Artificial Neural Network (ANN) Water-Level Prediction Model as a Tool for the Sustainable Management of the Vrana Lake (Croatia) Water Supply System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of ANN Prediction Models
2.1.1. Monitoring
2.1.2. Modeling
2.1.3. Validation
2.1.4. Evaluation
2.2. Research Area
Data Collection
3. Results
Development of ANN Vrana Lake Water Level Prediction Model and Model Quality Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
ARIMA | Autoregressive Integrated Moving Average |
d | Index of Agreement |
LM | Levenberg Marquardt learning algorithm |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage error |
ML | Machine Learning |
MLP | Multilayer Perceptron |
MS4E | Mean Higher Order Error |
MSE | Mean Squared Error |
MSRE | Mean Squared Relative Error |
PBIAS | Percentage BIAS |
R | Regression Correlation Coefficient |
r2 | Coefficient of Determination |
RMSE | Root Mean Squared Error |
RSR | Root Mean Squared Error to Standard Deviation |
References
- Water Framework Directive (WFD) 2000/60/EC (Current Consolidated Version 20/11/2014). Available online: http://data.europa.eu/eli/dir/2000/60/oj (accessed on 15 October 2024).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 16 October 2024).
- Ožanić, N. Hydrological Functioning Model of the Vrana Lake on the Cres Island. Ph.D. Thesis, University of Split, Split, Croatia, 1996. [Google Scholar]
- Hertelendi, E.; Svingor, E.; Rank, D.; Futo, I. Isotope investigation of Lake Vrana and springs in the Kvarner bay. In Proceedings of the 1st Croatian Geological Congress, Opatija, Croatia, 18–21 October 1995; Volume 1, pp. 89–94. [Google Scholar]
- Hertelendi, E.; Svingor, É.; Futó, I.; Szántó, Z.; Rank, D. Isotope investigation of Lake Vrana and springs in the Kvarner Area. Rapid Commun. Mass Spectrom. 1997, 11, 651–655. [Google Scholar] [CrossRef]
- Petrik, M. Available Quantity of water in Vrana Lake on the Cres Island. Građevinar 1961, 13, 93–99. [Google Scholar]
- Ožanić, N.; Rubinić, J. Hydrological characteristics and regime of functioning of Vrana lake on the Cres island. Proceedings from Round Table: Water on Croatian Islands; Croatian Hydrological Society: Hvar, Croatia, 1998; pp. 257–266. [Google Scholar]
- Tomec, Z.; Teskeredžić, Z.; Teskeredžić, E.; Hacmanjek, M. Phytoplankton of Vransko Lake on The Island Cres. Croat. J. Fish. Ribar. 1996, 54, 105–113. [Google Scholar]
- Szeroczyńska, K. Human impact on lakes recorded in the remains of Cladocera (Crustacea). Quat. Int. 2022, 95, 165–174. [Google Scholar] [CrossRef]
- Kuhta, M. Vrana Lake on Cres Island—Genesis, Characteristics and Prospects; Croatian Geological Survey: Zagreb, Croatia, 2004; Available online: http://www.globalislands.net/userfiles/croatia_T7-03.pdf (accessed on 27 October 2024).
- Habdija, I.; Primc-Habdija, B.; Špoljar, M.; Sertić Perić, M. Ecological determinants of rotifer vertical distribution in a coastal karst lake (Vrana Lake, Cres Island, Croatia). Biologia 2011, 66, 130–137. [Google Scholar] [CrossRef]
- Lončarić, R.; Magaš, D.; Surić, M. The Influence of Water Availability on the Historical, Demographic and Economic Development of the Kvarner Islands (Croatia). Ser. Hist. Sociol. 2011, 21, 425–436. Available online: https://zdjp.si/wp-content/uploads/2015/10/ASHS_21-2011-2_Loncaric.pdf (accessed on 27 October 2024).
- Kuhta, M.; Brkić, Ž. Seasonal Temperature Variations of Lake Vrana on the Island of Cres and Possible Influence of Global Climate Changes. J. Earth Sci. Eng. 2013, 3, 225. [Google Scholar]
- Bonacci, O. Analysis of variations in water levels of the Vrana Lake on the island of the Cres (Croatia). Hrvat. Vode Časopis Za Vodn. Gospod. 2014, 22, 337–346. [Google Scholar]
- Bonacci, O. Preliminary analysis of the decrease in water level of Vrana Lake on the small carbonate island of Cres (Dinaric karst, Croatia). Geol. Soc. Lond. Spec. Publ. 2018, 466, 307–317. [Google Scholar] [CrossRef]
- Bonacci, O. Analyses of Vrana Lake (Island of Cres, Croatia) Mean Annual Water Level. In Proceedings of the International Symposium Expect the Unexpected (KARST 2018), Trebinje, Bosnia and Hercegovina, 6–9 June 2018; pp. 265–272. [Google Scholar]
- Kuspilić, M.; Vuković, Ž.; Halkijević, I. Assessment of water resources carrying capacity for the Island of Cres. Građevinar 2018, 70, 305–313. [Google Scholar] [CrossRef]
- Hrnjica, B.; Bonacci, O. Lake level prediction using feed forward and recurrent neural networks. Water Resour. Manag. 2019, 33, 2471–2484. [Google Scholar] [CrossRef]
- Biondić, B.; Kapelj, S.; Mesić, S. Natural tracers–Indicators of the origin of the water of the Vrana Lake on Cres Island, Croatia. In Tracer Hydrology; CRC Press: Boca Raton, FL, USA, 2020; Volume 97, pp. 113–120. [Google Scholar] [CrossRef]
- Brkić, Ž.; Kuhta, M. Lake level evolution of the largest freshwater Lake on the Mediterranean islands through drought analysis and machine learning. Sustainability 2022, 14, 10447. [Google Scholar] [CrossRef]
- Grofelnik, H.; Maradin, M. Challenges of the water supply of Croatian islands in conditions of climate change and tourism growth. Geoadria 2023, 28, 2–35. [Google Scholar] [CrossRef]
- Brkić, Ž.; Larva, O. Impact of climate change on the Vrana Lake surface water temperature in Croatia using support vector regression. J. Hydrol. Reg. Stud. 2024, 54, 101858. [Google Scholar] [CrossRef]
- Cindrić Kalin, K.; Gűttler, I.; Perčec Tadić, M.; Srnec, L. Climate Change in the Coastal Karstic Aquifers. Hrvat. Vodoprivr. 2022, 240, 51–57. Available online: https://vode.eindigo.net/casopis-hrvatska-vodoprivreda/?pr=v.pdf&id=31853 (accessed on 27 October 2024).
- Bonacci, O. The Vrana Lake Hydrology (Island of Cres-Croatia) 1. JAWRA J. Am. Water Resour. Assoc. 1993, 29, 407–417. [Google Scholar] [CrossRef]
- Ožanić, N.; Sušanj Čule, I. The System of the Vrana lake on the Cres island in the context of water supply. In Proceedings of the 8. Hrvatska Konferencija o Vodama, Poreč, Croatia, 23–25 November 2023; pp. 323–329. [Google Scholar]
- Ozdemir, S.; Yaqub, M.; Yildirim, S.O. A systematic literature review on lake water level prediction models. Environ. Model. Softw. 2023, 163, 105684. [Google Scholar] [CrossRef]
- Zhu, S.; Lu, H.; Ptak, M.; Dai, J.; Ji, Q. Lake water-level fluctuation forecasting using machine learning models: A systematic review. Environ. Sci. Pollut. Res. 2023, 27, 44807–44819. [Google Scholar] [CrossRef]
- Azad, A.S.; Sokkalingam, R.; Daud, H.; Adhikary, S.K.; Khurshid, H.; Mazlan, S.N.A.; Rabbani, M.B.A. Water level prediction through hybrid SARIMA and ANN models based on time series analysis: Red hills reservoir case study. Sustainability 2022, 14, 1843. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Moalafhi, D.B.; Anderson, G.; Nkwae, B.; Odirile, P.; Parida, B.P.; Qi, J. Dam water level prediction using vector autoregression, random forest regression and MLP-ANN models based on land-use and climate factors. Sustainability 2022, 14, 14934. [Google Scholar] [CrossRef]
- Zhu, S.; Hrnjica, B.; Ptak, M.; Choiński, A.; Sivakumar, B. Forecasting of water level in multiple temperate lakes using machine learning models. J. Hydrol. 2020, 585, 124819. [Google Scholar] [CrossRef]
- Shiri, J.; Shamshirband, S.; Kisi, O.; Karimi, S.; Bateni, S.M.; Hosseini Nezhad, S.H.; Hashemi, A. Prediction of water-level in the Urmia Lake using the extreme learning machine approach. Water Resour. Manag. 2016, 30, 5217–5229. [Google Scholar] [CrossRef]
- Shafaei, M.; Kisi, O. Lake level forecasting using wavelet-SVR, wavelet-ANFIS and wavelet-ARMA conjunction models. Water Resour. Manag. 2016, 30, 79–97. [Google Scholar] [CrossRef]
- Young, C.C.; Liu, W.C.; Hsieh, W.L. Predicting the water level fluctuation in an alpine lake using physically based, artificial neural network, and time series forecasting models. Math. Probl. Eng. 2015, 2015, 708204. [Google Scholar] [CrossRef]
- Sušanj, I.; Ožanić, N.; Marović, I. Methodology for developing hydrological models based on an artificial neural network to establish an early warning system in small catchments. Adv. Meteorol. 2016, 2016, 9125219. [Google Scholar] [CrossRef]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Abrahart, R.J.; Kneale, P.E.; See, L.M. Neural Networks for Hydrological Modelling; Taylor & Francis: London, UK, 2004. [Google Scholar]
- Hagan, M.T.; Demuth, H.B.; Beale, M.H.; De Jes, O.; De Jesús, O. Neural Network Design (20); PWS Publishing Company: Boston, MA, USA, 1996. [Google Scholar]
- Demuth, H.B.; Beale, M.H. Neural Network ToolboxTM: User′s Guide; The MathWorks, Inc.: Natick, MA, USA, 2004. [Google Scholar]
- Biondić, B.; Iviĉić, D.; Prelogović, E. The hydrology of the Lake of Vrana the Cres Island. In Proceedings of the International Symposium: Geomorphology and Sea, Mali Lošinj, Croatia, 22–26 September 1992; pp. 25–36. [Google Scholar]
- Petričec, M.; Ćosić-Flajsig, G. Harmonization of Croatian regulation on meteorological and hydrological monitoring of storage reservoirs with the eu wfd. In Proceedings of the XXIVth Conference of the Danubian Countries on the Hydrological Forecasting and Hydrological Bases of Water Management, Bled, Slovenia, 2–4 June 2008; pp. 161–171. Available online: https://www.researchgate.net/profile/Gorana-Cosic-Flajsig/publication/266330786_HARMONIZATION_OF_CROATIAN_REGULATION_ON_METEOROLOGICAL_AND_HYDROLOGICAL_MONITORING_OF_STORAGE_RESEVOIRS_WITH_THE_EU_WFD/links/55aba30508aea9946724d149/HARMONIZATION-OF-CROATIAN-REGULATION-ON-METEOROLOGICAL-AND-HYDROLOGICAL-MONITORING-OF-STORAGE-RESERVOIRS-WITH-THE-EU-WFD.pdf (accessed on 29 October 2024).
- Matić, P. Short-Term Forecasting of Hydrological Inflow by Use of the Artificial Neural Networks. Ph.D. Thesis, University of Split, Split, Croatia, 2014. [Google Scholar]
Model Training Data (75% of Data) | ||||||
---|---|---|---|---|---|---|
Input Layer | Output Layer | |||||
Statistics * | Rainfall | Losses | Pumping | Evaporation | Water Level | Water Level |
[m] | [m] | [m] | [m] | [m] | [m] | |
n | 621 | 621 | 621 | 621 | 621 | 621 |
Max. | 0.377 | 0.201 | 0.069 | 0.255 | 15.973 | 15.973 |
Min. | 0 | 0.122 | 0.001 | 0.012 | 9.194 | 9.194 |
µ | 0.090 | 0.162 | 0.017 | 0.095 | 12.541 | 12.541 |
σ | 0.063 | 0.014 | 0.015 | 0.062 | 1.343 | 1.343 |
Model validation data (10% of data) | ||||||
Input layer | Output layer | |||||
Statistics * | Rainfall | Losses | Pumping | Evaporation | Water level | Water level |
[m] | [m] | [m] | [m] | [m] | [m] | |
n | 83 | 83 | 83 | 83 | 83 | 83 |
Max. | 0.315 | 0.166 | 0.070 | 0.278 | 12.687 | 12.687 |
Min. | 0 | 0.126 | 0.019 | 0.008 | 9.228 | 9.228 |
µ | 0.083 | 0.147 | 0.034 | 0.086 | 11.082 | 11.082 |
σ | 0.066 | 0.011 | 0.015 | 0.080 | 1.007 | 1.007 |
Model evaluation data (15% of data) | ||||||
Input layer | Output layer | |||||
Statistics * | Rainfall | Losses | Pumping | Evaporation | Water level | Water level |
[m] | [m] | [m] | [m] | [m] | [m] | |
n | 125 | 125 | 125 | 125 | 125 | 125 |
Max. | 0.373 | 0.167 | 0.079 | 0.282 | 12.826 | 12.826 |
Min. | 0 | 0.126 | 0.014 | 0.005 | 9.219 | 9.219 |
µ | 0.099 | 0.150 | 0.036 | 0.091 | 11.392 | 11.392 |
σ | 0.078 | 0.009 | 0.017 | 0.079 | 0.822 | 0.822 |
Validation | Evaluation | |||||||
---|---|---|---|---|---|---|---|---|
Δt | MSE | r2 | MSE | RMSE | MSRE | r2 | PBIAS | RSR |
[Month] | [m2] | [-] | [m2] | [m] | [-] | [-] | [%] | [-] |
1 | 0.015 | 0.994 | 0.021 | 0.145 | 0.021 | 0.984 | −0.245 | 0.187 |
2 | 0.063 | 0.976 | 0.081 | 0.285 | 0.080 | 0.967 | −0.609 | 0.390 |
4 | 0.552 | 0.801 | 0.591 | 0.769 | 0.602 | 0.707 | −2.501 | 1.078 |
6 | 0.831 | 0.458 | 0.793 | 0.890 | 0.753 | 0.105 | 0.152 | 1.164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sušanj Čule, I.; Ožanić, N.; Volf, G.; Karleuša, B. Artificial Neural Network (ANN) Water-Level Prediction Model as a Tool for the Sustainable Management of the Vrana Lake (Croatia) Water Supply System. Sustainability 2025, 17, 722. https://doi.org/10.3390/su17020722
Sušanj Čule I, Ožanić N, Volf G, Karleuša B. Artificial Neural Network (ANN) Water-Level Prediction Model as a Tool for the Sustainable Management of the Vrana Lake (Croatia) Water Supply System. Sustainability. 2025; 17(2):722. https://doi.org/10.3390/su17020722
Chicago/Turabian StyleSušanj Čule, Ivana, Nevenka Ožanić, Goran Volf, and Barbara Karleuša. 2025. "Artificial Neural Network (ANN) Water-Level Prediction Model as a Tool for the Sustainable Management of the Vrana Lake (Croatia) Water Supply System" Sustainability 17, no. 2: 722. https://doi.org/10.3390/su17020722
APA StyleSušanj Čule, I., Ožanić, N., Volf, G., & Karleuša, B. (2025). Artificial Neural Network (ANN) Water-Level Prediction Model as a Tool for the Sustainable Management of the Vrana Lake (Croatia) Water Supply System. Sustainability, 17(2), 722. https://doi.org/10.3390/su17020722