Characterization
3.3.2. Cut-Slope Fragility Probability Curves
3.4. Estimating Travel Time Increases
4. Discussion
4.1. Discussion of the Case Study
4.2. Discussion of the Proposed Methodology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keller, G.; Sherar, J. Low-volume roads engineering: Best management practices. Transp. Res. Rec. 2003, 1819, 174–181. [Google Scholar] [CrossRef]
- Tacnet, J.-M.; Mermet, E.; Maneerat, S. Analysis of importance of road networks exposed to natural hazards. In Proceedings of the AGILE 2012 International Conference on Geographic Information Science, Avignon, France, 24–27 April 2012; pp. 24–27. [Google Scholar]
- Argyroudis, S.A.; Mitoulis, S.A.; Winter, M.G.; Kaynia, A.M. Fragility of transport assets exposed to multiple hazards: State-of-the-art review toward infrastructural resilience. Reliab. Eng. Syst. Saf. 2019, 191, 106567. [Google Scholar] [CrossRef]
- Xie, W.; Li, N.; Li, C.; Wu, J.D.; Hu, A.; Hao, X. Quantifying cascading effects triggered by disrupted transportation due to the Great 2008 Chinese Ice Storm: Implications for disaster risk management. Nat. Hazards 2014, 70, 337–352. [Google Scholar] [CrossRef]
- Winter, M.G.; Harrison, M.; Macgregor, F.; Shackman, L. Landslide hazard and risk assessment on the Scottish road network. Proc. Inst. Civ. Eng. Geotech. Eng. 2013, 166, 522–539. [Google Scholar] [CrossRef]
- Allen, E.; Costello, S.B.; Henning, T.F. Contribution of network redundancy to reducing criticality of road links. Transp. Res. Rec. 2024, 2678, 1574–1590. [Google Scholar] [CrossRef]
- SIEMOP-FEMN. Ministry of Public Works Emergency and Operational Visor [In Spanish]. Ministry of Public Works Emergency Information System. Available online: https://ide.mop.gob.cl/Emergencias/#/index (accessed on 30 June 2024).
- Huang, Y.; Cheng, H. The impact of climate change on coastal geological disasters in southeastern China. Nat. Hazards 2013, 65, 377–390. [Google Scholar] [CrossRef]
- Meyer, N.K.; Schwanghart, W.; Korup, O.; Nadim, F. Roads at risk: Traffic detours from debris flows in southern Norway. Nat. Hazards Earth Syst. Sci. 2015, 15, 985–995. [Google Scholar] [CrossRef]
- Zhang, N.; Alipour, A. Integrated framework for risk and resilience assessment of the road network under inland flooding. Transp. Res. Rec. 2019, 2673, 182–190. [Google Scholar] [CrossRef]
- Kron, W. Flood risk = hazard • values • vulnerability. Water Int. 2005, 30, 58–68. [Google Scholar] [CrossRef]
- Peduzzi, P.; Dao, H.; Herold, C.; Mouton, F. Assessing global exposure and vulnerability towards natural hazards: The Disaster Risk Index. Nat. Hazards Earth Syst. Sci. 2009, 9, 1149–1159. [Google Scholar] [CrossRef]
- Aven, T. A risk concept applicable for both probabilistic and non-probabilistic perspectives. Saf. Sci. 2011, 49, 1080–1086. [Google Scholar] [CrossRef]
- Anghel, C.G. Revisiting the use of the gumbel distribution: A comprehensive statistical analysis regarding modeling extremes and rare events. Mathematics 2024, 12, 2466. [Google Scholar] [CrossRef]
- Osei, M.A.; Amekudzi, L.K.; Omari-Sasu, A.Y.; Yamba, E.I.; Quansah, E.; Aryee, J.N.; Preko, K. Estimation of the return periods of maxima rainfall and floods at the Pra River Catchment, Ghana, West Africa using the Gumbel extreme value theory. Heliyon 2021, 7, e06980. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Kozonis, D.; Manetas, A. A mathematical framework for studying rainfall intensity-duration-frequency relationships. J. Hydrol. 1998, 206, 118–135. [Google Scholar] [CrossRef]
- Yeo, M.H.; Nguyen, V.T.V.; Kim, Y.S.; Kpodonu, T.A. An integrated extreme rainfall modeling tool (SDExtreme) for climate change impacts and adaptation. Water Resour. Manag. 2022, 36, 3153–3179. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Hegerl, G.C. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 2007, 20, 1419–1444. [Google Scholar] [CrossRef]
- Li, K.S.; Lumb, P. Probabilistic design of slopes. Can. Geotech. J. 1987, 24, 520–535. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, H.W.; Zhang, L.M.; Zhu, H.H.; Shi, B. Probabilistic prediction of rainfall-induced slope failure using a mechanics-based model. Eng. Geol. 2014, 168, 129–140. [Google Scholar] [CrossRef]
- Porter, K.A. Beginner’s guide to fragility, vulnerability, and risk. In Encyclopedia of Earthquake Engineering; Beer, M., Kougioumtzoglou, I., Patelli, E., Au, I.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Schultz, M.T.; Gouldby, B.P.; Simm, J.D.; Wibowo, J.L. Beyond the Factor of Safety: Developing Fragility Curves to Characterize System Reliability; US Army Corps of Engineers: Washington, DC, USA, 2010; p. 51. [Google Scholar]
- Jiménez-Ramos, G.; Echaveguren, T.; Vargas-Baecheler, J.; Chamorro, A. Traffic interruption risk induced by cut-slope failure: The rainfall effect. Transp. Geotech. 2023, 41, 100993. [Google Scholar] [CrossRef]
- Berdica, K. An introduction to road vulnerability: What has done is done and should be done. Transp. Policy 2002, 9, 117–127. [Google Scholar] [CrossRef]
- Mühlhofer, E.; Koks, E.E.; Kropf, C.M.; Sansavini, G.; Bresch, D.N. A generalized natural hazard risk modelling framework for infrastructure failure cascades. Reliab. Eng. Syst. Saf. 2023, 234, 109194. [Google Scholar] [CrossRef]
- Ho, C.L.; Norton, S.S. Development of an Unstable Slope Management System; FINAL REPORT (No. WA-RD 270.1); Washington State Transportation of Department: Olympia, WA, USA, 1991. Available online: http://www.wsdot.wa.gov/research/reports/fullreports/270.1.pdf (accessed on 15 January 2025).
- Leyland, R.; Paige-Green, P. A simple slope hazard management system for the South African primary road network. In Proceedings of the 8th International Conference on Managing Pavement Assets (ICMPA2011), Santiago, Chile, 15–19 November 2011; Available online: http://worldcat.org/isbn/9789561412309 (accessed on 15 January 2025).
- Anguas, P.G.; Culebro, J.A.R. Gestión de Terraplenes y Riesgos Ante la Inestabilidad. Publicación Técnica. Instituto Mexicano del Transporte, Sanfandila, Mexico. 2014. Available online: http://www.imt.mx/archivos/Publicaciones/PublicacionTecnica/pt423.pdf (accessed on 15 January 2025).
- Chamorro, A.; Echaveguren, T.; Pattillo, C.; Contreras-Jara, M.; Contreras, M.; Allen, E.; Nieto, N.; de Solminihac, H. SIGeR-RV: A Web-Geographic Information System-Based System for Risk Management of Road Networks Exposed to Natural Hazards. Transp. Res. Rec. 2023, 2677, 754–769. [Google Scholar] [CrossRef]
- Allen, E.; Chamorro, A.; Poulos, A.; Castro, S.; de la Llera, J.C.; Echaveguren, T. Sensitivity analysis and uncertainty quantification of a seismic risk model for road networks. Comput. Aided Civ. Infrastruct. Eng. 2022, 37, 516–530. [Google Scholar] [CrossRef]
- Hackl, J.; Lam, J.C.; Heitzler, M.; Adey, B.T.; Hurni, L. Estimating network related risks: A methodology and an application in the transport sector. Nat. Hazards Earth Syst. Sci. 2018, 18, 2273–2293. [Google Scholar] [CrossRef]
- Pregnolato, M.; Ford, A.; Glenis, V.; Wilkinson, S.M.; Dawson, R.J. Impact of Climate Change on Disruption to Urban Transport Networks from Pluvial Flooding. J. Infrastruct. Syst. 2017, 23, 04017015. [Google Scholar] [CrossRef]
- Wang, W.; Yang, S.; Gao, J.; Hu, F.; Zhao, W.; Stanley, H.E. An Integrated Approach for Assessing the Impact of Large-Scale Future Floods on a Highway Transport System. Risk Anal. 2020, 40, 1780–1794. [Google Scholar] [CrossRef] [PubMed]
- Winter, M.; Wong, J. The assessment of quantitative risk to road users from debris flow. Geoenviron. Disasters 2020, 7, 4. [Google Scholar] [CrossRef]
- Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis: Preliminary extension to 1950. Q. J. R. Meteorol. Soc. 2021, 147, 4186–4227. [Google Scholar] [CrossRef]
- MOP. Urban Drainage Manual [In Spanish]. Ministry of Public Works. Chilean Water Engineering Agency. Chile. 2013. Available online: https://repositoriodirplan.mop.gob.cl/biblioteca/items/4379116e-eceb-479c-ad6b-fdfc6b3b3a8c/full (accessed on 15 January 2025).
- Pizarro, R.; Valdés, R.; Abarza, A.; Garcia-Chevesich, P. A simplified storm index method to extrapolate intensity–duration–frequency (IDF) curves for ungauged stations in central Chile. Hydrol. Process. 2015, 29, 641–652. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; de Guenni, L.B.; Wollheim, W.M.; Pellerin, B.; Bjerklie, D.; Cardoso, M.; D’ALmeida, C.; Green, P.; Colon, L. Extreme rainfall, vulnerability and risk: A continental-scale assessment for South America. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120408. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.; Burn, D.H. Simulating climate change scenarios using an improved K-nearest neighbor model. J. Hydrol. 2006, 325, 179–193. [Google Scholar] [CrossRef]
- Fellenius, W. Statens Jarnvagars Geotekniska Kommission: Slutbetankande; Technical Report; Järnvägsstyhelsen [Railway Board]: Stockholm, Sweden, 1922; p. 1018. (In Swedish) [Google Scholar]
- Bishop, A.W. The use of the slip circle in the stability analysis of slopes. Géotechnique 1955, 5, 7–17. [Google Scholar] [CrossRef]
- Griffiths, D.V.; Lane, P.A. Slope stability analysis by finite elements. Geotechnique 1999, 49, 387–403. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, D.F.; Li, C.G. Slope stability analysis based on elasto-plastic finite element method. Int. J. Numer. Meth. Eng. 2005, 64, 1871–1888. [Google Scholar] [CrossRef]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Vanapalli, S.K.; Fredlund, D.G.; Pufahl, D.E.; Clifton, A.W. Model for the prediction of shear strength with respect to soil suction. Can. Geotech. J. 1996, 33, 379–392. [Google Scholar] [CrossRef]
- Wardrop, J. Some theoretical aspect of road traffic research. Road Paper Nº 36. Road Engineering Division Meeting. Proc. Inst. Civ. Eng. 1952, 1, 325–362. [Google Scholar] [CrossRef]
- Beckmann, M.; McGuire, C.; Winsten, C. Studies in the Economics of Transportation; Yale University Press: New Haven, CT, USA, 1956. [Google Scholar]
- Nie, Y.; Zhang, H.M.; Lee, D.-H. Models and algorithms for the traffic assignment problem with link capacity constraints. Transp. Res. Part B Methodol. 2004, 38, 285–312. [Google Scholar] [CrossRef]
- DGA. Hydrogeological Study of the Bío Bío Basin; General Water Directorate of the Ministry of Public Works: Santiago, Chile, 2012. (In Spanish) [Google Scholar]
- MOP. National Road Network—Dimensions and Characteristics; Ministry of Public Works. Chilean Highway Agency: Santiago, Chile, 2020. Available online: https://mapas.mop.gov.cl/ (accessed on 15 February 2025).
- MOP. National Road Network 2020 [Data Set]; Ministry of Public Works, Highways Directorate: Santiago, Chile, 2023; Available online: http://www.mapas.mop.cl/ (accessed on 5 January 2025).
- MOP. National Census Plan 2022 [Data Set]; Ministry of Public Works, Highways Directorate: Santiago, Chile, 2022; Available online: http://sitministerial.maps.arcgis.com/apps/webappviewer/index.html?id=91ae27f8339a44f2bf0790da6ca47d36 (accessed on 5 January 2024).
- MOP. Road Design Guidelines. Volume 3. Highways Manual. Ministry of Public Works. Chilean Highway Agency. Chile. 2024; Available online: https://mc.mop.gob.cl (accessed on 15 February 2025). (In Spanish)
- Markus Bader. MB Ruler Software v5.4. 2025. Available online: http://www.markus-bader.de/MB-Ruler/index.php (accessed on 15 January 2025).
- Sivakumar Babu, G.L.; Murthy, D.S. Reliability analysis of unsaturated soil slopes. J. Geotech. Geoenviron. Eng. 2005, 131, 1423–1428. [Google Scholar] [CrossRef]
Road Category | Vehicle Type | Average Travel Speed (km/h) | Capacity (pcu/h/Lane) 1 |
---|---|---|---|
Multilane | All | 120 | 2400 |
Two-way, two-lane Class 1 | All | 100 | 1800 |
Two-way, two-lane Class 2 | All | 60 | 1400 |
Return Period | Rainfall Duration | Concepción-Chillán | Chillán-Concepción | Lebú-Chillán | Chillán-Lebu | ||||
---|---|---|---|---|---|---|---|---|---|
[Years] | [h] | [min] | [%] | [min] | [%] | [min] | [%] | [min] | [%] |
5 | 1 | 55 | 0 | 53 | 0 | 131 | 0 | 127 | 0 |
6 | 55 | 0 | 53 | 0 | 131 | 0 | 127 | 0 | |
12 | 55 | 24 | 53 | 25 | 131 | 10 | 127 | 0 | |
24 | 68 | 0 | 66 | 0 | 144 | 0 | 127 | 0 | |
10 | 1 | 55 | 0 | 53 | 0 | 131 | 0 | 127 | 0 |
6 | 55 | 0 | 53 | 0 | 131 | 0 | 127 | 0 | |
12 | 55 | 24 | 53 | 25 | 131 | 10 | 127 | 10 | |
24 | 68 | 0 | 66 | 0 | 144 | 0 | 140 | 0 | |
25 | 1 | 55 | 0 | 53 | 0 | 131 | 0 | 127 | 0 |
6 | 55 | 0 | 53 | 0 | 131 | 0 | 127 | 0 | |
12 | 55 | 40 | 53 | 25 | 131 | 20 | 127 | 10 | |
24 | 77 | 0 | 66 | 0 | 157 | 0 | 140 | 0 | |
50 | 1 | 55 | 0 | 53 | 0 | 131 | 0 | 127 | 0 |
6 | 55 | 24 | 53 | 25 | 131 | 10 | 127 | 10 | |
12 | 68 | 40 | 66 | 25 | 144 | 20 | 140 | 10 | |
24 | 77 | 0 | 66 | 0 | 157 | 0 | 140 | 0 | |
100 | 1 | 55 | 0 | 53 | 0 | 131 | 0 | 127 | 0 |
6 | 55 | 24 | 53 | 25 | 131 | 10 | 127 | 10 | |
12 | 68 | 40 | 66 | 25 | 144 | 28 | 140 | 13 | |
24 | 77 | 0 | 66 | 0 | 168 | 0 | 143 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras-Jara, M.; Chamorro, A.; Echaveguren, T.; Sáez, E.; Bonilla, C.A.; Sandoval, C.; Gironás, J. Quantifying Travel Time Impacts of Rainfall-Induced Cut-Slope Failures on Road Networks. Sustainability 2025, 17, 9170. https://doi.org/10.3390/su17209170
Contreras-Jara M, Chamorro A, Echaveguren T, Sáez E, Bonilla CA, Sandoval C, Gironás J. Quantifying Travel Time Impacts of Rainfall-Induced Cut-Slope Failures on Road Networks. Sustainability. 2025; 17(20):9170. https://doi.org/10.3390/su17209170
Chicago/Turabian StyleContreras-Jara, Manuel, Alondra Chamorro, Tomás Echaveguren, Esteban Sáez, Carlos A. Bonilla, Claudio Sandoval, and Jorge Gironás. 2025. "Quantifying Travel Time Impacts of Rainfall-Induced Cut-Slope Failures on Road Networks" Sustainability 17, no. 20: 9170. https://doi.org/10.3390/su17209170
APA StyleContreras-Jara, M., Chamorro, A., Echaveguren, T., Sáez, E., Bonilla, C. A., Sandoval, C., & Gironás, J. (2025). Quantifying Travel Time Impacts of Rainfall-Induced Cut-Slope Failures on Road Networks. Sustainability, 17(20), 9170. https://doi.org/10.3390/su17209170