Exploring the Spatiotemporal Impact of Landscape Patterns on Carbon Emissions Based on the Geographically and Temporally Weighted Regression Model: A Case Study of the Yellow River Basin in China
Abstract
1. Introduction
2. Study Area and Data Sources
2.1. Overview of the Study Area
2.2. Data Sources
3. Research Methodology
3.1. Kernel Density Estimation
3.2. Spatial Autocorrelation Analysis
3.3. Urban Landscape Pattern Index
3.4. Geographically and Temporally Weighted Regression (GTWR) Model
4. Results
4.1. Characteristics of the Spatial and Temporal Evolution of Carbon Emissions
4.1.1. Time-Varying Characteristics
4.1.2. Spatial Distribution Characteristics
4.2. Characteristics of Spatial and Temporal Evolution of Landscape Patterns
4.2.1. Characteristics of Changes in the Landscape Level
4.2.2. Characteristics of Type-Level Changes
4.3. Spatial and Temporal Response of Landscape Patterns to Carbon Emissions
4.3.1. Model Superiority Tests
4.3.2. Overall Characteristics of Landscape Pattern Response to Carbon Emissions
4.3.3. Spatial and Temporal Differences in the Response of Landscape Patterns to Carbon Emissions
5. Discussion
5.1. Spatial and Temporal Changes in Landscape Patterns and Carbon Emissions in the Yellow River Basin
5.1.1. Spatial and Temporal Changes in Carbon Emissions
5.1.2. Spatial and Temporal Changes in Landscape Patterns
5.2. Spatial and Temporal Response Mechanisms of Landscape Patterns to Carbon Emissions
5.2.1. Basin-Wide Landscape Pattern Response Mechanisms
5.2.2. Upstream Response Mechanisms
5.2.3. Midstream Response Mechanisms
5.2.4. Downstream Response Mechanisms
5.3. Policy Recommendations
6. Conclusions
- (1)
- Carbon emissions in the Yellow River basin exhibit an overall spatial pattern of “low upstream, high midstream, and moderate downstream,” with pronounced spatial clustering characteristics. The upstream region is constrained by ecological conservation and topography; the midstream region is primarily driven by energy and heavy industry; and the downstream region is regulated by industrial structure optimization and high-end urban development.
- (2)
- The upstream region shows reduced fragmentation, enhanced clustering, and increased heterogeneity; the midstream region experiences heightened landscape fragmentation, reduced aggregation, and increased diversity; and the downstream region maintains overall landscape stability with enhanced diversity.
- (3)
- Landscape pattern indices exhibit distinct heterogeneity in their impact on carbon emissions: patch number, interlaced adjacency, separation index, connectivity index, and modified Simpson’s evenness correlate positively with emissions, while landscape area, patch density, maximum patch index, and mean shape index correlate negatively. Average patch area influences distribution equilibrium, while the sprawl index exhibits a nonlinear relationship. The impact of different regional landscape patterns on carbon emissions varies: the negative effect of landscape area intensifies in the upstream region, while the diversity shifts from negative to positive. The negative effect of patch density increases in the downstream region, and the diversity index transitions from negative to positive in the upstream region but remains stable in the downstream region.
- (4)
- Develop differentiated carbon reduction strategies based on regional variations: Upstream: Strengthen ecological conservation and spatial constraints. Midstream: Optimize urban form and enhance energy efficiency. Downstream: Promote industrial restructuring and spatial optimization.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Houghton, R.A.; House, J.I.; Pongratz, J.; Van Der Werf, G.R.; Defries, R.S.; Hansen, M.C.; Le Quéré, C.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef]
- Le Quéré, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar] [CrossRef]
- Harper, A.B.; Powell, T.; Cox, P.M.; House, J.; Huntingford, C.; Lenton, T.M.; Sitch, S.; Burke, E.; Chadburn, S.E.; Collins, W.J. Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nat. Commun. 2018, 9, 2938. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Sabo, J.L.; Chen, X.; Liu, Z.; Yang, Z.; Ren, Z.; Liu, M. Landscape heterogeneity and hydrological processes: A review of landscape-based hydrological models. Landsc. Ecol. 2018, 33, 1461–1480. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Ding, N. Spatial effects of landscape patterns of urban patches with different vegetation fractions on urban thermal environment. Remote. Sens. 2022, 14, 5684. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J.; Zheng, X.; Ou, X.; Zhang, Y.; Li, J. Evaluation of biodiversity maintenance capacity in forest landscapes: A case study in Beijing, China. Land 2023, 12, 1293. [Google Scholar] [CrossRef]
- Xiong, Y.; Sun, Y.; Yang, Y. Impact of urban green space patterns on carbon emissions: A Gray BP neural network and Geo-Detector analysis. Sustainability 2025, 17, 7245. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Matveev, A. Evaluating the Land Use Change Carbon Flux and Its Impact on Climate. Master’s Thesis, Concordia University, Montreal, QC, Canada, 2009. [Google Scholar]
- Hansen, J.; Kharecha, P.; Sato, M.; Masson-Delmotte, V.; Ackerman, F.; Beerling, D.J.; Hearty, P.J.; Hoegh-Guldberg, O.; Hsu, S.-L.; Parmesan, C. Assessing “dangerous climate change”: Required reduction of carbon emissions to protect young people, future generations and nature. PLoS ONE 2013, 8, e81648. [Google Scholar] [CrossRef]
- Iftikhar, Y.; He, W.; Wang, Z. Energy and CO2 emissions efficiency of major economies: A non-parametric analysis. J. Clean. Prod. 2016, 139, 779–787. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, W. How do CO2 emissions and efficiencies vary in Chinese cities? Spatial variation and driving factors in 2007. Sci. Total Environ. 2019, 675, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, X.; Kwan, M.-P.; Yang, H.; Chuai, X. The effect of urbanization on carbon dioxide emissions efficiency in the Yangtze River Delta, China. J. Clean. Prod. 2018, 188, 38–48. [Google Scholar] [CrossRef]
- Li, S.; Zhou, C.; Wang, S.; Hu, J. Dose urban landscape pattern affect CO2 emission efficiency? Empirical evidence from megacities in China. J. Clean. Prod. 2018, 203, 164–178. [Google Scholar] [CrossRef]
- Gudipudi, R.; Fluschnik, T.; Ros, A.G.C.; Walther, C.; Kropp, J.P. City density and CO2 efficiency. Energy Policy 2016, 91, 352–361. [Google Scholar] [CrossRef]
- Christen, A.; Coops, N.; Crawford, B.; Kellett, R.; Liss, K.; Olchovski, I.; Tooke, T.; Van Der Laan, M.; Voogt, J. Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements. Atmos. Environ. 2011, 45, 6057–6069. [Google Scholar] [CrossRef]
- Baur, A.H.; Förster, M.; Kleinschmit, B. The spatial dimension of urban greenhouse gas emissions: Analyzing the influence of spatial structures and LULC patterns in European cities. Landsc. Ecol. 2015, 30, 1195–1205. [Google Scholar] [CrossRef]
- Massad, R.S.; Lathière, J.; Strada, S.; Perrin, M.; Personne, E.; Stéfanon, M.; Stella, P.; Szopa, S.; Noblet-Ducoudré, N. Reviews and syntheses: Influences of landscape structure and land uses on local to regional climate and air quality. Biogeosciences 2019, 16, 2369–2408. [Google Scholar] [CrossRef]
- Ou, J.; Liu, X.; Li, X.; Chen, Y. Quantifying the relationship between urban forms and carbon emissions using panel data analysis. Landsc. Ecol. 2013, 28, 1889–1907. [Google Scholar] [CrossRef]
- Ye, H.; He, X.; Song, Y.; Li, X.; Zhang, G.; Lin, T.; Xiao, L. A sustainable urban form: The challenges of compactness from the viewpoint of energy consumption and carbon emission. Energy Build. 2015, 93, 90–98. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, Y.; Sun, X.; Li, J. Analyzing the spatial pattern of carbon metabolism and its response to change of urban form. Ecol. Model. 2017, 355, 105–115. [Google Scholar] [CrossRef]
- Zhang, R.; Matsushima, K.; Kobayashi, K. Can land use planning help mitigate transport-related carbon emissions? A case of Changzhou. Land Use Policy 2018, 74, 32–40. [Google Scholar] [CrossRef]
- Shu, H.; Xiong, P.-P. Reallocation planning of urban industrial land for structure optimization and emission reduction: A practical analysis of urban agglomeration in China’s Yangtze River Delta. Land Use Policy 2019, 81, 604–623. [Google Scholar] [CrossRef]
- Shirkey, G.; John, R.; Chen, J.; Kolluru, V.; Goljani Amirkhiz, R.; Marquart-Pyatt, S.T.; Cooper, L.T.; Collins, M. Land cover change and socioecological influences on terrestrial carbon production in an agroecosystem. Landsc. Ecol. 2023, 38, 3845–3867. [Google Scholar] [CrossRef]
- Jia, J. Measurement of Impacts of Construction Land Expansion on Carbon Emissions in Hubei Province. In Proceedings of the International Conference on Humanities and Social Science 2016, Guangzhou, China, 8–10 January 2016; pp. 425–431. [Google Scholar]
- Zhou, L. Study on the influence of urban construction land expansion on carbon emission based on VAR Model-a case study of Nanchang City. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; p. 022071. [Google Scholar]
- Pielke, R.A., Sr.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Niyogi, D.D.S.; Running, S.W. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. R. Soc. London Ser. A Math. Phys. Eng. Sci. 2002, 360, 1705–1719. [Google Scholar] [CrossRef]
- Shi, K.; Xu, T.; Li, Y.; Chen, Z.; Gong, W.; Wu, J.; Yu, B. Effects of urban forms on CO2 emissions in China from a multi-perspective analysis. J. Environ. Manag. 2020, 262, 110300. [Google Scholar] [CrossRef]
- Javan, K.; Darestani, M. Assessing environmental sustainability of a vital crop in a critical region: Investigating climate change impacts on agriculture using the SWAT model and HWA method. Heliyon 2024, 10, e25326. [Google Scholar] [CrossRef]
- Javan, K.; Altaee, A.; Darestani, M.; Mirabi, M.; Azadmanesh, F.; Zhou, J.L.; Hosseini, H. Assessing the Water–Energy–Food Nexus and Resource Sustainability in the Ardabil Plain: A System Dynamics and HWA Approach. Water 2023, 15, 3673. [Google Scholar] [CrossRef]
- Mirabi, M.; Javan, K.; Darestani, M.; Karrabi, M. Integrating circular economy and life cycle assessment in virtual water management: A case study of food consumption across economic classes in Iran. Sustainability 2025, 17, 2743. [Google Scholar] [CrossRef]
- Rehman, A.; Ma, H.; Khan, M.K.; Khan, S.U.; Murshed, M.; Ahmad, F.; Mahmood, H. The asymmetric effects of crops productivity, agricultural land utilization, and fertilizer consumption on carbon emissions: Revisiting the carbonization-agricultural activity nexus in Nepal. Environ. Sci. Pollut. Res. 2022, 29, 39827–39837. [Google Scholar] [CrossRef]
- Roy, P.S.; Ramachandran, R.M.; Paul, O.; Thakur, P.K.; Ravan, S.; Behera, M.D.; Sarangi, C.; Kanawade, V.P. Anthropogenic land use and land cover changes—A review on its environmental consequences and climate change. J. Indian Soc. Remote Sens. 2022, 50, 1615–1640. [Google Scholar] [CrossRef]
- Wani, O.A.; Kumar, S.S.; Hussain, N.; Wani, A.I.A.; Babu, S.; Alam, P.; Rashid, M.; Popescu, S.M.; Mansoor, S. Multi-scale processes influencing global carbon storage and land-carbon-climate nexus: A critical review. Pedosphere 2023, 33, 250–267. [Google Scholar] [CrossRef]
- Fan, S.; Liu, H.; Wang, X.; He, W. Spatio-temporal Correlation between Green Space Landscape Pattern and Carbon Emission in Three Major Coastal Urban Agglomerations. Environ. Sci. 2025, 1–20. [Google Scholar] [CrossRef]
- Zhu, E.; Qi, Q.; Chen, L.; Wu, X. The spatial-temporal patterns and multiple driving mechanisms of carbon emissions in the process of urbanization: A case study in Zhejiang, China. J. Clean. Prod. 2022, 358, 131954. [Google Scholar] [CrossRef]
- Luan, Y.; Zheng, G.; Chen, G.C. Simulation Analysis of Carbon Emission Effect and Land Use Change in Guiyang City. J. Inn. Mong. Agric. Univ. (Nat. Sci. Ed.) 2024, 45, 39–47. [Google Scholar]
- Ayituerxun, S.; Gurimiri, E.; Shi, Y. Carbon emission change of land use landscape pattern evolution in Karamay city. Southwest China J. Agric. Sci. 2024, 37, 852–859. [Google Scholar] [CrossRef]
- Senyuan, K. Analysis of Carbon Emissions in Chengdu Based on Landscape Pattern and Remote Sensing Ecological Index. J. Hunan Univ. Technol. 2024, 38, 75–84. [Google Scholar] [CrossRef]
- Fu, F.; Deng, S.; Wu, D.; Liu, W.; Bai, Z. Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sustain. Cities 2022, 80, 103760. [Google Scholar] [CrossRef]
- Long, Z.; Zhang, Z.; Liang, S.; Chen, X.; Ding, B.; Wang, B.; Chen, Y.; Sun, Y.; Li, S.; Yang, T. Spatially explicit carbon emissions at the county scale. Resour. Conserv. Recycl. 2021, 173, 105706. [Google Scholar] [CrossRef]
- Wang, G.; Li, S.; Ma, Q. Spatial equilibrium and pattern evolution of ecological civilization construction efficiency in China. Acta Geogr. Sin. 2018, 73, 2198–2209. [Google Scholar] [CrossRef]
- Feng, X.; Li, Y.; Wang, S.; Yu, E.; Yang, J.; Wu, N. Impacts of Urban Form on Carbon Emissions Under the Goal of Carbon Emission Peak and Carbon Neutrality:A Case Study of the Yangtze River Economic Belt. Environ. Sci. 2024, 45, 3389–3401. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, J.; Wang, Q.; Li, D. Global autocorrelation analysis of landscape pattern based on evenness theory, Moran’s I index and generalized G index. Bull. Surv. Mapp. 2018, 11, 36–39. [Google Scholar]
- Li, Z.; Chen, H.; Liu, D. Measurement of tourism ecological level based on the emergy value theory and spatial heterogeneity in Wuling Mountain Area. J. Nat. Resour. 2021, 36, 3203–3214. [Google Scholar] [CrossRef]
- Xue, S.; Ma, B.; Wang, C.; Li, Z. Identifying key landscape pattern indices influencing the NPP: A case study of the upper and middle reaches of the Yellow River. Ecol. Model. 2023, 484, 110457. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, P.; Jiang, L.; Zhang, Y.; Liu, Z.; Rong, T. Spatial change and scale dependence of built-up land expansion and landscape pattern evolution—Case study of affected area of the lower Yellow River. Ecol. Indic. 2022, 141, 109123. [Google Scholar] [CrossRef]
- Huang, X.; Ou, J.; Huang, Y.; Gao, S. Exploring the effects of socioeconomic factors and urban forms on CO2 emissions in shrinking and growing cities. Sustainability 2024, 16, 85. [Google Scholar] [CrossRef]
- Wang, F.; Ge, S.; Zhu, X. Analysis of Spatial-Temporal Evolution and Driving Forces of Industrial Air Pollutants and Carbon Dioxide Emission Reduction in the Yangtze River Delta. Res. Environ. Sci. 2024, 37, 661–671. [Google Scholar] [CrossRef]
- Du, Y.; Bai, Y.; Liang, J.; Zhang, C.; Jing, L.; Wang, L.; Zou, J. Comprehensive measurement and influencing factors of carbon emission efficiency of tourism in the Yellow River Basin. Arid Land Geogr. 2023, 46, 2074–2085. [Google Scholar]
- Mo, H.; Wang, S. Spatio-temporal Evolution and Spatial Effect Mechanism of Carbon Emission at County Level in the Yellow River Basin. Sci. Geogr. Sin. 2021, 41, 1324–1335. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, S. Spatial pattern evolution and influencing factors of green innovation efficiency in the Yellow River Basin. J. Nat. Resour. 2022, 37, 627–644. [Google Scholar] [CrossRef]
- Yusupujiang, A.; Kasimul, A.; Matniyaz, A. Landscape Dynamic Change Analysis of Urumqi Based on Remote Sensing. J. Northwest For. Univ. 2015, 30, 172–179+205. [Google Scholar] [CrossRef]
- Jia, B. Driving factor analysis on the vegetation changes derived from the Landsat TM images in Beijing. Acta Ecol. Sin. 2013, 33, 1654–1666. [Google Scholar] [CrossRef]
- Jiao, Z.; Li, X. Significance of Calculation of Tri-sectional Quantile. Stat. Inf. Forum 2006, 21, 19–20. [Google Scholar]
- Tian, M.; Chen, Z.; Wang, W.; Chen, T.; Cui, H. Land-use carbon emissions in the Yellow River Basin from 2000 to 2020: Spatio-temporal patterns and driving mechanisms. Int. J. Environ. Res. Public Health 2022, 19, 16507. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, P.; Chang, Y.; Li, G.; Chen, Z.; Zhang, X.; Xing, G.; Lu, R.; Li, M.; Zhou, Z. Landscape pattern evolution and ecological risk assessment of the Yellow River Basin based on optimal scale. Ecol. Indic. 2024, 158, 111381. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y. Relationship Between Urbanization and Carbon Emissions in the Chang-Zhu-Tan Region at the County Level. Environ. Sci. 2023, 44, 6664–6679. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, Y.; Fu, M.; Xue, J. The role of land use landscape patterns in the carbon emission reduction: Empirical evidence from China. Ecol. Indic. 2023, 156, 111176. [Google Scholar] [CrossRef]
- Yuan, Z.; Pang, Y.; Wang, C.; Meng, S.; Sun, X.; Gu, D. Ecological programs changed the forest landscape pattern in the Yellow River Basin from 2000 to 2020. Landsc. Ecol. 2025, 40, 100. [Google Scholar] [CrossRef]
- Zhao, F.; Li, H.; Li, C.; Cai, Y.; Wang, X.; Liu, Q. Analyzing the influence of landscape pattern change on ecological water requirements in an arid/semiarid region of China. J. Hydrol. 2019, 578, 124098. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Wu, P.; Feng, K.; Hubacek, K.; Li, X.; Sun, L. Impacts of urban expansion on terrestrial carbon storage in China. Environ. Sci. Technol. 2019, 53, 6834–6844. [Google Scholar] [CrossRef]
- Du, Y.; Liu, H.; Huang, H.; Li, X. The carbon emission reduction effect of agricultural policy—Evidence from China. J. Clean. Prod. 2023, 406, 137005. [Google Scholar] [CrossRef]
Data Type | Description | Source |
---|---|---|
Carbon Emissions Data | Calculates Scope 1 and Scope 2 emissions for Chinese cities based on actual conditions. Scope 1 emissions encompass all direct emissions within municipal administrative boundaries, while Scope 2 emissions represent indirect emissions resulting from electricity purchased from external sources. | China City Greenhouse Gas Working Group (http://www.cityghg.com/, accessed on 10 November 2024) |
Land Use Data | Data with a spatial resolution of 30 m, covering the Yellow River Basin from 2005 to 2020, classified into arable land, forest land, grassland, construction land, water bodies, and unutilized land. | Chinese Academy of Sciences Resource and Environmental Science Data (https://www.resdc.cn/, accessed on 10 November 2024) |
Socioeconomic Data | Includes indicators such as GDP and industrial structure to control for socioeconomic factors influencing carbon emissions. | China Urban Statistical Yearbooks (2000–2020) and municipal statistical yearbooks |
Typology | Application Scale | Landscape Pattern Index | Descriptions |
---|---|---|---|
Scale | Type | Class Area (CA) | This index shows the overall area covered by a certain landscape type. A higher value indicates greater dominance of that particular landscape type. |
Landscape | Total Landscape Area (TA) | Represents the overall size of the study area, with higher values indicating a larger spatial extent. | |
Landscape/Type | Mean Patch Area (AREA_MN) | This measure indicates the average area of all patches over the terrain. A higher score suggests a greater degree of landscape continuity, implying that the terrain is more unified overall. | |
Fragmentation | Landscape/Type | Number of Patches (NP) | This metric represents the total count of patches within the landscape. A higher score denotes a greater level of landscape fragmentation. |
Landscape/Type | Patch Density (PD) | This metric represents the density of patches within a given area. A higher score denotes a greater level of landscape fragmentation. | |
Landscape/Type | Splitting Index (SPLIT) | This metric reflects the extent to which the landscape is divided into distinct segments. A higher score denotes a greater level of landscape fragmentation. | |
Aggregation | Landscape/Type | Largest Patch Index (LPI) | The proportion of the greatest patch area to the entire landscape area. A higher value indicates greater patch continuity and an expansion of interior habitat. |
Landscape | Contagion Index (CONTAG) | Indicates patterns of spatial aggregation and distribution of landscape types. A higher score denotes a more clustered distribution of landscape patches and a greater level of landscape continuity. | |
Landscape/Type | Patch Cohesion Index (COHESION) | This index measures the connectivity of patches and assesses their overall spatial cohesion. A higher number suggests better connectedness between patches, implying stronger landscape integrity. | |
Heterogeneity | Landscape/Type | Interspersion and Juxtaposition Index (IJI) | This index reflects the extent of interconnection between different patch types. A higher score denotes a greater degree of mixed distribution among various landscape types. |
Shape | Landscape/Type | Mean Shape Index (SHAPE-MN) | This index reflects the complexity of the patch shape; a higher value indicates a greater level of shape complexity. |
Diversity | Landscape | Modified Simpson’s evenness Index (MSIEI) | This index reflects the uniformity in the area distribution of each landscape patch type. A higher value indicates a more balanced distribution of areas across the different types of landscape patches. |
Year | TA | AREA-MN | NP | PD | SPLIT | LPI | CONTAG | COHESION | IJI | SHAPE-MN | MSIEI |
---|---|---|---|---|---|---|---|---|---|---|---|
2005–2010 | 0.0035% | 4.74% | −3.01% | −3.01% | 6.69% | 2.25% | −0.95% | −0.02% | −1.52% | 0.01% | 0.28% |
2010–2015 | −0.0016% | −5.39% | 5.80% | 5.80% | 19.48% | −9.07% | −0.90% | −0.10% | 0.30% | −0.04% | 1.07% |
2015–2020 | 0.0162% | −3.34% | 3.91% | 3.89% | 4.51% | 1.08% | −0.80% | −0.04% | 0.32% | −0.16% | 2.06% |
Modelling | OLS | GWR | TWR | GTWR |
---|---|---|---|---|
AICc | 643.528 | 572.391 | 639.764 | 582.833 |
R2 | 0.258 | 0.683 | 0.316 | 0.747 |
Adj. R2 | - | 0.668 | 0.284 | 0.735 |
TA | AREA-MN | NP | PD | SPLIT | LPI | CONTAG | COHESION | IJI | SHAPE-MN | MSIEI | |
---|---|---|---|---|---|---|---|---|---|---|---|
Upstream | −0.119 * | 0.054 * | 0.469 * | 0.098 ** | 0.056 * | −0.033 * | 0.598 * | 0.337 * | 0.726 ** | −0.449 ** | 0.248 * |
Midstream | −0.096 * | 0.394 * | 0.422 * | −0.340 ** | 0.276 * | 0.091 ** | −0.058 * | 0.243 * | 0.384 * | −0.437 ** | 0.217 |
Downstream | −0.305 *** | 1.154 * | 0.378 * | −0.458 * | 0.121 * | −0.322 *** | 0.038 * | 0.333 *** | 0.191 * | −0.607 * | 0.275 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Du, Y.; Ma, Y.; Liu, D.; Yu, J.; Miao, Z. Exploring the Spatiotemporal Impact of Landscape Patterns on Carbon Emissions Based on the Geographically and Temporally Weighted Regression Model: A Case Study of the Yellow River Basin in China. Sustainability 2025, 17, 9140. https://doi.org/10.3390/su17209140
Hu J, Du Y, Ma Y, Liu D, Yu J, Miao Z. Exploring the Spatiotemporal Impact of Landscape Patterns on Carbon Emissions Based on the Geographically and Temporally Weighted Regression Model: A Case Study of the Yellow River Basin in China. Sustainability. 2025; 17(20):9140. https://doi.org/10.3390/su17209140
Chicago/Turabian StyleHu, Junhui, Yang Du, Yueshan Ma, Danfeng Liu, Jingwei Yu, and Zefu Miao. 2025. "Exploring the Spatiotemporal Impact of Landscape Patterns on Carbon Emissions Based on the Geographically and Temporally Weighted Regression Model: A Case Study of the Yellow River Basin in China" Sustainability 17, no. 20: 9140. https://doi.org/10.3390/su17209140
APA StyleHu, J., Du, Y., Ma, Y., Liu, D., Yu, J., & Miao, Z. (2025). Exploring the Spatiotemporal Impact of Landscape Patterns on Carbon Emissions Based on the Geographically and Temporally Weighted Regression Model: A Case Study of the Yellow River Basin in China. Sustainability, 17(20), 9140. https://doi.org/10.3390/su17209140