Optimizing Spatial Scales for Evaluating High-Resolution CO2 Fossil Fuel Emissions: Multi-Source Data and Machine Learning Approach
Abstract
1. Introduction
- (1)
- A spatial estimation model of CO2 fossil fuel emissions was constructed based on multi-source data and machine learning models for mapping high-resolution CO2 fossil fuel emissions.
- (2)
- The model selects multiple variables as model inputs to make the spatial distribution of CO2 fossil fuel emissions more reasonable.
- (3)
- This study provides some references for model construction and feature selection for subsequent related studies by comparing multiple machine learning models and feature importance analysis.
- (4)
- This study validates that localized multi-proxy integration is essential for high-resolution CO2 fossil fuel emission mapping.
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Administrative Boundary and CO2 Emissions Data
- Administrative boundary and county-level CO2 emissions
- Multi-resolution emission inventory for China
2.2.2. Remote Sensing Datasets
- Nighttime light data
- Population data
- Artificial impervious surface data
2.2.3. Road Network Data
2.2.4. Point of Interest Data
2.2.5. Multicollinearity Assessment of Spatial Proxies
2.3. Methodology
2.3.1. Overall Work Framework
2.3.2. Machine Learning Algorithms
- Tree-based ensembles algorithm
- Support Vector Regression
- Linear regression
2.3.3. Performance Metrics and Computational Cost
2.3.4. Model Explainability Analysis
2.3.5. Spatial Correction of Gridded CO2 Emissions
2.3.6. Spatial and Temporal Characteristics of CO2 Fossil Fuel Emissions
3. Results and Discussion
3.1. Model Performance and Implications
3.2. Dominant Spatial Proxies and Mechanisms
3.3. Grid-Scale Spatial Accuracy and Error Sources
3.3.1. Inter-Model Comparison and Validation
3.3.2. Case Study Analysis of Spatial Error Mechanisms
3.4. Spatial and Temporal Characteristics of CO2 Fossil Fuel Emissions
3.5. Limitations and Future Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Spatial Proxy | VIF |
---|---|
Population size | 2.84 |
Brightness of nighttime light | 4.01 |
Road length | 2.92 |
Residential kernel density | 1.61 |
Light industry kernel density | 2.94 |
Heavy industry kernel density | 3.39 |
Commercial kernel density | 1.82 |
Agricultural kernel density | 3.23 |
Impervious surface block count | 2.65 |
Input Parameter | Model Name | Hyperparameter | Search Range | Optimal Hyperparameters |
---|---|---|---|---|
Multiple spatial proxies | Extra Trees | max_depth: The maximum depth of the tree. | {1, 5, 10, 15, 20, 25, 30} | 25 |
max_features: The number of features to consider when looking for the best split. | {3, 4, 5, 6, 7, 8, 9} | 9 | ||
min_samples_leaf: The minimum number of samples required to be at a leaf node. | {1, 2, 3, 4} | 1 | ||
min_samples_split: The minimum number of samples required to split an internal node. | {1, 2, 3, 4} | 2 | ||
n_estimators: The number of trees in the forest. | {50, 100, 150, 200, 250} | 100 | ||
CatBoost | depth: Controlling the complexity of individual decision trees. | {1, 3, 5, 7, 9} | 7 | |
learning_rate: Used for reducing the gradient step. | {0.01, 0.05, 0.1, 0.15, 0.2} | 0.1 | ||
n_estimators: The number of trees in the model. | {50, 100, 150, 200, 250, 300} | 300 | ||
XGBoost | learning_rate: Step size shrinkage used in update to prevent overfitting. | {0.01, 0.05, 0.1, 0.15, 0.2, 0.25} | 0.15 | |
max_depth: Maximum depth of a tree. | {1, 2, 3, 4, 5} | 2 | ||
n_estimators: The number of trees in the model. | {50, 100, 150, 200, 250, 300, 350, 400, 450, 500} | 450 | ||
GBDT | learning_rate: Learning rate shrinks the contribution of each tree. | {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3} | 0.15 | |
max_depth: Maximum depth of the individual regression estimators. | {1, 2, 3, 4, 5} | 4 | ||
n_estimators: The number of boosting stages to perform. | {50, 100, 150, 200, 250, 300, 350, 400} | 350 | ||
RF | max_depth: The maximum depth of the tree. | {1, 5, 10, 15, 20, 25, 30} | 15 | |
max_features: The number of features to consider when looking for the best split. | {3, 4, 5, 6, 7, 8, 9} | 4 | ||
min_samples_leaf: The minimum number of samples required to be at a leaf node. | {1, 2, 3} | 1 | ||
min_samples_split: The minimum number of samples required to split an internal node. | {1, 2, 3, 4} | 2 | ||
n_estimators: The number of trees in the forest. | {50, 100, 150, 200, 250, 300} | 30 | ||
SVR | C: Regularization parameter. | {0.1, 1.0, 10, 100, 1000} | 100 | |
gamma: Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. | {0.01, 0.1, 1.0, 10, 100} | 1 | ||
kernel: Specifies the kernel type to be used in the algorithm. | {‘linear’, ‘poly’, ‘rbf’} | rbf | ||
LightGBM | learning_rate: Boosting learning rate. | {0.01, 0.05, 0.07, 0.1, 0.13, 0.15} | 0.07 | |
max_depth: Maximum tree depth for base learners. | {1, 3, 5, 7, 9} | 5 | ||
n_estimators: Number of boosted trees to fit. | {50, 100, 500, 700, 900, 1100, 1300} | 1100 | ||
num_leaves: Maximum tree leaves for base learners. | {1, 5, 10, 15, 20} | 15 | ||
NTL | Extra Trees | max_depth: The maximum depth of the tree. | {1, 5, 10, 15, 20, 25, 30} | 5 |
min_samples_leaf: The minimum number of samples required to be at a leaf node. | {1, 2, 3, 4} | 1 | ||
min_samples_split: The minimum number of samples required to split an internal node. | {1, 2, 3, 4} | 4 | ||
n_estimators: The number of trees in the forest. | {50, 100, 150, 200, 250} | 50 |
References
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Guillén Bolaños, T.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K.; et al. The Human Imperative of Stabilizing Global Climate Change at 1.5 °C. Science 2019, 365, eaaw6974. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Schwarz, P.; Yang, H. Adjusting Energy Consumption Structure to Achieve China’s CO2 Emissions Peak. Renew. Sustain. Energy Rev. 2020, 122, 109737. [Google Scholar] [CrossRef]
- Marland, G.; Rotty, R.M.; Treat, N.L. CO2 from Fossil Fuel Burning: Global Distribution of Emissions. Tellus B 1985, 37, 243–258. [Google Scholar] [CrossRef]
- Andres, R.J.; Marland, G.; Fung, I.; Matthews, E. A 1° × 1° Distribution of Carbon Dioxide Emissions from Fossil Fuel Consumption and Cement Manufacture, 1950–1990. Glob. Biogeochem. Cycles 1996, 10, 419–429. [Google Scholar] [CrossRef]
- Cai, B.; Zhang, L. Urban CO2 Emissions in China: Spatial Boundary and Performance Comparison. Energy Policy 2014, 66, 557–567. [Google Scholar] [CrossRef]
- Gurney, K.R.; Mendoza, D.L.; Zhou, Y.; Fischer, M.L.; Miller, C.C.; Geethakumar, S.; De La Rue Du Can, S. High Resolution Fossil Fuel Combustion CO2 Emission Fluxes for the United States. Environ. Sci. Technol. 2009, 43, 5535–5541. [Google Scholar] [CrossRef] [PubMed]
- Oda, T.; Maksyutov, S.; Andres, R.J. The Open-Source Data Inventory for Anthropogenic CO2, Version 2016 (ODIAC2016): A Global Monthly Fossil Fuel CO2 Gridded Emissions Data Product for Tracer Transport Simulations and Surface Flux Inversions. Earth Syst. Sci. Data 2018, 10, 87–107. [Google Scholar] [CrossRef]
- Rayner, P.J.; Raupach, M.R.; Paget, M.; Peylin, P.; Koffi, E. A New Global Gridded Data Set of CO2 Emissions from Fossil Fuel Combustion: Methodology and Evaluation. J. Geophys. Res. Atmos. 2010, 115, D19306. [Google Scholar] [CrossRef]
- Andres, R.J.; Boden, T.A.; Bréon, F.-M.; Ciais, P.; Davis, S.; Erickson, D.; Gregg, J.S.; Jacobson, A.; Marland, G.; Miller, J.; et al. A Synthesis of Carbon Dioxide Emissions from Fossil-Fuel Combustion. Biogeosciences 2012, 9, 1845–1871. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre; Institute for Environment and Sustainability; PBL Netherlands Environmental Assessment Agency. Trends in Global CO2 Emissions: 2012 Report; Publications Office: Luxembourg, 2012.
- Asefi-Najafabady, S.; Rayner, P.J.; Gurney, K.R.; McRobert, A.; Song, Y.; Coltin, K.; Huang, J.; Elvidge, C.; Baugh, K. A Multiyear, Global Gridded Fossil Fuel CO2 Emission Data Product: Evaluation and Analysis of Results. J. Geophys. Res. Atmos. 2014, 119, 10213–10231. [Google Scholar] [CrossRef]
- Gurney, K.R.; Liang, J.; Patarasuk, R.; Song, Y.; Huang, J.; Roest, G. The Vulcan Version 3.0 High-Resolution Fossil Fuel CO2 Emissions for the United States. J. Geophys. Res. Atmos. 2020, 125, e2020JD032974. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Geng, G.; Hong, C.; Liu, F.; Song, Y.; Tong, D.; Zheng, B.; Cui, H.; Man, H.; et al. Anthropogenic Emission Inventories in China: A Review. Natl. Sci. Rev. 2017, 4, 834–866. [Google Scholar] [CrossRef]
- Committee on Development of a Framework for Evaluating Global Greenhouse Gas Emissions Information for Decision Making; Board on Atmospheric Sciences and Climate; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine. Greenhouse Gas Emissions Information for Decision Making: A Framework Going Forward; National Academies Press: Washington, DC, USA, 2022; ISBN 978-0-309-69114-7.
- Van Vuuren, D.P.; Smith, S.J.; Riahi, K. Downscaling Socioeconomic and Emissions Scenarios for Global Environmental Change Research: A Review. WIREs Clim. Change 2010, 1, 393–404. [Google Scholar] [CrossRef]
- Olivier, J.G.J.; Van Aardenne, J.A.; Dentener, F.J.; Pagliari, V.; Ganzeveld, L.N.; Peters, J.A.H.W. Recent Trends in Global Greenhouse Gas Emissions:Regional Trends 1970–2000 and Spatial Distributionof Key Sources in 2000. Environ. Sci. 2005, 2, 81–99. [Google Scholar] [CrossRef]
- Doll, C.H.; Muller, J.-P.; Elvidge, C.D. Night-Time Imagery as a Tool for Global Mapping of Socioeconomic Parameters and Greenhouse Gas Emissions. AMBIO J. Hum. Environ. 2000, 29, 157–162. [Google Scholar] [CrossRef]
- Meng, L.; Graus, W.; Worrell, E.; Huang, B. Estimating CO2 (Carbon Dioxide) Emissions at Urban Scales by DMSP/OLS (Defense Meteorological Satellite Program’s Operational Linescan System) Nighttime Light Imagery: Methodological Challenges and a Case Study for China. Energy 2014, 71, 468–478. [Google Scholar] [CrossRef]
- Gately, C.K.; Hutyra, L.R. Large Uncertainties in Urban-Scale Carbon Emissions. J. Geophys. Res. 2017, 122, 11242–11260. [Google Scholar] [CrossRef]
- Gurney, K.R.; Razlivanov, I.; Song, Y.; Zhou, Y.; Benes, B.; Abdul-Massih, M. Quantification of Fossil Fuel CO2 Emissions on the Building/Street Scale for a Large U.S. City. Env. Sci Technol. 2012, 46, 12194–12202. [Google Scholar] [CrossRef]
- Gurney, K.R.; Patarasuk, R.; Liang, J.; Song, Y.; O’Keeffe, D.; Rao, P.; Whetstone, J.R.; Duren, R.M.; Eldering, A.; Miller, C. The Hestia Fossil Fuel CO2 Emissions Data Product for the Los Angeles Megacity (Hestia-LA). Earth Syst. Sci. Data 2019, 11, 1309–1335. [Google Scholar] [CrossRef]
- Cai, M.; Shi, Y.; Ren, C.; Yoshida, T.; Yamagata, Y.; Ding, C.; Zhou, N. The Need for Urban Form Data in Spatial Modeling of Urban Carbon Emissions in China: A Critical Review. J. Clean. Prod. 2021, 319, 128792. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Imhoff, M.L.; Baugh, K.E.; Hobson, V.R.; Nelson, I.; Safran, J.; Dietz, J.B.; Tuttle, B.T. Night-Time Lights of the World: 1994–1995. ISPRS J. Photogramm. Remote Sens. 2001, 56, 81–99. [Google Scholar] [CrossRef]
- Oda, T.; Maksyutov, S. A Very High-Resolution (1 km × 1 km) Global Fossil Fuel CO2 Emission Inventory Derived Using a Point Source Database and Satellite Observations of Nighttime Lights. Atmos. Chem. Phys. 2011, 11, 543–556. [Google Scholar] [CrossRef]
- Bao, W.; Gong, A.; Zhao, Y.; Chen, S.; Ba, W.; He, Y. High-Precision Population Spatialization in Metropolises Based on Ensemble Learning: A Case Study of Beijing, China. Remote Sens. 2022, 14, 3654. [Google Scholar] [CrossRef]
- Wang, J.; Wei, J.; Zhang, W.; Liu, Z.; Du, X.; Liu, W.; Pan, K. High-Resolution Temporal and Spatial Evolution of Carbon Emissions from Building Operations in Beijing. J. Clean. Prod. 2022, 376, 134272. [Google Scholar] [CrossRef]
- Zheng, Y.; Du, S.; Zhang, X.; Bai, L.; Wang, H. Estimating Carbon Emissions in Urban Functional Zones Using Multi-Source Data: A Case Study in Beijing. Build. Environ. 2022, 212, 108804. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, Y.; Jiao, J.; Zhu, W.; Guo, Z.; Cao, X.; Liu, J.; Xi, G.; Wei, W. How to Accurately Assess the Spatial Distribution of Energy CO2 Emissions? Based on POI and NPP-VIIRS Comparison. J. Clean. Prod. 2023, 402, 136656. [Google Scholar] [CrossRef]
- Sutton, P.C.; Anderson, S.J.; Elvidge, C.D.; Tuttle, B.T.; Ghosh, T. Paving the Planet: Impervious Surface as Proxy Measure of the Human Ecological Footprint. Prog. Phys. Geogr. Earth Environ. 2009, 33, 510–527. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Li, S.; Lin, Y.; Teng, F.; Cai, H. Spatio-temporal difference analysis of carbon emissions in Chang-Zhu-Tan urban agglomeration based on multi-source remote sensing data. Bull. Surv. Mapp. 2023, 1, 65. [Google Scholar]
- Cao, H.; Han, L.; Liu, M.; Li, L. Spatial Differentiation of Carbon Emissions from Energy Consumption Based on Machine Learning Algorithm: A Case Study during 2015–2020 in Shaanxi, China. J. Environ. Sci. 2023, 149, S1001074223003558. [Google Scholar] [CrossRef]
- Liu, Z.; Han, L.; Liu, M. Spatiotemporal Characteristics of Carbon Emissions in Shaanxi, China, during 2012–2019: A Machine Learning Method with Multiple Variables. Environ. Sci. Pollut. Res. 2023, 30, 87535–87548. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, M.; Bai, J.; Wu, J.; Chang, I.-S. A Review of the Application of Machine Learning in Carbon Emission Assessment Studies: Prediction Optimization and Driving Factor Selection. Sci. Total Environ. 2025, 987, 179678. [Google Scholar] [CrossRef] [PubMed]
- National Development and Reform Commission. National Development and Reform Commission on Low-Carbon Provinces and Areas and Low-Carbon Cities on Pilot Work. 2011. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/tz/201008/t20100810_964674.html (accessed on 14 June 2025).
- Wen, Y.; Hu, P.; Li, J.; Liu, Q.; Shi, L.; Ewing, J.; Ma, Z. Does China’s Carbon Emissions Trading Scheme Really Work? A Case Study of the Hubei Pilot. J. Clean. Prod. 2020, 277, 124151. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An Extended Time Series (2000–2018) of Global NPP-VIIRS-like Nighttime Light Data from a Cross-Sensor Calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual Maps of Global Artificial Impervious Area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-Level CO2 Emissions and Sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef]
- Geng, G.; Liu, Y.; Liu, Y.; Liu, S.; Cheng, J.; Yan, L.; Wu, N.; Hu, H.; Tong, D.; Zheng, B.; et al. Efficacy of China’s Clean Air Actions to Tackle PM2.5 Pollution between 2013 and 2020. Nat. Geosci. 2024, 17, 987–994. [Google Scholar] [CrossRef]
- Lloyd, C.T.; Chamberlain, H.; Kerr, D.; Yetman, G.; Pistolesi, L.; Stevens, F.R.; Gaughan, A.E.; Nieves, J.J.; Hornby, G.; MacManus, K.; et al. Global Spatio-Temporally Harmonised Datasets for Producing High-Resolution Gridded Population Distribution Datasets. Big Earth Data 2019, 3, 108–139. [Google Scholar] [CrossRef]
- International Energy Agency. China–Emissions. 2021. Available online: https://www.iea.org/countries/china/emissions (accessed on 10 June 2025).
- Zhang, Y.; Liang, S.; Zhu, Z.; Ma, H.; He, T. Soil Moisture Content Retrieval from Landsat 8 Data Using Ensemble Learning. ISPRS J. Photogramm. Remote Sens. 2022, 185, 32–47. [Google Scholar] [CrossRef]
- Adnan, M.; Alarood, A.A.S.; Uddin, M.I.; Ur Rehman, I. Utilizing Grid Search Cross-Validation with Adaptive Boosting for Augmenting Performance of Machine Learning Models. PeerJ Comput. Sci. 2022, 8, e803. [Google Scholar] [CrossRef]
- Lin, X.; Ma, J.; Chen, H.; Shen, F.; Ahmad, S.; Li, Z. Carbon Emissions Estimation and Spatiotemporal Analysis of China at City Level Based on Multi-Dimensional Data and Machine Learning. Remote Sens. 2022, 14, 3014. [Google Scholar] [CrossRef]
- Charbuty, B.; Abdulazeez, A. Classification Based on Decision Tree Algorithm for Machine Learning. J. Appl. Sci. Technol. Trends 2021, 2, 20–28. [Google Scholar] [CrossRef]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A Comparative Analysis of Gradient Boosting Algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Tanveer, M.; Rajani, T.; Rastogi, R.; Shao, Y.H.; Ganaie, M.A. Comprehensive Review on Twin Support Vector Machines. Ann. Oper. Res. 2022, 339, 1223–1268. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, Z.; Song, W.; Yang, D. Mapping the Spatial-Temporal Changes in Energy Consumption-Related Carbon Emissions in the Beijing-Tianjin-Hebei Region via Nighttime Light Data. Sustain. Cities Soc. 2023, 94, 104476. [Google Scholar] [CrossRef]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation Importance: A Corrected Feature Importance Measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- He, C.; Ma, Q.; Li, T.; Yang, Y.; Liu, Z. Spatiotemporal Dynamics of Electric Power Consumption in Chinese Mainland from 1995 to 2008 Modeled Using DMSP/OLS Stable Nighttime Lights Data. J. Geogr. Sci. 2012, 22, 125–136. [Google Scholar] [CrossRef]
- Zhao, N.; Samson, E.L.; Currit, N.A. Nighttime-Lights-Derived Fossil Fuel Carbon Dioxide Emission Maps and Their Limitations. Photogramm. Eng. Remote Sens. 2015, 81, 935–943. [Google Scholar] [CrossRef]
- Bun, R.; Hamal, K.; Gusti, M.; Bun, A. Spatial GHG Inventory at the Regional Level: Accounting for Uncertainty. Clim. Change 2010, 103, 227–244. [Google Scholar] [CrossRef]
- GB 4915-2013; Emission Standard of Air Pollutants for Cement Industry. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2013. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqgdwrywrwpfbz/201312/t20131227_265765.shtml (accessed on 7 July 2025).
- Hubei Provincial Bureau of Statistics. Hubei Statistical Yearbook 2015; Hubei Provincial Bureau of Statistics: Wuhan, China, 2015. Available online: http://tjj.hubei.gov.cn/tjsj/sjkscx/tjnj/qstjnj/index.shtml (accessed on 15 July 2025).
- Hubei Provincial Bureau of Statistics. Hubei Statistical Yearbook 2018; Hubei Provincial Bureau of Statistics: Beijing, China, 2018. Available online: http://tjj.hubei.gov.cn/tjsj/sjkscx/tjnj/qstjnj/index.shtml (accessed on 15 July 2025).
- Moran, D.; Pichler, P.-P.; Zheng, H.; Muri, H.; Klenner, J.; Kramel, D.; Többen, J.; Weisz, H.; Wiedmann, T.; Wyckmans, A.; et al. Estimating CO2 Emissions for 108 000 European Cities. Earth Syst. Sci. Data 2022, 14, 845–864. [Google Scholar] [CrossRef]
Category | Datasets | Format | Time | Sources |
---|---|---|---|---|
Socioeconomic data | Point of interest | Vector (Point) | 2014–2017 | Baidu Map Services |
Road network | Vector (Polyline) | 2014–2017 | OpenStreetMap (https://download.geofabrik.de/asia/china.html, accessed on 16 March 2024) | |
WorldPop | Raster (1 km) | 2014–2017 | WorldPop (https://hub.worldpop.org/project/categories?id=3, accessed on 15 March 2024) | |
Nighttime light image | Raster (500 m) | 2014–2017 | Chen et al. [36] | |
Impervious surface | Raster (30 m) | 2014–2017 | PENG CHENG LABORATORY, Gong et al. [37] | |
CO2 emissions data | County-level CO2 emissions | Table | 2014–2017 | Carbon Emission Accounts and Datasets (https://www.ceads.net/, accessed on 15 March 2024) |
MEIC-China-CO2 1.4 | Raster (0.25°) | 2014–2017 | Multi-resolution Emission Inventory model for Climate and air pollution research (http://meicmodel.org.cn/#firstPage, accessed on 20 May 2024) | |
Basic geographic data | Administrative boundaries | Vector (Polygon) | 2021 | National Catalogue Service for Geographic Information (https://www.webmap.cn/commres.do?method=dataDownload, accessed on 16 March 2024) |
Input Parameter | Model Name | Five-Fold Cross-Validation Performance Metrics | Test Set Performance Metrics | Computational Cost | |||
---|---|---|---|---|---|---|---|
R2 | RMSE (MtCO2) | R2 | RMSE (MtCO2) | Training Time (s) | Inference Time (s) | ||
Multiple spatial proxies | MUL-Extra-Trees a | 0.96 | 0.52 | 0.92 | 0.54 | 0.2780 ± 0.0252 | 0.0178 ± 0.0023 |
MUL-CatBoost | 0.96 | 0.57 | 0.91 | 0.58 | 0.4114 ± 0.1092 | 0.0026 ± 0.0017 | |
MUL-XGBoost | 0.96 | 0.58 | 0.88 | 0.65 | 0.3634 ± 0.3054 | 0.0024 ± 0.0008 | |
MUL-GBDT | 0.94 | 0.66 | 0.85 | 0.74 | 0.6890 ± 0.0150 | 0.0016 ± 0.0008 | |
MUL-RF | 0.94 | 0.67 | 0.88 | 0.66 | 0.3616 ± 0.0194 | 0.0159 ± 0.0014 | |
MUL-SVR | 0.94 | 0.70 | 0.85 | 0.73 | 0.0237 ± 0.0071 | 0.0030 ± 0.0011 | |
MUL-LightGBM | 0.93 | 0.71 | 0.89 | 0.63 | 0.1786 ± 0.2038 | 0.0022 ± 0.0004 | |
NTL | NTL-Extra-Trees | 0.73 | 1.43 | 0.60 | 1.20 | 0.0084 ± 0.0148 | 0.0002 ± 0.0004 |
NTL-Linear Regression b | 0.41 | 2.06 | N/A | N/A | N/A | N/A |
Variable | MUL-Extra-Trees | MUL-CatBoost | MUL-XGBoost | MUL-GBDT | MUL-RF | MUL-SVR | MUL-LightGBM |
---|---|---|---|---|---|---|---|
NTL | 40.70 | 30.38 | 34.25 | 27.96 | 31.13 | 38.85 | 25.63 |
HKD | 21.11 | 18.99 | 30.00 | 31.81 | 27.70 | 17.89 | 42.60 |
ISA | 16.92 | 11.59 | 7.33 | 9.10 | 18.44 | 3.98 | 9.57 |
POP | 8.46 | 9.79 | 13.11 | 12.04 | 5.64 | 11.41 | 8.97 |
RDL | 8.14 | 11.76 | 7.87 | 15.59 | 10.89 | 13.40 | 6.86 |
LKD | 1.81 | 3.93 | 1.34 | 0.79 | 1.62 | 3.07 | 2.11 |
AKD | 1.26 | 4.02 | 3.77 | 1.40 | 1.13 | 6.81 | 1.66 |
RKD | 1.14 | 6.38 | 1.22 | 0.86 | 2.73 | 0.93 | 1.86 |
CKD | 0.46 | 3.17 | 1.11 | 0.46 | 0.73 | 3.66 | 0.74 |
Model Type | POI Category | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|
NTL-Linear Regression | Heavy industry | 34.26 | 37.53 | 35.85 | 29.92 |
Residential | 27.17 | 27.30 | 27.33 | 23.21 | |
MUL-Extra-Trees | Heavy industry | 0.00 | 0.00 | 0.00 | 0.00 |
Residential | 0.52 | 0.49 | 0.51 | 0.51 |
Model Type | Metric | 2014 | 2015 | 2016 | 2017 |
---|---|---|---|---|---|
NTL-Linear Regression | SAD (MtCO2) | 2.10 | 2.05 | 2.04 | 2.04 |
SCC | 0.79 | 0.79 | 0.78 | 0.80 | |
MUL-Extra-Trees | SAD (MtCO2) | 2.10 | 2.04 | 1.99 | 2.06 |
SCC | 0.82 | 0.82 | 0.83 | 0.84 |
Name | ΔPopulation (%) | ΔGDP (%) | ΔCO2 Fossil Fuel Emissions (%) | ΔPer Capita Emissions (%) | ΔPer Unit GDP Emissions (%) |
---|---|---|---|---|---|
Wuhan | 5.37 | 33.18 | 1.35 | −3.81 | −23.90 |
Huangshi | 0.87 | 21.41 | 0.65 | −0.22 | −17.10 |
Shiyan | 1.34 | 35.93 | −8.69 | −9.90 | −32.83 |
Yichang | 0.76 | 23.15 | −5.05 | −5.77 | −22.90 |
Xiangyang | 0.96 | 29.90 | −6.97 | −7.85 | −28.38 |
Ezhou | 1.71 | 31.94 | 1.42 | −0.28 | −23.13 |
Jingmen | 0.43 | 26.98 | −5.49 | −5.89 | −25.57 |
Xiaogan | 1.10 | 28.60 | −2.55 | −3.62 | −24.23 |
Jingzhou | −1.78 | 29.83 | −3.53 | −1.78 | −25.70 |
Huanggang | 1.25 | 30.10 | −3.58 | −4.77 | −25.89 |
Xianning | 1.84 | 28.06 | 1.48 | −0.36 | −20.76 |
Suizhou | 1.22 | 29.34 | −8.14 | −9.25 | −28.98 |
Enshi | 1.31 | 30.92 | −9.27 | −10.44 | −30.70 |
Xiantao | −2.14 | 30.13 | −6.42 | −4.37 | −28.09 |
Qianjiang | 1.11 | 24.37 | 0.96 | −0.15 | −18.82 |
Tianmen | −0.63 | 31.45 | −7.32 | −6.74 | −29.50 |
Shennongjia | 0.13 | 26.04 | −11.89 | −12.00 | −30.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Li, R.; Cao, J. Optimizing Spatial Scales for Evaluating High-Resolution CO2 Fossil Fuel Emissions: Multi-Source Data and Machine Learning Approach. Sustainability 2025, 17, 9009. https://doi.org/10.3390/su17209009
Fang Y, Li R, Cao J. Optimizing Spatial Scales for Evaluating High-Resolution CO2 Fossil Fuel Emissions: Multi-Source Data and Machine Learning Approach. Sustainability. 2025; 17(20):9009. https://doi.org/10.3390/su17209009
Chicago/Turabian StyleFang, Yujun, Rong Li, and Jun Cao. 2025. "Optimizing Spatial Scales for Evaluating High-Resolution CO2 Fossil Fuel Emissions: Multi-Source Data and Machine Learning Approach" Sustainability 17, no. 20: 9009. https://doi.org/10.3390/su17209009
APA StyleFang, Y., Li, R., & Cao, J. (2025). Optimizing Spatial Scales for Evaluating High-Resolution CO2 Fossil Fuel Emissions: Multi-Source Data and Machine Learning Approach. Sustainability, 17(20), 9009. https://doi.org/10.3390/su17209009