Construction and Variation Analysis of Comprehensive Climate Indicators for Winter Wheat in Beijing–Tianjin–Hebei Region, China
Abstract
1. Introduction
- (a)
- Lack of region-specific analysis hindering alignment with Beijing–Tianjin–Hebei’s unique climatic gradient characteristic: Existing studies lack region-specific analysis, which makes it difficult for their conclusions to align with the unique climatic gradient characteristics of the Beijing–Tianjin–Hebei region. Regional studies mostly focus on the national scale or a single province, lacking targeted and detailed analysis of the significant climate gradient from south to north in the Beijing–Tianjin–Hebei region and the synergistic effects of light, water, and temperature factors during the key growth period of winter wheat [31,32].
- (b)
- Limited single-dimensional integration of climatic factors: Most comprehensive indicator models focus on single factor reinforcement or single stress assessment, and fail to systematically integrate the quantitative weights of the three elements of “temperature–precipitation–sunshine” at different growth stages. Moreover, there is insufficient research on the coupling of the spatiotemporal long-term trends and patterns of long-term climate indicators and yield response [33,34,35].
- (c)
- Insufficient research on the coupling between the long-term spatiotemporal evolution of climate and yield response: Existing research on North China mainly focuses on the correlation between yield and quality, and the stability and changing trends of comprehensive climate conditions in different sub regions within the Beijing–Tianjin–Hebei region, as well as their practical implications for regional planting strategies, are not yet clear [36,37,38].
2. Data Sources and Processing
3. Research Methods
3.1. Yield Data Separation Method
3.2. Weight Determination
3.3. Climate Trend Rate
3.4. Average Relative Variability
3.5. Comprehensive Climate Index
- (a)
- Grade 1 (M > 346): Excellent conditions with optimal light, temperature, and water, suitable for high-yield potential with minimal irrigation.
- (b)
- Grade 2 (263 < M ≤ 346): Good conditions, generally meeting basic growth needs; yield stability is high with supplementary irrigation.
- (c)
- Grade 3 (180 < M ≤ 263): Moderate conditions, with obvious constraints in one or two factors, requiring targeted management to mitigate yield reduction risks.
- (d)
- Grade 4 (98 < M ≤ 180): Poor conditions, with severe multi-factor limitations, making large-scale cultivation unsuitable due to high yield risk.
- (e)
- Grade 5 (M ≤ 98): Extremely unfavorable conditions where key growth thresholds are not met, and cultivation should be avoided.
4. Results Analysis
4.1. Indicator Trends
4.2. Yield Separation
4.3. Distribution Characteristics of the Comprehensive Climate Index
4.4. Distribution Characteristics of Comprehensive Climate Propensity
4.5. Distribution Characteristics of Average Relative Variability
5. Discussion
5.1. Discussion of Meteorological Indicators
5.2. Planting Recommendations Based on the Distribution and Variation Patterns of Comprehensive Meteorological Indicators
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sinore, T.; Wang, F. Impact of Climate Change on Agriculture and Adaptation Strategies in Ethiopia: A Meta-Analysis. Heliyon 2024, 10, e26103. [Google Scholar] [CrossRef] [PubMed]
- Heino, M.; Kinnunen, P.; Anderson, W.; Ray, D.K.; Puma, M.J.; Varis, O.; Siebert, S.; Kummu, M. Increased Probability of Hot and Dry Weather Extremes during the Growing Season Threatens Global Crop Yields. Sci. Rep. 2023, 13, 3583. [Google Scholar] [CrossRef] [PubMed]
- Hultgren, A.; Carleton, T.; Delgado, M.; Gergel, D.R.; Greenstone, M.; Houser, T.; Hsiang, S.; Jina, A.; Kopp, R.E.; Malevich, S.B.; et al. Impacts of Climate Change on Global Agriculture Accounting for Adaptation. Nature 2025, 642, 644–652. [Google Scholar] [CrossRef]
- Xiao, D.; Moiwo, J.P.; Tao, F.; Yang, Y.; Shen, Y.; Xu, Q.; Liu, J.; Zhang, H.; Liu, F. Spatiotemporal Variability of Winter Wheat Phenology in Response to Weather and Climate Variability in China. Mitig. Adapt. Strateg. Glob. Change 2015, 20, 1191–1202. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Guo, Y.; Hou, X.; Dong, L. Winter Wheat Phenology Variation and Its Response to Climate Change in Shandong Province, China. Remote Sens. 2022, 14, 4482. [Google Scholar] [CrossRef]
- Geng, X.; Wang, F.; Ren, W.; Hao, Z. Climate Change Impacts on Winter Wheat Yield in Northern China. Adv. Meteorol. 2019, 2019, 2767018. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiao, L.; Tang, Y.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Spatio-Temporal Change of Winter Wheat Yield and Its Quantitative Responses to Compound Frost-Dry Events—An Example of the Huang-Huai-Hai Plain of China from 2001 to 2020. Sci. Total Environ. 2024, 940, 173531. [Google Scholar] [CrossRef]
- Lu, P.; Liu, R.; Luo, Z.; Li, S.; Wu, Y.; Hu, W.; Xue, X. Impacts of Compound Extreme Weather Events on Summer Ozone in the Beijing-Tianjin-Hebei Region. Atmos. Pollut. Res. 2024, 15, 102030. [Google Scholar] [CrossRef]
- Jiang, T.; He, L.; Feng, H.; He, J.; Yu, Q. Understanding the Impacts of Extreme Temperature and Humidity Compounds on Winter Wheat Traits in China. Agric. For. Meteorol. 2025, 362, 110354. [Google Scholar] [CrossRef]
- Li, Q.; Chen, L.; Xu, Y. Drought Risk and Water Resources Assessment in the Beijing-Tianjin-Hebei Region, China. Sci. Total Environ. 2022, 832, 154915. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Wei, X.; Zhi, F.; Zhao, Y.; Guo, Y.; Wei, S.; Cui, Z.; Ga, R. Study on Frost Damage Index and Hazard Assessment of Wheat in the Huanghuaihai Region. Ecol. Indic. 2024, 167, 112679. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, G.; Iyakaremye, V.; Zhu, B. Effects of Different Types of Heat Wave Days on Ozone Pollution over Beijing-Tianjin-Hebei and Its Future Projection. Sci. Total Environ. 2022, 837, 155762. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; He, Y.; DePauw, R.; Jin, Z.; Garvin, D.; Yue, X.; Anderson, W.; Li, T.; Dong, X.; Zhang, T.; et al. Climate Change May Outpace Current Wheat Breeding Yield Improvements in North America. Nat. Commun. 2022, 13, 5591. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, H.; Oveisi, M.; Mehr, M.K.; Bazrafshan, J.; Naeimi, M.H.; Kaleibar, B.P.; Müller-Schärer, H. Earlier Sowing Combined with Nitrogen Fertilization to Adapt to Climate Change Effects on Yield of Winter Wheat in Arid Environments: Results from a Field and Modeling Study. Eur. J. Agron. 2023, 146, 126825. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, L.; Yue, Y. Impact of Irrigation on Vulnerability of Winter Wheat under Extreme Climate Change Scenario: A Case Study of North China Plain. Front. Sustain. Food Syst. 2024, 7, 1291866. [Google Scholar] [CrossRef]
- Kristensen, K.; Schelde, K.; Olesen, J.E. Winter Wheat Yield Response to Climate Variability in Denmark. J. Agric. Sci. 2011, 149, 33–47. [Google Scholar] [CrossRef]
- Hayhoe, H.; Lapen, D.; Andrews, C. Using Weather Indices to Predict Survival of Winter Wheat in a Cool Temperate Environment. Int. J. Biometeorol. 2003, 47, 62–72. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Tao, F.; Chen, Y.; Luo, X.; Xie, J. Forecasting Global Crop Yields Based on El Nino Southern Oscillation Early Signals. Agric. Syst. 2023, 205, 103564. [Google Scholar] [CrossRef]
- Wiréhn, L.; Danielsson, Å.; Neset, T.-S.S. Assessment of Composite Index Methods for Agricultural Vulnerability to Climate Change. J. Environ. Manag. 2015, 156, 70–80. [Google Scholar] [CrossRef]
- Yao, S.; Wang, B.; Liu, D.L.; Li, S.; Ruan, H.; Yu, Q. Assessing the Impact of Climate Variability on Australia’s Sugarcane Yield in 1980–2022. Eur. J. Agron. 2025, 164, 127519. [Google Scholar] [CrossRef]
- Mathbout, S.; Boustras, G.; Papazoglou, P.; Martin Vide, J.; Raai, F. Integrating Climate Indices and Land Use Practices for Comprehensive Drought Monitoring in Syria: Impacts and Implications. Environ. Sustain. Indic. 2025, 26, 100631. [Google Scholar] [CrossRef]
- Massano, L.T.; Bois, B.; Adrian, M.; Fosser, G.; Gaetani, M. The Use of Ecoclimatic Indices to Investigate Climate Impact on Wine Grape Yield at Local Scale. Eur. J. Agron. 2025, 171, 127790. [Google Scholar] [CrossRef]
- Xu, X.; Gao, P.; Zhu, X.; Guo, W.; Ding, J.; Li, C.; Zhu, M.; Wu, X. Design of an Integrated Climatic Assessment Indicator (ICAI) for Wheat Production: A Case Study in Jiangsu Province, China. Ecol. Indic. 2019, 101, 943–953. [Google Scholar] [CrossRef]
- Zhou, W.; Ata-Ul-Karim, S.T.; Kato, Y.; Liu, H.; Wang, K. Exploring the Climate Signal in the Variation of Winter Wheat Quality Records in the North China Plain. Agric. For. Meteorol. 2025, 369, 110567. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Y.; Zhang, M.; Che, X.; Du, J. Analysis of the Impacts of Climate Change on Winter Wheat Growth in Loess Plateau Region of East Gansu. Chin. Agric. Sci. Bull. 2014, 30, 87–92. [Google Scholar]
- Lu, Y.; Sun, W.; Tang, W.; He, D.; Deng, H. Climatic Potential Productivity and Stress Risk of Winter Wheat under the Background of Climate Change in Anhui Province. Chin. J. Eco-Agric. 2020, 28, 17–30. [Google Scholar] [CrossRef]
- Xiao, D.; Bai, H.; Liu, D.L. Impact of Future Climate Change on Wheat Production: A Simulated Case for China’s Wheat System. Sustainability 2018, 10, 1277. [Google Scholar] [CrossRef]
- Zhang, L.; Chu, Q.; Jiang, Y.; Chen, F.; Lei, Y. Impacts of Climate Change on Drought Risk of Winter Wheat in the North China Plain. J. Integr. Agric. 2021, 20, 2601–2612. [Google Scholar] [CrossRef]
- Shoukat, M.R.; Cai, D.; Shafeeque, M.; Habib-ur-Rahman, M.; Yan, H. Warming Climate and Elevated CO2 Will Enhance Future Winter Wheat Yields in North China Region. Atmosphere 2022, 13, 1275. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Huang, R.; Xie, H.; Qin, X.; Hu, Y. Estimating Evapotranspiration and Drought Dynamics of Winter Wheat under Climate Change: A Case Study in Huang-Huai-Hai Region, China. Sci. Total Environ. 2024, 949, 175114. [Google Scholar] [CrossRef]
- Tang, X.; Song, N.; Chen, Z.; Wang, J. Spatial-Temporal Distribution and Change Trend of Northern Limit of Winter Wheat Planting in Huang-Huai-Hai Plain. Trans. Chin. Soc. Agric. Eng. 2019, 35, 129–137. [Google Scholar] [CrossRef]
- Wu, R.; Shen, X.; Shang, B.; Zhao, J.; Agathokleous, E.; Feng, Z. Complexity and Interactions of Climatic Variables Affecting Winter Wheat Photosynthesis in the North China Plain. Eur. J. Agron. 2025, 166, 127568. [Google Scholar] [CrossRef]
- Li, C.; Gu, Y.; Xu, H.; Huang, J.; Liu, B.; Chun, K.P.; Octavianti, T. Spatial Heterogeneity in the Response of Winter Wheat Yield to Meteorological Dryness/Wetness Variations in Henan Province, China. Agronomy 2024, 14, 817. [Google Scholar] [CrossRef]
- Xu, C.; Xu, Z.; Li, Y.; Luo, Y.; Wang, K.; Guo, L.; Hao, C. Drought Characteristics and Causes during Winter Wheat Growth Stages in North China. Sustainability 2024, 16, 5958. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, X.; Yin, T.; Liao, Z.; Liu, B.; Liu, L. The Impact of Global Warming on the Winter Wheat Production of China. Agronomy 2021, 11, 1845. [Google Scholar] [CrossRef]
- Han, D.; Cai, H.; Yang, X.; Xu, X. Multi-Source Data Modeling of the Spatial Distribution of Winter Wheat Yield in China from 2000 to 2015. Sustainability 2020, 12, 5436. [Google Scholar] [CrossRef]
- Yang, J.; Wu, J.; Liu, L.; Zhou, H.; Gong, A.; Han, X.; Zhao, W. Responses of Winter Wheat Yield to Drought in the North China Plain: Spatial–Temporal Patterns and Climatic Drivers. Water 2020, 12, 3094. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, S. Assessing the Impact of Climate Change on Winter Wheat Production in the North China Plain from 1980 to 2020. Agriculture 2025, 15, 449. [Google Scholar] [CrossRef]
- Liu, C.; Hong, L.; Liu, M.; Ni, Y.; Hu, J.; Li, M.; Zhu, Y.; Wang, L.; Hua, J.; Wang, L. Construction of Climate Suitability Evaluation Model for Winter Wheat and Analysis of Its Spatiotemporal Characteristics in Beijing-Tianjin-Hebei Region, China. Sustainability 2025, 17, 7929. [Google Scholar] [CrossRef]
- Wang, L.; Liu, C.; Li, Q.; Wu, D.; Wang, Q.; Cheng, W. The Northern Boundary Variation of Winter Wheat in Beijing-Tianjin-Hebei under Climate Warming. Crops 2017, 1, 61–67. [Google Scholar] [CrossRef]
- Liu, J.; He, Q.; Zhou, G.; Song, Y.; Guan, Y.; Xiao, X.; Sun, W.; Shi, Y.; Zhou, K.; Zhou, S.; et al. Effects of Sowing Date Variation on Winter Wheat Yield: Conclusions for Suitable Sowing Dates for High and Stable Yield. Agronomy 2023, 13, 991. [Google Scholar] [CrossRef]
- Guo, J.; Bai, X.; Shi, W.; Li, R.; Hao, X.; Wang, H.; Gao, Z.; Guo, J.; Lin, W. Risk Assessment of Freezing Injury during Overwintering of Wheat in the Northern Boundary of the Winter Wheat Region in China. PeerJ 2021, 9, e12154. [Google Scholar] [CrossRef] [PubMed]
- Arata, L.; Fabrizi, E.; Sckokai, P. A Worldwide Analysis of Trend in Crop Yields and Yield Variability: Evidence from FAO Data. Econ. Model. 2020, 90, 190–208. [Google Scholar] [CrossRef]
- He, H.; Wang, Q.; Li, L.; Cai, H. Separating the Effect of Meteorology on Maize Yield from the Impact of Other Factors in the Yellow River-Water Irrigated Regions in Ningxia of China. J. Irrig. Drain. 2022, 41, 30–39. [Google Scholar] [CrossRef]
- Chavas, J.-P.; Di Falco, S.; Adinolfi, F.; Capitanio, F. Weather Effects and Their Long-Term Impact on the Distribution of Agricultural Yields: Evidence from Italy. Eur. Rev. Agric. Econ. 2019, 46, 29–51. [Google Scholar] [CrossRef]
- Rong, L.; Duan, X.; Gu, Z.; Feng, D. Climatic and Environmental Drivers on Temporal-Spatial Variations of Grain Meteorological Yield in High Mountainous Region. Arch. Agron. Soil Sci. 2021, 67, 2000–2014. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, L.; Kirkham, M.B.; Welch, S.M.; Nielsen-Gammon, J.W.; Bai, G.; Luo, J.; Andresen, D.A.; Rice, C.W.; Wan, N.; et al. U.S. Winter Wheat Yield Loss Attributed to Compound Hot-Dry-Windy Events. Nat. Commun. 2022, 13, 7233. [Google Scholar] [CrossRef]
- Tirfeessa, T.; Gemechu, A.; Zemedu, L. The Impact of Climate Variability on Chickpea Production in the Central Highlands of Ethiopia Using Auto Regressive Distributive Lag Model. Discov. Agric. 2025, 3, 73. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, Z.; Zhao, Y.; Zhang, L.; Liu, D.; Ren, T.; Zhang, X.; Li, S. An Unsupervised Crop Classification Method Based on Principal Components Isometric Binning. ISPRS Int. J. Geo-Inf. 2020, 9, 648. [Google Scholar] [CrossRef]
- Bisht, H.; Nain, A.S.; Gautam, S.; Puranik, H.V. Agro-Climatic Zonation of Uttarakhand Using Remote Sensing and GIS. J. Agrometeorol. 2013, 15, 30–35. [Google Scholar] [CrossRef]
- Marcio, S.P.; Tonny, J.A.D.S.; Enio, F.D.F.E.S.; Edna, M.B.S.; Alessana, F.S.; Renata, B.M.G. Agro-Climatic Zoning for Citriculture in the Agreste Region of Pernambuco State, Brazil. Afr. J. Agric. Res. 2015, 10, 2506–2515. [Google Scholar] [CrossRef]
- Zhou, J.; Yin, T.; Tian, J. Research on the Impact of Beijing–Tianjin–Hebei Electric Power and Thermal Power Industry on Haze Pollution. Energy Rep. 2022, 8, 1698–1710. [Google Scholar] [CrossRef]
- Li, Q.; Yin, J.; Liu, W.; Zhou, S.; Li, L.; Niu, J.; Niu, H.; Ma, Y. Determination of Optimum Growing Degree-Days (GDD) Range Before Winter for Wheat Cultivars with Different Growth Characteristics in North China Plain. J. Integr. Agric. 2012, 11, 405–415. [Google Scholar] [CrossRef]
- Gao, G.; Qi, Z. Impact of Negative Accumulated Temperature Variation on Winter Wheat. Meteorol. Sci. Technol. 2007, 3, 404–406. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y.; Jin, Y.; Xu, C.; Zou, J. Agricultural Climatic Factors and Their Thresholds for Winter Wheat Cultivation in Northern China. Sci. Agric. Sin. 2024, 57, 3142–3153. [Google Scholar] [CrossRef]
- Jia, K.; Yang, Y.; Dong, G.; Zhang, C.; Lang, T. Variation and Determining Factor of Winter Wheat Water Requirements under Climate Change. Agric. Water Manag. 2021, 254, 106967. [Google Scholar] [CrossRef]
- Zhai, L.-C.; Lü, L.-H.; Dong, Z.-Q.; Zhang, L.-H.; Zhang, J.-T.; Jia, X.-L.; Zhang, Z.-B. The Water-Saving Potential of Using Micro-Sprinkling Irrigation for Winter Wheat Production on the North China Plain. J. Integr. Agric. 2021, 20, 1687–1700. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Šimůnek, J.; Shi, H.; Ding, Z.; Peng, Z. Evaluating the Effects of Biodegradable Film Mulching on Soil Water Dynamics in a Drip-Irrigated Field. Agric. Water Manag. 2019, 226, 105788. [Google Scholar] [CrossRef]
- Gu, X.; Cai, H.; Chen, P.; Li, Y.; Fang, H.; Li, Y. Ridge-Furrow Film Mulching Improves Water and Nitrogen Use Efficiencies under Reduced Irrigation and Nitrogen Applications in Wheat Field. Field Crops Res. 2021, 270, 108214. [Google Scholar] [CrossRef]
- Ren, G.; Chen, Y.; Zou, X.; Zhou, Y.; Wang, X.; JIang, Y.; Ren, F.; Zhang, Q. Definition and Trend Analysis of an Integrated Extreme Climatic Index. Clim. Environ. Res. 2010, 15, 354–364. [Google Scholar] [CrossRef]
Station | Region | Longitude | Latitude | Altitude (m) |
---|---|---|---|---|
Zhangbei | Heibei | 114.7 | 41.15 | 1393.3 |
Yuxian | Heibei | 114.57 | 39.83 | 909.5 |
Shijiazhuang | Heibei | 114.42 | 38.03 | 81 |
Xingtai | Heibei | 116.5 | 37.07 | 183 |
Fengning | Heibei | 116.63 | 41.22 | 735.1 |
Weichang | Heibei | 117.75 | 41.93 | 892.7 |
Zhangjiakou | Heibei | 114.88 | 40.78 | 772.8 |
Huailai | Heibei | 115.5 | 40.4 | 570.9 |
Miyun | Beijing | 116.87 | 40.38 | 71.8 |
Chengde | Heibei | 117.95 | 40.98 | 422.3 |
Zunhua | Heibei | 117.95 | 40.2 | 54.9 |
Qinglong | Heibei | 118.95 | 40.4 | 254.3 |
Qinhuangdao | Heibei | 119.52 | 39.85 | 2.4 |
Beijing | Beijing | 116.47 | 39.8 | 32.3 |
Langfang | Heibei | 116.38 | 39.12 | 8.9 |
Tianjin | Tianjin | 117.07 | 39.08 | 3.5 |
Tangshan | Heibei | 118.15 | 39.67 | 23.2 |
Laoting | Heibei | 118.88 | 39.43 | 8.5 |
Baoding | Heibei | 115.52 | 38.85 | 16.8 |
Raoyang | Heibei | 115.73 | 38.23 | 19 |
Cangzhou | Heibei | 116.83 | 38.33 | 10.8 |
Botou | Heibei | 116.55 | 38.08 | 13.2 |
Tanggu | Tianjin | 117.72 | 39.05 | 4.8 |
Huanghua | Heibei | 117.35 | 38.37 | 4.5 |
Nangong | Heibei | 115.38 | 37.37 | 27.4 |
Category | Indicator Name | Unit | Calculation Method/Period |
---|---|---|---|
Temperature | January Average Temperature | °C | Mean daily temperature in January |
Pre-winter Accumulated Temperature | °C·d | Sum of daily mean temperatures from sowing to winter dormancy | |
Negative Accumulated Temperature during Overwintering | °C·d | Sum of negative daily mean temperatures during the overwintering period | |
Accumulated Temperature of the Entire Growth Period | °C·d | Sum of daily mean temperatures from sowing to harvest | |
Precipitation | January Precipitation | mm | Total precipitation in January |
Total Pre-winter Precipitation | mm | Total precipitation from sowing to winter dormancy | |
Precipitation during Overwintering | mm | Total precipitation during the overwintering period | |
Precipitation of the Entire Growth Period | mm | Total precipitation from sowing to harvest | |
Sunshine | Average Daily Sunshine Duration in January | hours | Mean daily sunshine duration in January |
Pre-winter Daily Sunshine Duration | hours | Mean daily sunshine duration from sowing to winter dormancy | |
Daily Sunshine Duration during Overwintering | hours | Mean daily sunshine duration during the overwintering period | |
Daily Sunshine Duration of the Entire Growth Period | hours | Mean daily sunshine duration from sowing to harvest |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Hu, J.; Wang, L.; Li, M.; Xie, W.; Zhu, Y.; Che, R.; Wang, L.; Hua, J.; Wang, J. Construction and Variation Analysis of Comprehensive Climate Indicators for Winter Wheat in Beijing–Tianjin–Hebei Region, China. Sustainability 2025, 17, 9054. https://doi.org/10.3390/su17209054
Liu C, Hu J, Wang L, Li M, Xie W, Zhu Y, Che R, Wang L, Hua J, Wang J. Construction and Variation Analysis of Comprehensive Climate Indicators for Winter Wheat in Beijing–Tianjin–Hebei Region, China. Sustainability. 2025; 17(20):9054. https://doi.org/10.3390/su17209054
Chicago/Turabian StyleLiu, Chang, Jie Hu, Lei Wang, Ming Li, Wenyi Xie, Yining Zhu, Ruijie Che, Lianxi Wang, Jing Hua, and Jian Wang. 2025. "Construction and Variation Analysis of Comprehensive Climate Indicators for Winter Wheat in Beijing–Tianjin–Hebei Region, China" Sustainability 17, no. 20: 9054. https://doi.org/10.3390/su17209054
APA StyleLiu, C., Hu, J., Wang, L., Li, M., Xie, W., Zhu, Y., Che, R., Wang, L., Hua, J., & Wang, J. (2025). Construction and Variation Analysis of Comprehensive Climate Indicators for Winter Wheat in Beijing–Tianjin–Hebei Region, China. Sustainability, 17(20), 9054. https://doi.org/10.3390/su17209054