Soil Properties, Processes, Ecological Services and Management Practices of Mediterranean Riparian Systems
Abstract
1. Introduction
2. Hydrological Dynamics of Riparian Ecosystems
3. Soil Origin and Dynamics at Water-Upland Interface
3.1. Soil Physical Characteristics
3.2. Soil Chemical Characteristics
3.3. Soil Biological Characteristics
3.4. Role of Vegetation on the Overall Soil Properties
4. Ecological Functions of Riparian Soils
5. Anthropogenic Impacts, Biological Invasions and Climate Change
6. Conservation and Management of Riparian Soils
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaimes, G.N.; Iakovoglou, V.; Emmanouloudis, D.; Gounaridis, D. Riparian Areas of Greece: Their Definition and Characteristics. J. Eng. Sci. Technol. Rev. 2010, 3, 176–183. [Google Scholar] [CrossRef]
- Zaimes, G.N. Mediterranean riparian areas-climate change implications and recommendations. J. Environ. Biol. 2020, 41, 957–965. [Google Scholar] [CrossRef]
- Pedraza, S.; Clerici, N.; Gaviria, J.D.Z.; Sanchez, A. Global Research on Riparian Zones in the XXI Century: A Bibliometric Analysis. Water 2021, 13, 1836. [Google Scholar] [CrossRef]
- Ledesma, J.L.J.; Musolff, A.; Sponseller, R.A.; Lupon, A.; Penarroya, X.; Jativa, C.; Bernal, S. The riparian zone controls headwater hydrology and biogeochemistry, doesn’t it? Reassessing linkages across European ecoregions. Glob. Biogeochem. Cycles 2025, 39, e2024GB008250. [Google Scholar] [CrossRef]
- Naiman, R.J.; Décamps, H.; McClain, M.E. Riparia: Ecology, Conservation, and Management of Streamside Communities; Elsevier: Burlington, MA, USA, 2005; Volume 56, pp. 353–354. ISBN 0126633150. [Google Scholar]
- Mcnew, L.B.; Dahlgren, D.K.; Editors, J.L.B. Rangeland Wildlife Ecology and Conservation; Springer Nature: Cham, Switzerland, 2023; ISBN 9783031340369. [Google Scholar]
- Pollio, A.; Zarrelli, A.; Romanucci, V.; Di Mauro, A.; Barra, F.; Pinto, G.; Crescenzi, E.; Roscetto, E.; Palumbo, G. Polyphenolic Profile and Targeted Bioactivity of Methanolic Extracts from Mediterranean Ethnomedicinal Plants on Human Cancer Cell Lines. Molecules 2016, 21, 395. [Google Scholar] [CrossRef]
- FAO; UNEP. The State of the World’s Forests; FAO: Rome, Italy, 2020; ISBN 9789251324196. [Google Scholar]
- Armenise, E.; Redmile-Gordon, M.A.; Stellacci, A.M.; Ciccarese, A.; Rubino, P. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the mediterranean environment. Soil Tillage Res. 2013, 130, 91–98. [Google Scholar] [CrossRef]
- Singh, R.; Tiwari, A.K.; Singh, G.S. Managing riparian zones for river health improvement: An integrated approach. Landsc. Ecol. Eng. 2021, 17, 195–223. [Google Scholar] [CrossRef]
- Vaghei, H.; Boano, F. Freshwater riparian zones in a changing climate: A comprehensive review. Ecol. Indic. 2025, 176, 113600. [Google Scholar] [CrossRef]
- Maraseni, T.N.; Mitchell, C. An assessment of carbon sequestration potential of riparian zone of Condamine Catchment, Queensland, Australia. Land Use Policy 2016, 54, 139–146. [Google Scholar] [CrossRef]
- Pericolo, O.; Camarero, J.J.; Colangelo, M.; Valeriano, C.; Sánchez-Salguero, R.; Borghetti, M.; Castellaneta, M.; Nola, P.; Ripullone, F. Species specific vulnerability to increased drought in temperate and Mediterranean floodplain forests. Agric. For. Meteorol. 2023, 328, 109238. [Google Scholar] [CrossRef]
- Farguel, J.; Chavez, J.; Ochoa, L. Assessment of a process-based urban river restoration using biological and hydro-geomorphological indicators. The Congost river at Granollers (Catalonia, Spain). J. Environ. Manag. 2024, 369, 122424. [Google Scholar] [CrossRef]
- Hultine, K.R.; Bush, S.E.; Ehleringer, J.R. Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal. Ecol. Appl. 2010, 20, 347–361. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.G. Temporal and spatial variatiobns of vegetation in a riparian zone of South Korea. J. Ecol. Environ. 2020, 44, 9. [Google Scholar] [CrossRef]
- Omidvar, N.; Xu, Z.; Nguyen, T.T.N.; Salehin, B.; Ogbourne, S.; Ford, R.; Bai, S.H. A global meta-analysis shows soil nitrogen pool increases after revegetation of riparian zones. J. Soils Sediments 2021, 21, 665–667. [Google Scholar] [CrossRef]
- Zimmerman, O.R.; Rood, S.B.; Flanagan, L.B. Productivity of riparian Populus forests: Satellite assessment along a prairie river with an environmental flow regime. Ecosphere 2022, 13, e4152. [Google Scholar] [CrossRef]
- Hall, J.E.; Pollock, M.M.; Hoh, S.; Volk, C.; Goldsmith, J.; Jordan, C.E. Evaluation of dryland riparian restoration with cottonwood and willow using deep-planting and herbivore protection. Ecosphere 2015, 6, 1–12. [Google Scholar] [CrossRef]
- Aramburú-Paucar, J.M.; Martinwz-Capel, F.; Puig-Mengual, C.A.; Munoz-Mas, R.; Bertagnoli, A.; Tonina, D. A large flood resets riverine morphology, improves connectivity and enhances habitats of a regulated river. Sci. Total Environ. 2024, 919, 170717. [Google Scholar] [CrossRef]
- Perez-Corona, M.E.; Perez-Hernandez, M.d.C.; Medina-Villar, S.; Andivia, E.; Bermudez de Castro, F. Canopy species composition drives seasonal soil characteristics in a Mediterranean riparian forest. Eur. J. For. Res. 2021, 140, 1081–1093. [Google Scholar] [CrossRef]
- Poblador, S.; Thomas, Z.; Rousseau-Gueutin, P.; Sabaté, S.; Sabater, F. Riparian forest transpiration under the current and projected Mediterranean climate: Effects on soil water and nitrate uptake. Ecohydrology 2019, 12, e2043. [Google Scholar] [CrossRef]
- Ouballouk, Y.; Chahlaoui, A.; Rahou, A.; Saidi, A.; Belghiti, M.L.; Haddadi, Y.; Maliki, A.; Belkhiri, A. Spatial and seasonal dynamics of nutrient and organic pollution in the Sidi Chahed reservoir: Statistical analysis and environmental implications. Euro-Mediterr. J. Environ. Integr. 2025. [Google Scholar] [CrossRef]
- Lupon, A.; Ledesma, J.L.J.; Bernal, S. Riparian evapotranspiration is essential to simulate streamflow dynamics and water budgets in a Mediterranean catchment. Hydrol. Earth Syst. Sci. 2018, 22, 4033–4045. [Google Scholar] [CrossRef]
- Constan-Nava, S.; Soliveres, S.; Torices, R.; Serra, L.; Bonet, A. Direct and indirect effects of invasion by the alien tree Ailanthus altissima on riparian plant communities and ecosystem multifunctionality. Biol. Invasions 2015, 17, 1095–1108. [Google Scholar] [CrossRef]
- Schneider, C.; Florke, M.; De Stefano, L.; Petersen-Perlman, J.D. Hydrological threats to riparian wetlands of international importance—A global quanitative and qualitative analysis. Hydrol. Earth Syst. Sci. 2017, 21, 2799–2815. [Google Scholar] [CrossRef]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsch, S.M.; Stromberg, J.C.; Kirkman, S.P.; Pyšek, P.; Hobbs, R.J. Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Iakovoglou, V. Assessing riparian areas of Greece—An overview. Sustainability 2021, 13, 309. [Google Scholar] [CrossRef]
- Fernandez, R.L.; Mclelland, S.; Parsons, D.R.; Bodewes, B. Riparian vegetation life stages control the impact of flood sequencing on braided river morphodynamics. Earth Surf. Process. Landf. 2021, 46, 2315–2329. [Google Scholar] [CrossRef]
- Castellano, C.; Bruno, D.; Comín, F.A.; Benayas, J.M.R.; Masip, A.; Jiménez, J.J. Environmental drivers for riparian restoration success and ecosystem services supply in Mediterranean agricultural landscapes. Agr. Ecosyst. Environ. 2022, 337, 108048. [Google Scholar] [CrossRef]
- Anbumozhi, V.; Radhakrishnan, J.; Yamaji, E. Impact of riparian buffer zones on water quality and associated management considerations. Ecol. Eng. 2005, 24, 517–523. [Google Scholar] [CrossRef]
- Clausen, J.C.; Guillard, K.; Sigmund, C.M.; Dors, K.M. Water quality changes from riparian buffer restoration in Connecticut. J. Environ. Qual. 2000, 29, 1751–1761. [Google Scholar] [CrossRef]
- Bruno, D.; Belmar, O.; Sánchez-fernández, D.; Guareschi, S.; Millán, A.; Velasco, J. Responses of Mediterranean aquatic and riparian communities to human pressures at different spatial scales. Ecol. Indic. 2014, 45, 456–464. [Google Scholar] [CrossRef]
- Liu, S.; Pan, G.; Zhang, Y.; Xu, J.; Ma, R.; Shen, Z.; Dong, S. Risk assessment of soil heavy metals associated with land use variations in the riparian zones of a typical urban river gradient. Ecotoxicol. Environ. Saf. 2019, 181, 435–444. [Google Scholar] [CrossRef]
- Napoletano, P.; Guezgouz, N.; Di Iorio, E.; Colombo, C.; Guerriero, G.; De Marco, A. Anthropic impact on soil heavy metal contamination in riparian ecosystems of northern Algeria. Chemosphere 2023, 313, 137522. [Google Scholar] [CrossRef]
- Ceballos-barbancho, A.; Mora, E.; Llorente-pinto, M.; Luengo-ugidos, M.A. Water resources and environmental change in a Mediterranean environment: The south-west sector of the Duero river basin (Spain). J. Hydrol. 2008, 351, 126–138. [Google Scholar] [CrossRef]
- Menció, A.; Maspla, J. Influence of groundwater exploitation on the ecological status of streams in a Mediterranean system (Selva Basin, NE Spain). Ecol. Indic. 2010, 10, 915–926. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 14th ed.; Pearson: Upper Saddle River, NJ, USA, 2007; ISBN 9780132279383. [Google Scholar]
- FAO. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014; ISBN 9789251083697. [Google Scholar]
- Graf-rosenfellner, M.; Cierjacks, A.; Kleinschmit, B.; Lang, F. Soil formation and its implications for stabilization of soil organic matter in the riparian zone. CATENA 2016, 139, 9–18. [Google Scholar] [CrossRef]
- Tabacchi, E.; Correll, D.L.; Pinay, G.; Aquatiques, S.; Umr, C.; Marvig, J. Development, maintenance and role of riparian vegetation in the river landscape. Freshw. Biol. 1998, 40, 497–516. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The Natural Flow Regime: A Paradigm for River Conservation and Restoration. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Naiman, R.J.; Decamps, H. The Ecology of Interfaces: Riparian Zones. Annu. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef]
- Bridgham, S.D.; Megonigal, J.P.; Keller, J.K.; Bliss, N.B.; Trettin, C.; Service, U.F. The carbon balance of North American wetlands. Wetlands 2006, 26, 889–916. [Google Scholar] [CrossRef]
- Dridi, A.; Tlili, A.; Fatnassi, S.; Hamrouni, H.; Gueddari, M. Effects of boron distribution on sugar beet crop yield in two Tunisian soils. Arab. J. Geosci. 2018, 11, 400. [Google Scholar] [CrossRef]
- Sallam, A.; Tagyan, A.; Mahmoud, E.; Hozayen, W.; Alkhalifah, D.; Hozzein, W. Comparison of Actinobacterial Rhizosphere Communities in Agricultural Soil of Beni-Suef, Egypt, using Cultural and Non-Cultural Methods. Catrina Int. J. Environ. Sci. 2025, 35, 17–28. [Google Scholar] [CrossRef]
- Lind, L.; Hasselquist, E.M.; Laudon, H. Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. J. Environ. Manag. 2019, 249, 109391. [Google Scholar] [CrossRef] [PubMed]
- Fitter, A.H.; Gilliga, C.A.; Holligworth, K.; Kleczkowski, A.; Twyman, R.M.; Pitchford, J.W. Biodiversity and ecosystem function in soil. Funct. Ecol. 2005, 19, 369–377. [Google Scholar] [CrossRef]
- Kawalko, D.; Jezierski, P.; Kabala, C. Morphology and Physicochemical Properties of Alluvial Soils in Riparian Forests after River Regulation. Forests 2021, 12, 329. [Google Scholar] [CrossRef]
- Vannoppen, W.; Vanmaercke, M.; De Baets, S.; Poesen, J. A review of the mechanical effects of plant roots on concentrated flow erosion rates. Earth Sci. Rev. 2015, 150, 666–678. [Google Scholar] [CrossRef]
- Della Greca, M.; Fiorentino, A.; Previtera, L.; Zarrelli, A. Effusides I-V: 9,10-dihydrophenanthrene glucosides from Juncus effusus. Phytochemistry 1995, 40, 533–535. [Google Scholar] [CrossRef]
- Zheng, J.; Arif, M. Dam Inundation Modulates the Effect of Plant Diversity on Soil Multifunctionality in the Riparian Zone of the Three Gorges Reservoir. Land Degrad. Dev. 2024, 35, 5584–5595. [Google Scholar] [CrossRef]
- Tolkkinen, M.; Vaarala, S.; Aroviita, J. The Importance of Riparian Forest Cover to the Ecological Status of Agricultural Streams in a Nationwide Assessment. Water Resour. Manag. 2021, 35, 4009–4020. [Google Scholar] [CrossRef]
- Oettel, J.; Braun, M.; Sallmannshofer, M.; de Groot, M.; Schueler, S.; Virgillito, C.; Westergren, M.; Božič, G.; Nagy, L.; Stojnić, S.; et al. River distance, stand basal area, and climatic conditions are the main drivers influencing lying deadwood in riparian forests. For. Ecol. Manag. 2022, 520, 120415. [Google Scholar] [CrossRef]
- Smith, M.; Conte, P.; Berns, A.E.; Thomson, J.R.; Cavagnaro, T.R. Spatial patterns of, and environmental controls on, soil properties at a riparian e paddock interface. Soil Biol. Biochem. 2012, 49, 38–45. [Google Scholar] [CrossRef]
- Ricker, M.C.; Stolt, M.H.; Donohue, S.W.; Blazejewski, G.A.; Zavada, M.S. Soil Organic Carbon Pools in Riparian Landscapes of Southern New England. Soil Sci. Soc. Am. J. 2013, 77, 1070–1079. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Z.; Liu, J.; Latif, J.; Qin, J.; Yang, H.; Jiang, W.; Deng, Y.; Yang, K.; Ni, Z.; et al. Seasonal and Spatial Fluctuations of Reactive Oxygen Species in Riparian Soils and Their Contributions on Organic Carbon Mineralization. Environ. Sci. Technol. 2024, 58, 7066–7077. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, C.D.; Sun, H.J.; Mckay, C.P.; Grintzalis, K.; Papapostolou, I.; Zisimopoulos, D.; Panagiotidis, K.; Zhang, G.; Koutsopoulou, E.; Christidis, G.E.; et al. Evidence for photochemical production of reactive oxygen species in desert soils. Nat. Commun. 2015, 6, 7100. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhu, K.; Wang, Z.; Liu, J.; Ni, Z.; Ding, Y.; Zhang, C.; Jia, H. Production of reactive oxygen species and its role in mediating the abiotic transformation of organic carbon in sandy soil under vegetation restoration. Carbon Res. 2023, 2, 35. [Google Scholar] [CrossRef]
- Cangiano, T.; Dellagreca, M.; Fiorentino, A.; Isidori, M.; Monaco, P.; Zarrelli, A. Lactone diterpenes from the aquatic plant Potamogeton natans. Phytochemistry 2001, 56, 469–473. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Zhang, L. Composition, source characteristic and indication of eutrophication of dissolved organic matter in the sediments of Erhai Lake. Environ. Earth Sci. 2015, 74, 3739–3751. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Pueppke, S.G.; Diao, Y.; Nie, X.; Geng, J.; Chen, D.; Pang, J. Nutrient loss is sensitive to land cover changes and slope gradients of agricultural hillsides: Evidence from four contrasting pond systems in a hilly catchment. Agric. Water Manag. 2020, 237, 106165. [Google Scholar] [CrossRef]
- Napoletano, P.; Guezgouz, N.; Benradia, I.; Benredjem, S.; Parisi, C.; Guerriero, G.; De Marco, A. Non-Lethal Assessment of Land Use Change Effects in Water and Soil of Algerian Riparian Areas along the Medjerda River through the Biosentinel Bufo spinosus Daudin. Water 2024, 16, 538. [Google Scholar] [CrossRef]
- Bernal, S.; Butturini, A.; Nin, E.; Sabater, F.; Sabater, S. Leaf Litter Dynamics and Nitrous Oxide Emission in a Mediterranean Riparian Forest: Implications for Soil Nitrogen Dynamics. J. Environ. Qual. 2003, 32, 191–197. [Google Scholar] [CrossRef]
- Lupon, A.; Gerber, S.; Sabater, F.; Bernal, S. Climate response of the soil nitrogen cycle in three forest types of a headwater Mediterranean catchmen. J. Geophys. Res. Biogeosci. 2015, 120, 859–875. [Google Scholar] [CrossRef]
- Kim, D.; Cho, J.; Baek, K. Pilot-scale ex situ electrokinetic restoration of saline greenhouse soil. J. Soils Sediments 2011, 11, 947–958. [Google Scholar] [CrossRef]
- Yang, H.; Sheng, R.; Zhang, Z.; Wang, L.; Wang, Q.; Wei, W. Responses of nitrifying and denitrifying bacteria to flooding-drying cycles in flooded rice soil. Appl. Soil Ecol. 2016, 103, 101–109. [Google Scholar] [CrossRef]
- Ye, C.; Cheng, X.; Zhang, K.; Du, M.; Zhang, Q. Hydrologic pulsing affects denitrification rates and denitrifier communities in a revegetated riparian ecotone. Soil Biol. Biochem. 2017, 115, 137–147. [Google Scholar] [CrossRef]
- Groffman, P.M.; Crawford, M.K. Denitrification Potential in Urban Riparian Zones. J. Environ. Qual. 2003, 32, 1144–1149. [Google Scholar] [CrossRef]
- Bettez, N.D.; Groffman, P.M. Denitrification Potential in Stormwater Control Structures and Natural Riparian Zones in an Urban Landscape. Environ. Sci. Technol. 2012, 46, 10909–10917. [Google Scholar] [CrossRef]
- Pouyat, R.; Groffman, P.; Yesilonis, I.; Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 2002, 116, 107–118. [Google Scholar] [CrossRef]
- Shen, Y.; Cheng, R.; Xiao, W.; Zeng, L.; Wang, L.; Sun, P.; Chen, T. Temporal dynamics of soil nutrients in the riparian zone: Effects of water fluctuations after construction of the Three Gorges Dam. Ecol. Indic. 2022, 139, 108865. [Google Scholar] [CrossRef]
- Khaledian, Y.; Brevik, E.C.; Pereira, P.; Cerdà, A.; Fattah, M.A. Catena Modeling soil cation exchange capacity in multiple countries. CATENA 2017, 158, 194–200. [Google Scholar] [CrossRef]
- Pan, J.; Xue, X.; Huang, C.; You, Q.; Guo, P.; Yang, R.; Da, F.; Duan, Z.; Peng, F. Research in Cold and Arid Regions Effect of salinization on soil properties and mechanisms bene fi cial to microorganisms in salinized soil remediation—A review. Res. Cold Arid. Reg. 2024, 16, 121–128. [Google Scholar] [CrossRef]
- Groffman, P.M.; Bain, D.J.; Band, L.E.; Belt, K.T.; Brush, G.S.; Grove, J.M.; Pouyat, R.V.; Yesilonis, I.C.; Zipperer, W.C. Down by the riverside: Urban riparian ecology. Front. Ecol. Environ. 2003, 1, 315–321. [Google Scholar] [CrossRef]
- Burt, T.; Pinay, G. Linking hydrology and biogeochemistry in complex landscapes. Prog. Phys. Geogr. Earth Environ. 2014, 29, 297–316. [Google Scholar] [CrossRef]
- Kumawat, C.; Kumar, A.; Parshad, J.; Sharma, S.S.; Patra, A.; Dogra, P.; Yadav, G.K.; Dadhich, S.K.; Verma, R.; Kumawat, G.L. Microbial Diversity and Adaptation under Salt-Affected Soils: A Review. Sustainability 2022, 14, 9280. [Google Scholar] [CrossRef]
- Pan, C.; Liu, C.; Zhao, H.; Wang, Y. Changes of soil physico-chemical properties and enzyme activities in relation to grassland salinization. Eur. J. Soil Biol. 2013, 55, 13–19. [Google Scholar] [CrossRef]
- Canfora, L.; Salvati, L.; Benedetti, A.; Francaviglia, R. Is soil microbial diversity affected by soil and groundwater salinity? Evidences from a coastal system in central Italy. Environ. Monit. Assess. 2017, 189, 319. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Lee, S.; Mitsch, W.J.; Kang, H. Different responses of denitri fi cation rates and denitrifying bacterial communities to hydrologic pulsing in created wetlands. Soil Biol. Biochem. 2010, 42, 1721–1727. [Google Scholar] [CrossRef]
- Peralta, A.L.; Ludmer, S.; Kent, A.D. Hydrologic history in fl uences microbial community composition and nitrogen cycling under experimental drying/wetting treatments. Soil Biol. Biochem. 2013, 66, 29–37. [Google Scholar] [CrossRef]
- Song, K.; Lee, S.; Kang, H. Denitri fi cation rates and community structure of denitrifying bacteria in newly constructed wetland. Eur. J. Soil Biol. 2011, 47, 24–29. [Google Scholar] [CrossRef]
- Ye, C.; Gong, Y.; Delgado-Baquerizo, M.; Che, R.; Liu, S.; Zhang, Q. Revegetation promotes soil microbial network stability in a novel riparian ecosystem. J. Appl. Ecol. 2023, 60, 1572–1586. [Google Scholar] [CrossRef]
- Meena, M.; Yadav, G.; Sonigra, P.; Nagda, A.; Mehta, T.; Swapnil, P.; Harish; Marwal, A.; Kumar, S. Multifarious Responses of Forest Soil Microbial Community Toward Climate Change. Microb. Ecol. 2023, 86, 49–74. [Google Scholar] [CrossRef]
- Sardans, J.; Rivas-ubach, A.; Penuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry 2012, 111, 1–39. [Google Scholar] [CrossRef]
- Prommer, J.; Zezula, D.; Walker, T.W.N.; Wanek, W.; Braun, J.; Hu, Y.; Hofhansl, F.; Richter, A. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob. Change Biol. 2020, 26, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Napoletano, P.; Barbarisi, C.; Maselli, V.; Rippa, D.; Arena, C.; Volpe, M.G.; Colombo, C.; Fulgione, D.; De Marco, A. Quantifying the Immediate Response of Soil to Wild Boar (Sus scrofa L.) Grubbing in Mediterranean Olive Orchards. Soil Syst. 2023, 7, 38. [Google Scholar] [CrossRef]
- Torres, P.A.; Abril, A.B.; Bucher, E.H. Microbial succession in litter decomposition in the semi-arid Chaco woodland. Soil Biol. Biochem. 2005, 37, 49–54. [Google Scholar] [CrossRef]
- Zhang, T.; Hansel, C.M.; Voelker, B.M.; Lamborg, C.H. Extensive Dark Biological Production of Reactive Oxygen Species in Brackish and Freshwater Ponds. Environ. Sci. Technol. 2016, 50, 2983–2993. [Google Scholar] [CrossRef]
- Chen, N.; Fu, Q.; Wu, T.; Cui, P.; Fang, G.; Liu, C.; Chen, C.; Liu, G.; Wang, W.; Wang, D.; et al. Active Iron Phases Regulate the Abiotic Transformation of Organic Carbon during Redox Fluctuation Cycles of Paddy Soil. Environ. Sci. Technol. 2021, 55, 14281–14293. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Y.; Yan, Z.; Zhao, W.; Sun, J. Ecological impacts of vermiculite and submerged macrophytes on sediment enzyme activity in lake restoration: Insights from the mesocosm study. J. Water Process Eng. 2024, 67, 106222. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, H.; Wang, Q.; Zhu, W.; Kang, Y. Soil extracellular enzyme activity linkage with soil organic carbon under conservation tillage: A global meta-analysis. Eur. J. Agron. 2024, 155, 127135. [Google Scholar] [CrossRef]
- Fonseca, A.; Zina, V.; Duarte, G.; Aguiar, F.C.; Rodríguez-González, P.M.; Ferreira, M.T.; Fernandes, M.R. Riparian Ecological Infrastructures: Potential for Biodiversity-Related Ecosystem Services in Mediterranean Human-Dominated Landscapes. Sustainability 2021, 13, 10508. [Google Scholar] [CrossRef]
- Guezgouz, N.; Parisi, C.; Boubsil, S.; Grieco, G.; Hana, S.A.; Guerriero, G. Heavy Metals Assessment in the Medjerda River Basin (Northeastern Algeria): A Preliminary Water Analysis and Toad Skin Biopsy. Proc. Zool. Soc. 2021, 74, 104–113. [Google Scholar] [CrossRef]
- Latsiou, A.; Kouvarda, T.; Stefanidis, K.; Dimitriou, E.; Papaioannou, G.; Gritzalis, K. Pressures and Status of the Riparian Vegetation in Greek Rivers: Overview and Preliminary Assessment. Hydrology 2021, 8, 55. [Google Scholar] [CrossRef]
- Stella, J.C.; Rodriguez-Gonzalez, P.M.; Dufour, S.; Bendix, J. Riparian vegetation research in Mediterranean-climate regions: Common patterns, ecological processes, and considerations for management. Hydrobiologia 2013, 719, 291–315. [Google Scholar] [CrossRef]
- Kang, Z.; Lou, G.; Guo, Y.; Xu, P. The anti-Erosion potential of taproots and fibrous roots in alluvial loess of north China: A pot experiment. J. Soils Sediments 2024, 24, 847–862. [Google Scholar] [CrossRef]
- Acuna, V.; Diez, J.R.; Flores, L.; Meleason, M.; Elosegi, A. Does it make economic sense to restore rivers for their ecosystem services? J. Appl. Ecol. 2013, 50, 988–997. [Google Scholar] [CrossRef]
- O’Toole, P.; Chambers, J.M.; Bell, R.W. Understanding the characteristics of riparian zones in low relief, sandy catchments that affect their nutrient removal potential. Agric. Ecosyst. Environ. 2018, 258, 182–196. [Google Scholar] [CrossRef]
- Gutierrez, M.R.V.; Alonso, M.L.S. Which are, what is their status and what can we expect from ecosystem services provided by Spanish rivers and riparian areas? Biodivers. Conserv. 2013, 22, 2469–2503. [Google Scholar] [CrossRef]
- Tombolini, I.; Caneva, G.; Cancellieri, L.; Abati, S.; Ceschin, S. Damming effects on upstream riparian and aquatic vegetation: The case study of Nazzano (Tiber River, central Italy). Knowl. Manag. Aquat. Ecosyst. 2014, 412, 3. [Google Scholar] [CrossRef]
- Zaimes, G.Ν.; Tamparopoulos, A.E.; Tufekcioglu, M.; Schultz, R.C. Understanding stream bank erosion and deposition in Iowa, USA: A seven year study along streams in different regions with different riparian land-uses. J. Environ. Manag. 2021, 287, 112352. [Google Scholar] [CrossRef]
- Oester, R.; Altermatt, F.; Bruder, A. Riparian forests shape trophic interactions in detrital stream food webs. Funct. Ecol. 2024, 38, 2196–2206. [Google Scholar] [CrossRef]
- Rivaes, R.; Rodríguez-gonzález, P.M.; Albuquerque, A.; Pinheiro, A.N.; Egger, G.; Ferreira, M.T. Riparian vegetation responses to altered fl ow regimes driven by climate change in Mediterranean rivers. Ecohydrology 2013, 424, 413–424. [Google Scholar] [CrossRef]
- López-baucells, A.; Casanova, L.; Puig-Montserrat, X.; Espinal, A.; Páramo, F.; Flaquer, C. Evaluating the use of Myotis daubentonii as an ecological indicator in Mediterranean riparian habitats. Ecol. Indic. 2017, 74, 19–27. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-ward, A.; Garrote, L. Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants. Appl. Energy 2019, 256, 113980. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, N.; Sordo-Ward, A.; Garrote, L. Influence of hydrologically based environmental fl ow methods on fl ow alteration and energy production in a run-of-river hydropower plant. J. Clean. Prod. 2019, 232, 1028–1042. [Google Scholar] [CrossRef]
- Zhang, Q.; Lou, Z. The environmental changes and mitigation actions in the Three Gorges Reservoir region, China. Environ. Sci. Policy 2011, 14, 1132–1138. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Emmanouloudis, D. Sustainable management of the freshwater resources of Greece. J. Eng. Sci. Technol. Rev. 2012, 5, 77–82. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects: The 2012 Revision—Volume I: Comprehensive Tables; Department of Economic and Social Affairs, United Nations: New York, NY, USA, 2013. [Google Scholar]
- Cao, Y.; Natuhara, Y. Effect of Urbanization on Vegetation in Riparian Area: Plant Communities in Artificial and Semi-Natural Habitats. Sustainability 2020, 12, 204. [Google Scholar] [CrossRef]
- Luo, X.; Yu, S.; Zhu, Y.; Li, X. Trace metal contamination in urban soils of China. Sci. Total Environ. 2012, 421–422, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Hafsi, F.Z.; Chabi, N. Land tenure regularisation for sustainable land use in informal urban settlements: Case study of Lalaouia and Mesguiche, Souk Ahras, Algeria. Town Reg. Plan. 2021, 75, 17–30. [Google Scholar] [CrossRef]
- Maceda-Veiga, A.; Colin, N.; Mac Nally, R.; Salvado, H.; de Sostoa, A.; Yen, J.D.L. Effects of the invasive riparian plant Arundo donax on riverine fish: A call for action? Sci. Total Environ. 2025, 996, 180139. [Google Scholar] [CrossRef]
- Hamada, Y.; Stow, D.A.; Coulter, L.L.; Jafolla, J.C.; Hendricks, L.W. Detecting Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery. Remote Sens. Environ. 2007, 109, 237–248. [Google Scholar] [CrossRef]
- U.S. Fish and Wildlife Service. Ecological Risk Screening Summary: Giant Reed (Arundo donax). 2014. Available online: https://www.fws.gov/sites/default/files/documents/Ecological-Risk-Screening-Summary-Giant-reed.pdf (accessed on 11 August 2025).
- U.S. Fish and Wildlife Service. Ecological Risk Screening Summary: Saltcedar (Tamarix spp.). 2014. Available online: https://www.fws.gov/sites/default/files/documents/Ecological-Risk-Screening-Summary-Saltcedar.pdf (accessed on 11 August 2025).
- Moustafa, A.A.; Elganainy, R.A.; Abdelghnai, M.; Mansour, S. Scorching Records: The hottest May in history ad its impact on our planet, breaking records and intensifying the climate crisis. Catrina Int. J. Environ. Sci. 2024, 33, 29–42. [Google Scholar] [CrossRef]
- Masoni, A.; Frizzi, F.; Giannini, F.; Santini, G. First record of the Argentine ant, Linepithema humile (Mayr, 1868), in the Tuscan Archipelago (Italy). Bioinvasions Rec. 2020, 9, 37–43. [Google Scholar] [CrossRef]
- Holway, D.A.; Suarez, A.V. Homogenizationof ant communities in mediterranean California: The effects of urbanization and invasion. Biol. Conserv. 2006, 127, 319–326. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Hossieni, M.; Zeraatpisheh, M.; Francaviglia, R. Land use change effects on soil quality and biological fertility: A case study in northern Iran. Eur. J. Soil Biol. 2019, 95, 103119. [Google Scholar] [CrossRef]
- Gober, P. Desert urbanization and the challenges of water sustainability. Curr. Opin. Environ. Sustain. 2010, 2, 144–150. [Google Scholar] [CrossRef]
- Terrado, M.; Acuna, V.; Ennaanay, D.; Tallis, H.; Sabater, S. Impact of climate extremes on hydrological ecosystem services in a heavily humanized Mediterranean basin. Ecol. Indic. 2014, 37, 199–209. [Google Scholar] [CrossRef]
- Rault, P.A.K.; Koundouri, P.; Akinsete, E.; Ludwig, R.; Huber-garcia, V.; Tsani, S.; Acuna, V.; Kalogianni, E.; Luttik, J.; Kok, K.; et al. Down scaling of climate change scenarii to river basin level: A transdisciplinary methodology applied to Evrotas river basin, Greece. Sci. Total Environ. 2019, 660, 1623–1632. [Google Scholar] [CrossRef]
- Giakoumakis, S.G.; Baloutsos, G. Investigation of trend in hydrological time series of the Evinos River basin. Hydrol. Sci. J. 1997, 42, 81–88. [Google Scholar] [CrossRef]
- Rivas, B.L.; Koleva-lizama, I. Influence of climate variability on water resources in the Bulgarian South Black Sea basin. In Regional Hydrological Impacts of Climatic Change—Hydroclimatic Variability; International Association of Hydrological Sciences: Wallingford, UK, 2005; Volume 296, pp. 81–88. [Google Scholar]
- Shaban, A. Indicators and Aspects of Hydrological Drought in Lebanon. Water Resour. Manag. 2009, 23, 1875–1891. [Google Scholar] [CrossRef]
- Kahya, E.; Kalaycı, S. Trend analysis of streamflow in Turkey. J. Hydrol. 2004, 289, 128–144. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L.; Quiroga, S.; Moneo, M. A regional comparison of the effects of climate change on agricultural crops in Europe. Clim. Chang. 2012, 112, 29–46. [Google Scholar] [CrossRef]
- Navarro-Ortega, A.; Acuña, V.; Bellin, A.; Burek, P.; Cassiani, G.; Choukr-allah, R.; Dolédec, S.; Elosegi, A.; Ferrari, F.; Ginebreda, A.; et al. Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project. Sci. Total Environ. 2015, 504, 3–9. [Google Scholar] [CrossRef]
- Bond, N.R.; Lake, P.S.; Arthinton, A.H. The impacts of drought on freshwater ecosystems: An Australian perspective. Hydrobiologia 2008, 60, 3–16. [Google Scholar] [CrossRef]
- Firoozi, A.A. Water erosion processes: Mechanisms, impact, and management strategies. Results Eng. 2024, 24, 103237. [Google Scholar] [CrossRef]
- Capon, S.J.; Chambers, L.E.; Mac Nally, R.; Naiman, R.J.; Davies, P.; Marshall, N.; Pittock, J.; Reid, M.; Capon, T.; Douglas, M.; et al. Riparian Ecosystems in the 21st Century: Hotspots for Climate Change Adaptation? Ecosystems 2013, 16, 359–381. [Google Scholar] [CrossRef]
- FAO. State of Mediterranean Forests; FAO: Rome, Italy, 2018; ISBN 9789251310472. [Google Scholar]
- Gavier-pizarro, G.I.; Calamari, N.C.; Thompson, J.J.; Canavelli, S.B.; Solari, L.M.; Decarre, J.; Goijman, A.P.; Suarez, R.P.; Bernardos, J.N.; Zaccagnini, M.E. Expansion and intensification of row crop agriculture in the Pampas and Espinal of Argentina can reduce ecosystem service provision by changing avian density. Agr. Ecosyst. Environ. 2012, 154, 44–55. [Google Scholar] [CrossRef]
- Fukase, E.; Martin, W. Economic growth, convergence, and world food demand and supply. World Dev. 2020, 132, 104954. [Google Scholar] [CrossRef]
- Lekka, E.; Kagalou, I.; Lazaridou-dimitriadou, M.; Albanis, T.; Dakos, V.; Lambropoulou, D.; Sakkas, V. Assessment of the Water and Habitat Quality of a Mediterranean River (Kalamas, Epirus, Hellas), in Accordance with the EU Water Framework Directive. Acta Hydrochim. Hydrobiol. 2004, 32, 175–188. [Google Scholar] [CrossRef]
- Majumdar, A.; Avishek, K. Riparian Zone Assessment and Management: An Integrated Review Using Geospatial Technology. Water Air Soil Pollut. 2023, 234, 319. [Google Scholar] [CrossRef]
- Turunen, J.; Markkula, J.; Rajakallio, M.; Aroviita, J. Riparian forests mitigate harmful ecological effects of agricultural diffuse pollution in medium-sized streams. Sci. Total Environ. 2019, 649, 495–503. [Google Scholar] [CrossRef]
- Gonzalez, E.; Sher, A.A.; Tabacchi, E.; Masip, A.; Poulin, M. Restoration of riparian vegetation: A global review of implementation and evaluation approaches in the international, peer-reviewed literature. J. Environ. Manag. 2015, 158, 85–94. [Google Scholar] [CrossRef]
- Wortley, L.; Hero, J.; Howes, M. Evaluating Ecological Restoration Success: A Review of the Literature. Restor. Ecol. 2013, 21, 537–543. [Google Scholar] [CrossRef]
- González, E.; Masip, A.; Tabacchi, E.; Poulin, M. Strategies to restore floodplain vegetation after abandonment of human activities. Restor. Ecol. 2017, 25, 82–91. [Google Scholar] [CrossRef]
- Felipe-lucia, M.R.; Comín, F.A. Ecosystem services–biodiversity relationships depend on land use type in floodplain agroecosystems. Land Use Policy 2015, 46, 201–210. [Google Scholar] [CrossRef]
- Parkyn, S. Review of Riparian Buffer Zone Effectiveness; Ministry of Agriculture and Forestry: Wellington, New Zealand, 2004; ISBN 0478078234. [Google Scholar]
- Bourgeois, B.; Vanasse, A.; Gonzalez, E.; Andersen, R.; Poulin, M. Threshold dynamics in plant succession after tree planting in agricultural riparian zones. J. Appl. Ecol. 2016, 53, 1704–1713. [Google Scholar] [CrossRef]
- Holl, K.D.; Aide, T.M. When and where to actively restore ecosystems? For. Ecol. Manag. 2011, 261, 1558–1563. [Google Scholar] [CrossRef]
- Vasilopoulos, G.; Tsiripidis, I.; Karagiannakidou, V. Do abandoned tree plantations resemble natural riparian forests? A case study from northeast Greece. Bot. Helv. 2007, 117, 125–142. [Google Scholar] [CrossRef]
- Acreman, M.C.; Overton, I.C.; King, J.; Wood, P.J.; Cowx, I.G.; Dunbar, M.J.; Young, W.J. The changing role of ecohydrological science in guiding environmental flows environmental flows. Hydrol. Sci. J. 2014, 59, 433–450. [Google Scholar] [CrossRef]
- Quinn, J.M.; Brown, P.M.; Boyce, W.; Mackay, S.; Taylor, A.; Fenton, T. Riparian zone classification for management of stream water quality and ecosystem health. JAWRA 2001, 37, 1509–1515. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napoletano, P.; Guezgouz, N.; Parato, L.; Maisto, R.; Benradia, I.; Benredjem, S.; Verde, T.R.; De Marco, A. Soil Properties, Processes, Ecological Services and Management Practices of Mediterranean Riparian Systems. Sustainability 2025, 17, 8843. https://doi.org/10.3390/su17198843
Napoletano P, Guezgouz N, Parato L, Maisto R, Benradia I, Benredjem S, Verde TR, De Marco A. Soil Properties, Processes, Ecological Services and Management Practices of Mediterranean Riparian Systems. Sustainability. 2025; 17(19):8843. https://doi.org/10.3390/su17198843
Chicago/Turabian StyleNapoletano, Pasquale, Noureddine Guezgouz, Lorenza Parato, Rosa Maisto, Imen Benradia, Sarra Benredjem, Teresa Rosaria Verde, and Anna De Marco. 2025. "Soil Properties, Processes, Ecological Services and Management Practices of Mediterranean Riparian Systems" Sustainability 17, no. 19: 8843. https://doi.org/10.3390/su17198843
APA StyleNapoletano, P., Guezgouz, N., Parato, L., Maisto, R., Benradia, I., Benredjem, S., Verde, T. R., & De Marco, A. (2025). Soil Properties, Processes, Ecological Services and Management Practices of Mediterranean Riparian Systems. Sustainability, 17(19), 8843. https://doi.org/10.3390/su17198843