How Do Digital Skills Affect Rural Households’ Incomes in China? An Explanation Derived from Factor Allocation
Abstract
1. Introduction
2. Theoretical Framework and Hypothesis
2.1. Digital Skills and Rural Households’ Income
2.2. Digital Skills, Factor Allocation and Rural Households’ Income
3. Empirical Strategy and Data
3.1. Data
3.2. Variable Measurement
3.2.1. Rural Household’ Income
3.2.2. Digital Skills
3.2.3. Control Variables
3.3. Estimation Model
4. Results
4.1. Effects of Digital Skills on Farmers’ Income
4.1.1. Baseline Results
4.1.2. Endogenous Analysis
4.1.3. Robustness Tests
4.2. Heterogeneity Analysis
4.2.1. Heterogeneity of Education
4.2.2. Heterogeneity of Income
4.2.3. Heterogeneity of the Digital Environment
4.3. Mechanism Analysis: Allocation of Production Factors
4.3.1. Land Factor Allocation
4.3.2. Capital Factor Allocation
4.3.3. Labor Factor Allocation
5. Further Discussion
5.1. Digital Skills and Rural Households’ Income Sources
5.2. Digital Skills and Rural Households’ Income Inequality
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, R.; de Laat, M.; Godinot, X.; Ugarte, A.; Walker, R. Realising poverty in all its dimensions: A six-country participatory study. World Dev. 2020, 134, 105025. [Google Scholar] [CrossRef]
- Zhao, P.; Yu, Z. Rural poverty and mobility in China: A national-level survey. J. Transp. Geogr. 2021, 93, 103083. [Google Scholar] [CrossRef]
- Wan, G.; Hu, X.; Liu, W. China’s poverty reduction miracle and relative poverty: Focusing on the roles of growth and inequality. China Econ. Rev. 2021, 68, 101643. [Google Scholar] [CrossRef]
- Leng, X. Digital revolution and rural family income: Evidence from China. J. Rural Stud. 2022, 94, 336–343. [Google Scholar] [CrossRef]
- Wang, S.; Wu, C.; Fu, B. The dual effects of digital inclusive finance on the urban-rural income gap: An empirical investigation in China’s Yangtze River Delta region. Financ. Res. Lett. 2024, 69, 106049. [Google Scholar] [CrossRef]
- Lapuz, M.C.M. The role of local community empowerment in the digital transformation of rural tourism development in the Philippines. Technol. Soc. 2023, 74, 102308. [Google Scholar] [CrossRef]
- Huang, J.; Lu, H.; Du, M. Coordinated development of digital economy and ecological resilience in China: Spatial–temporal evolution and convergence. Environ. Dev. Sustain. 2025, 4, 1–29. [Google Scholar] [CrossRef]
- Rotz, S.; Gravely, E.; Mosby, I.; Duncan, E.; Finnis, E.; Horgan, M.; LeBlanc, J.; Martin, R.; Neufeld, H.T.; Nixon, A.; et al. Automated pastures and the digital divide: How agricultural technologies are shaping labour and rural communities. J. Rural Stud. 2019, 68, 112–122. [Google Scholar] [CrossRef]
- Shen, C.; Wu, X.; Shi, L.; Wan, Y.; Hao, Z.; Ding, J.; Wen, Q. How does the digital economy affect the urban–rural income gap? Evidence from Chinese cities. Habitat Int. 2025, 157, 103327. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, R.; Wang, Q. Place-based polices and e-commerce development in rural China. China Econ. Rev. 2024, 83, 102085. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y. Digital dividends? Rural E-commerce policy and urban-rural income disparity in China. Telecommun. Policy 2025, 103058, in press. [Google Scholar]
- Fossen, F.M.; Sorgner, A. New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data. Technol. Forecast. Soc. Change 2022, 175, 121381. [Google Scholar] [CrossRef]
- Li, B.; Pan, Y. Digital inclusive finance and rural entrepreneurial survival: The moderating role of digital and financial literacy. Econ. Anal. Policy 2025, 86, 1119–1136. [Google Scholar] [CrossRef]
- Fernandes, C.; Ferreira, J.J.; Veiga, P.M.; Kraus, S.; Dabić, M. Digital entrepreneurship platforms: Mapping the field and looking towards a holistic approach. Technol. Soc. 2022, 70, 101979. [Google Scholar] [CrossRef]
- Scheerder, A.; Van Deursen, A.; Van Dijk, J. Determinants of Internet skills, uses and outcomes. A systematic review of the second-and third-level digital divide. Telemat. Inform. 2017, 34, 1607–1624. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Y.; Zhao, Y.; Feng, J. Digital revolution and employment choice of rural labor force: Evidence from the perspective of digital skills. Agriculture 2023, 13, 1260. [Google Scholar] [CrossRef]
- Van Laar, E.; Van Deursen, A.J.; Van Dijk, J.A.; De Haan, J. The relation between 21st-century skills and digital skills: A systematic literature review. Comput. Hum. Behav. 2017, 72, 577–588. [Google Scholar] [CrossRef]
- Zhou, L.; Xia, Q. The impact of digital skills on the mental health of rural residents: From the perspective of happiness. Front. Psychol. 2025, 16, 1471488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xia, Y.; Abula, K. How digital skills affect rural labor employment choices? Evidence from rural China. Sustainability 2023, 15, 6050. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, W.; Leng, C. ICT adoption, individual income and psychological health of rural households in China. Appl. Res. Qual. Life 2020, 17, 71–91. [Google Scholar] [CrossRef]
- Feng, Y.; Dai, J.; Zhang, L. Digital infrastructure and income disparities: A quasi-natural experiment based on the” Broadband China” strategy. Int. Rev. Econ. Financ. 2025, 102, 104350. [Google Scholar] [CrossRef]
- Li, X.; He, P.; Liao, H.; Liu, J.; Chen, L. Does network infrastructure construction reduce urban–rural income inequality? Based on the “Broadband China” policy. Technol. Forecast. Soc. Change 2024, 205, 123486. [Google Scholar] [CrossRef]
- Yu, G.; Lu, Z. Rural credit input, labor transfer and urban–rural income gap: Evidence from China. China Agric. Econ. Rev. 2021, 13, 872–893. [Google Scholar] [CrossRef]
- Chen, H.; Chen, C.P.; Li, Y.; Qin, L.; Qin, M. How internet usage contributes to livelihood resilience of migrant peasant workers? Evidence from China. J. Rural Stud. 2022, 96, 112–120. [Google Scholar] [CrossRef]
- Gao, J.; Li, Z.; Nguyen, T.; Zhang, W. Digital transformation and enterprise employment. Int. Rev. Econ. Financ. 2025, 99, 104036. [Google Scholar] [CrossRef]
- Kelley, E.M.; Ksoll, C.; Magruder, J. How do digital platforms affect employment and job search? Evidence from India. J. Dev. Econ. 2024, 166, 103176. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J. Rural digital credit and residential energy consumption: Evidence from the agricultural production perspective. Energy 2024, 290, 130111. [Google Scholar] [CrossRef]
- Dzator, J.; Acheampong, A.O.; Appiah-Otoo, I.; Dzator, M. Leveraging digital technology for development: Does ICT contribute to poverty reduction? Telecommun. Policy 2023, 47, 102524. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, J.; Shao, J. Difference in the influence of internet use on the relative poverty among rural households with different income structures. Econ. Anal. Policy 2023, 78, 561–570. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Cao, D.; Wang, Y. Organizational mindfulness towards digital transformation as a prerequisite of information processing capability to achieve market agility. J. Bus. Res. 2021, 122, 700–712. [Google Scholar] [CrossRef]
- Hidalgo, A.; Gabaly, S.; Morales-Alonso, G.; Urueña, A. The digital divide in light of sustainable development: An approach through advanced machine learning techniques. Technol. Forecast. Soc. Change 2020, 150, 119754. [Google Scholar] [CrossRef]
- Lupton, D. The commodification of patient opinion: The digital patient experience economy in the age of big data. Sociol. Health Illn. 2014, 36, 856–869. [Google Scholar] [CrossRef]
- Avilés, J.M.; Larghi, S.B.; Aguayo, M.A.M. The informational life of the poor: A study of digital access in three Mexican towns. Telecommun. Policy 2016, 40, 661–672. [Google Scholar] [CrossRef]
- Meador, J.E.; Skerratt, S. On a unified theory of development: New institutional economics & the charismatic leader. J. Rural Stud. 2017, 53, 144–155. [Google Scholar]
- Wang, W.; Bai, X. Digital Economy in Rural Areas and Credit Costs: Mediating Role of Financial Inclusion. Financ. Res. Lett. 2025, 86, 108461. [Google Scholar] [CrossRef]
- Peng, K.; Yang, C.; Chen, Y. Land transfer in rural China: Incentives, influencing factors and income effects. Appl. Econ. 2020, 52, 5477–5490. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, S.; Wang, J.; Xia, X.; Jin, H. Rural land circulation and peasant household income growth—Empirical research based on structural decomposition. Sustainability 2024, 16, 6717. [Google Scholar] [CrossRef]
- Zuo, X.; Hong, Z. The Impact of Digital Technology on Land Rent-Out Behavior: Information Sharing or Exclusion? Agriculture 2022, 12, 1046. [Google Scholar] [CrossRef]
- Zeng, H.; Chen, J.; Gao, Q. The impact of digital technology use on rural households’ land transfer-in: Empirical evidence from Jiangsu, China. Agriculture 2024, 14, 89. [Google Scholar] [CrossRef]
- Weng, C.; Wang, H.; Heerink, N.; Berg, M.v.D. Credit constraints and rural households’ entrepreneurial performance in China. Emerg. Mark. Financ. Trade 2022, 58, 570–583. [Google Scholar] [CrossRef]
- Zhang, W.; Xia, X.; Zhu, Y.; Zhao, S.; Zhou, Z. Rural financial institutions, access to credit and production inputs of rural households. Financ. Res. Lett. 2024, 70, 106298. [Google Scholar] [CrossRef]
- Liu, T.; He, G.; Turvey, C.G. Inclusive finance, farm households entrepreneurship, and inclusive rural transformation in rural poverty-stricken areas in China. Emerg. Mark. Financ. Trade 2021, 57, 1929–1958. [Google Scholar] [CrossRef]
- Benami, E.; Carter, M.R. Can digital technologies reshape rural microfinance? Implications for savings, credit, & insurance. Appl. Econ. Perspect. Policy 2021, 43, 1196–1220. [Google Scholar] [CrossRef]
- Jafari-Sadeghi, V.; Garcia-Perez, A.; Candelo, E.; Couturier, J. Exploring the impact of digital transformation on technology entrepreneurship and technological market expansion: The role of technology readiness, exploration and exploitation. J. Bus. Res. 2021, 124, 100–111. [Google Scholar] [CrossRef]
- Kreuzer, T.; Lindenthal, A.K.; Oberländer, A.M.; Röglinger, M. The effects of digital technology on opportunity recognition. Bus. Inf. Syst. Eng. 2022, 64, 47–67. [Google Scholar] [CrossRef]
- Cheng, C.; Gao, Q.; Ju, K.; Ma, Y. How digital skills affect rural households’ agricultural entrepreneurship? An explanation from factor availability. J. Innov. Knowl. 2024, 9, 100477. [Google Scholar] [CrossRef]
- Hall, R.E.; Jones, C.I. Why do some countries produce so much more output per worker than others? Q. J. Econ. 1999, 114, 83–116. [Google Scholar] [CrossRef]
- Mutiiria, O.M.; Ju, Q.; Dumor, K. Infrastructure and inclusive growth in sub-Saharan Africa: An empirical analysis. Prog. Dev. Stud. 2020, 20, 187–207. [Google Scholar] [CrossRef]
- Yang, S.; Wang, H.; Wang, Z.; Koondhar, M.A.; Ji, L.; Kong, R. The nexus between formal credit and e-commerce utilization of entrepreneurial rural households in rural China: A mediation analysis. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 900–921. [Google Scholar] [CrossRef]
- Lian, X.; Mu, Y.; Zhang, W. Digital inclusive financial services and rural income: Evidence from China’s major grain-producing regions. Financ. Res. Lett. 2023, 53, 103622. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Cai, Z. Digital literacy and subjective happiness of low-income groups: Evidence from rural China. Front. Psychol. 2022, 13, 1045187. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Guan, W.; Wang, D.; Chen, X. Digital village construction and the quality of life of rural residents. Int. Rev. Econ. Financ. 2024, 96, 103729. [Google Scholar] [CrossRef]
- Jiang, T. Mediating effects and moderating effects in causal inference. China Ind. Econ. 2022, 5, 100–120. (In Chinese) [Google Scholar]
- Gao, M.; Jiang, F.; Wang, J.; Wu, B. Population ageing and income inequality in rural China: An 18-year analysis. Humanit. Soc. Sci. Commun. 2024, 11, 1605. [Google Scholar] [CrossRef]
- Liu, C.; Yi, F. Relative deprivation and health revisited: New evidence from middle-aged and older adults in rural China. China Econ. Rev. 2023, 79, 101948. [Google Scholar] [CrossRef]
- Jiao, M.; Xu, H. How do collective operating construction land (COCL) transactions affect rural residents’ property income? Evidence from rural Deqing County, China. Land Use Policy 2022, 113, 105897. [Google Scholar] [CrossRef]
- Bajwa, F.A.; Fu, J.; Bajwa, I.A.; Rehman, M.; Abbas, K. Digital financial inclusion and its dual impact on economic and environmental outcomes in ASEAN countries. Data Sci. Financ. Econ. 2025, 5, 53–75. [Google Scholar] [CrossRef]
- Li, Z.; Lai, Q.; He, J. Does digital technology enhance the global value chain position? Borsa Istanb. Rev. 2024, 24, 856–868. [Google Scholar] [CrossRef]
Variables | Definition | Obs. | Mean | S.D. |
---|---|---|---|---|
Rural households’ income | Total household income, unit: thousand yuan | 9257 | 40.844 | 38.260 |
Digital skills | Sum of digital skills: 0–5 | 9257 | 0.652 | 1.359 |
Entertainment-social skill | Use of digital technology for entertainment and social activities: 1 = yes; 0 = otherwise | 9257 | 0.218 | 0.413 |
Work-learning skill | Use of digital technologies for work and learning activities: 1 = yes; 0 = otherwise | 9257 | 0.109 | 0.312 |
Online business skill | Use of digital technology for online commerce activities: 1 = yes; 0 = otherwise | 9257 | 0.102 | 0.303 |
Age | Year | 9257 | 51.222 | 13.270 |
Age square | Year square/100 | 9257 | 27.997 | 13.713 |
Gender | 1 = male; 0 = female | 9257 | 0.548 | 0.498 |
Marriage | 1 = married; 0 = otherwise | 9257 | 0.874 | 0.332 |
Health | 1 = very unhealthy; 5 = very healthy | 9257 | 2.969 | 1.291 |
Political identity | 1 = communists; 0 = otherwise | 9257 | 0.041 | 0.199 |
Education in years | Years of education, units: year | 9257 | 6.167 | 4.137 |
Percentage of elderly | Elderly population as a proportion of total household size | 9257 | 0.202 | 0.307 |
Household size | Total number of family members | 9257 | 4.061 | 1.908 |
Social capital | Expenditures on family favors, unit: thousand yuan | 9257 | 35.708 | 49.780 |
Government subsidies | Receipt of government subsidies:1 = yes; 0 = otherwise | 9257 | 0.667 | 0.471 |
Social contributions | Receipt of social contributions: 1 = yes; 0 = otherwise | 9257 | 0.016 | 0.127 |
Total assets | Total household assets, units: thousand yuan | 9257 | 296.748 | 1010.900 |
Variables | Rural Households’ Income | ||||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
Digital skills | 1.6782 *** (0.5160) | ||||
Entertainment-social skill | 0.8001 (1.5453) | −3.6052 ** (1.7552) | |||
Work-learning skill | 5.7408 *** (2.0200) | 3.8478 * (2.2788) | |||
Online business skill | 10.8773 *** (1.9807) | 11.2640 *** (2.1769) | |||
Control variables | YES | YES | YES | YES | YES |
Regional FE | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES |
Observations | 9257 | 9257 | 9257 | 9257 | 9257 |
Variables | First-Stage | Second-Stage |
---|---|---|
(1) | (2) | |
Digital skills | 5.8667 *** (0.7010) | |
IV 2 | −0.0003 *** (0.0001) | |
IV 1 | 0.4043 *** (0.0085) | |
Control variables | YES | YES |
Regional FE | YES | YES |
Time FE | YES | YES |
Underidentification test | 1789.1090 | |
Weak identification test | 1121.9490 | |
Overidentification test | 0.4730 | |
Observations | 8670 | 8670 |
Matching Methods | ATT | Bootstrap S.E. | Z-Stat |
---|---|---|---|
Near neighbor matching (k = 4) | 8.2228 *** | 2.2638 | 3.63 |
Caliper Matching | 8.2909 *** | 2.2676 | 3.66 |
Radius Matching | 8.5881 *** | 2.0808 | 4.13 |
Kernel Matching | 8.3837 *** | 1.9760 | 4.24 |
Variables | Robustness 1 | Robustness 2 | Robustness 3 | Robustness 4 | Robustness 5 |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
Digital skills | 0.3571 ** (0.1566) | 1.2036 ** (0.5269) | 1.6008 *** (0.5824) | 4.0203 *** (0.8002) | |
Digital attitude | 2.2240 *** (0.6606) | ||||
Control variables | YES | YES | YES | YES | YES |
Regional FE | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | NO |
Observations | 9257 | 9257 | 8212 | 8129 | 3302 |
Variables | Low-Education | High-Education |
---|---|---|
(1) | (2) | |
Digital skills | 2.0155 *** (0.5616) | −1.7387 (2.1041) |
Control variables | YES | YES |
Regional FE | YES | YES |
Time FE | YES | YES |
Observations | 8141 | 1116 |
Variables | Low-Income | High-Income |
---|---|---|
(1) | (2) | |
Digital skills | 0.6233 ** (0.2905) | 0.9976 (1.2092) |
Control variables | YES | YES |
Regional FE | YES | YES |
Time FE | YES | YES |
Observations | 6042 | 3215 |
Variables | Low-Digitization | High-Digitization |
---|---|---|
(1) | (2) | |
Digital skills | 1.8522 ** (0.6092) | 2.7543 ** (1.0965) |
Control variables | YES | YES |
Regional FE | YES | YES |
Time FE | YES | YES |
Observations | 6375 | 2882 |
Variables | Land Transfer Out | Land Transfer In | Formal Credit | Informal Credit | Non-Farm Jobs | Entrepreneurship |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Digital skills | 0.0012 (0.0054) | −0.0000 (0.0058) | 0.0113 ** (0.0048) | 0.0127 * (0.0067) | 0.0259 *** (0.0059) | 0.0118 *** (0.0039) |
Control variables | YES | YES | YES | YES | YES | YES |
Regional FE | YES | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES | YES |
Observations | 9257 | 9257 | 9257 | 9257 | 9257 | 9257 |
Variables | Total Income | Property Income | Wage Income | Operating Income | Transfer Income |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
Digital skills | 1.6782 *** (0.5160) | 0.0052 (0.0245) | 1.2873 ** (0.5095) | 0.4437 * (0.2575) | 0.0175 (0.1753) |
Control variables | YES | YES | YES | YES | YES |
Regional FE | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES |
Observations | 9257 | 9257 | 9257 | 9257 | 9257 |
Variables | Total Income Gap | Property Income Gap | Wage Income Gap | Operating Income Gap | Transfer Income Gap |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
Digital skills | −0.0089 ** (0.0037) | 0.0016 (0.0027) | −0.0128 *** (0.0043) | −0.0092 ** (0.0046) | 0.0068 (0.0049) |
Control variables | YES | YES | YES | YES | YES |
Regional FE | YES | YES | YES | YES | YES |
Time FE | YES | YES | YES | YES | YES |
Observations | 9257 | 9257 | 9257 | 9257 | 9257 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Cai, Z.; Zeng, Z.; Liu, C. How Do Digital Skills Affect Rural Households’ Incomes in China? An Explanation Derived from Factor Allocation. Sustainability 2025, 17, 8967. https://doi.org/10.3390/su17208967
Wang J, Cai Z, Zeng Z, Liu C. How Do Digital Skills Affect Rural Households’ Incomes in China? An Explanation Derived from Factor Allocation. Sustainability. 2025; 17(20):8967. https://doi.org/10.3390/su17208967
Chicago/Turabian StyleWang, Jie, Zhijian Cai, Zhen Zeng, and Chang Liu. 2025. "How Do Digital Skills Affect Rural Households’ Incomes in China? An Explanation Derived from Factor Allocation" Sustainability 17, no. 20: 8967. https://doi.org/10.3390/su17208967
APA StyleWang, J., Cai, Z., Zeng, Z., & Liu, C. (2025). How Do Digital Skills Affect Rural Households’ Incomes in China? An Explanation Derived from Factor Allocation. Sustainability, 17(20), 8967. https://doi.org/10.3390/su17208967