Exploring Nighttime Fishing and Its Impact Factors in the Northwestern South China Sea for Sustainable Fisheries
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources
3. Methodology
3.1. Kriging Interpolation
3.2. Generalized Additive Model
3.3. Fishery Activity Center Index
4. Results and Discussion
4.1. Spatiotemporal Analysis of Fishing Vessels
4.2. Trend Analysis of Fishery Activities
4.3. Analysis of Environmental Factors
4.3.1. Variations in Chl-a
4.3.2. Variations in SST
4.3.3. Variations in SSS
4.3.4. Impacts of Environmental Factors
4.4. Implications for Sustainability
4.5. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hendrix, C.S.; Glaser, S.M.; Lambert, J.E.; Roberts, P.M. Global climate, El Nino, and militarized fisheries disputes in the East and South China Seas. Mar. Policy 2022, 143, 105137. [Google Scholar] [CrossRef]
- Zhao, X.; Li, D.; Li, X.; Zhao, L.; Wu, C. Spatial and seasonal patterns of night-time lights in global ocean derived from VIIRS DNB images. Int. J. Remote Sens. 2018, 39, 8151–8181. [Google Scholar] [CrossRef]
- Golden, C.D.; Allison, E.H.; Cheung, W.W.L.; Dey, M.M.; Halpern, B.S.; McCauley, D.J.; Smith, M.; Vaitla, B.; Zeller, D.; Myers, S.S. Fall in fish catch threatens human health. Nature 2016, 534, 317–320. [Google Scholar] [CrossRef]
- Cyranoski, D. South China Sea ruling sparks conservation fears. Nature 2016, 535, 334–335. [Google Scholar] [CrossRef]
- Chen, S.; Li, L.; Yang, X.; Wu, Y. The main types and utilization of fishery resources for Marine fishing and aquaculture in the South China Sea and its four coastal provinces. China Agric. Informait. 2015, 12, 15–19. [Google Scholar]
- Jiang, Y.; Xue, X. Building a cross-strait cooperation mechanism for the conservation and management of fi shery resources in the South China Sea. Ocean Coast. Manag. 2015, 116, 318–330. [Google Scholar] [CrossRef]
- Yu, C.; Chang, Y. China’s Incentives and Efforts against IUU Fishing in the South China Sea. Sustainability 2023, 15, 7255. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, P.; Wang, Q.; Kang, L.; Su, F. Analysis of fishing intensity in the South China Sea based on automatic identification system data: A comparison between China and Vietnam. Mar. Coast. Fish. Dyn. Manag. Ecosyst. Sci. 2024, 16, 10309. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A Global Map of Human Impact on Marine Ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef]
- Ju, H. Studies on the Decrement of Fishery Resource in the South China Sea. Southeast Asian Stud. 2012, 2012, 51–55. [Google Scholar] [CrossRef]
- Pang, Y.; Tian, Y.; Fu, C.; Wang, B.; Li, J.; Ren, Y. Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fi sheries management. Fish. Res. 2018, 208, 22–33. [Google Scholar] [CrossRef]
- Arkhipkin, A.I.; Rodhouse, P.G.K.; Pierce, G.J.; Sakai, M.; Allcock, L.; Arguelles, J.; Bower, J.R.; Ceriola, L.; Chen, C.; Chen, X.; et al. World Squid Fisheries. Rev. Fish. Sci. Aquac. 2015, 23, 92–252. [Google Scholar] [CrossRef]
- Li, J.; Qiu, Y.; Cai, Y.; Zhang, K.; Zhang, P.; Jing, Z.; Wu, Q.; Ma, S.; Liu, H.; Chen, Z. Trend in fishing activity in the open South China Sea estimated from remote sensing of the lights used at night by fishing vessels. ICES J. Mar. Sci. 2022, 79, 230–241. [Google Scholar] [CrossRef]
- Guan, Y.; Zhang, X.; Gao, G.; Cao, C.; Li, Z.; Fu, S.; Liu, G. A new indicator for assessing fishing ecological pressure using multi-source data: A case study of the South China Sea. Ecol. Indic. 2025, 170, 113096. [Google Scholar] [CrossRef]
- Zhang, K.; Su, L.; Chen, Z.; Qiu, Y. An extensive assessment of exploitation indicators for multispecies fisheries in the South China Sea to inform more practical and precise management in China. Ecol. Indic. 2025, 173, 113363. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, W.; Wang, T.; Zhang, Y.; He, L.; Yang, L.; Deng, L. The assessment of carrying capacity of marine fishery resources in China. Front. Mar. Sci. 2025, 11, 1518235. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; De Miguel, A.S.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Li, J.; Cai, Y.; Zhang, P.; Zhang, Q.; Jing, Z.; Wu, Q.; Qiu, Y.; Ma, S.; Chen, Z. Satellite observation of a newly developed light-fishing “hotspot” in the open South China Sea. Remote Sens. Environ. 2021, 256, 112312. [Google Scholar] [CrossRef]
- Straka, W.C.; Seaman, C.J.; Baugh, K.; Cole, K.; Stevens, E.; Miller, S.D. Utilization of the suomi national polar-orbiting partnership (npp) visible infrared imaging radiometer suite (viirs) day/night band for arctic ship tracking and fisheries management. Remote Sens. 2015, 7, 971–989. [Google Scholar] [CrossRef]
- Li, Y.; Song, L.; Zhao, S.; Zhao, D.; Wu, Y.; You, G.; Kong, Z.; Xi, X.; Yu, Z. Nighttime fishing vessel observation in Bohai Sea based on VIIRS fishing vessel detection product (VBD). Fish. Res. 2023, 258, 106539. [Google Scholar] [CrossRef]
- Tian, H.; Liu, Y.; Li, J.; Xing, Q.; Sun, H.; Tian, Y. Satellite nighttime remote sensing promotes the spatially refined monitoring and assessment of offshore fishery. Int. J. Digit. Earth 2024, 17, 2322762. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Zhang, K.; Fan, J.; Liu, H.; Qiu, Y.; Li, X.; Chen, Z. Tracking the Development of Lit Fisheries by Using DMSP/OLS Data in the Open South China Sea. Remote Sens. 2024, 16, 3678. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F. Automatic Boat Identification System for VIIRS Low Light Imaging Data. Remote Sens. 2015, 7, 3020–3036. [Google Scholar] [CrossRef]
- Li, J.; Zhang, P.; Cai, Y.; Zhang, Q.; Zhang, K.; Jing, Z.; Wu, Q.; Qiu, Y.; Ma, S.; Chen, Z. Performance of VMS and nightly satellite in monitoring light fishing vessels in the open South China Sea. Fish. Res. 2021, 243, 106100. [Google Scholar] [CrossRef]
- Baek, W.-K.; Kim, E.; Jeon, H.-K.; Lee, K.-J.; Kim, S.-W.; Lee, Y.-K. Monitoring Maritime Ship Characteristics Using Satellite Remote Sensing Data from Different Sensors. Ocean Sci. J. 2024, 59, 8. [Google Scholar] [CrossRef]
- Kamaruzzaman, Y.N.; Mustapha, M.A. An overview Assessment of the Effectiveness of Satellite Images and Remote Sensing in Predicting Potential Fishing Grounds and its Applicability for Rastrelliger kanagurta in the Malaysian EEZ off the South China. Rev. Fish. Sci. Aquac. 2023, 31, 320–341. [Google Scholar] [CrossRef]
- Geronimo, R.C.; Franklin, E.C.; Brainard, R.E.; Elvidge, C.D.; Santos, M.D.; Venegas, R.; Mora, C. Mapping Fishing Activities and Suitable Fishing Grounds Using Nighttime Satellite Images and Maximum Entropy Modelling. Remote Sens. 2018, 10, 1604. [Google Scholar] [CrossRef]
- Wang, W. Spatio-Temporal Distribubtion of Fishery Production Intensity in the South China Sea Based on the Night-Time Images. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2016. [Google Scholar]
- Zhang, S. Research on Fishing Dynamic Changes in the South China Sea Using Nighttime Light Data. Master’s Thesis, Nanjing University, Nanjing, China, 2017. [Google Scholar]
- Shao, J.; Yang, Q.; Luo, C.; Li, R.; Zhou, Y.; Zhang, F. Vessel Detection from Nighttime Remote Sensing Imagery Based on Deep Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 12536–12544. [Google Scholar] [CrossRef]
- Tsuda, M.E.; Miller, N.A.; Saito, R.; Park, J.; Oozeki, Y. Automated VIIRS Boat Detection Based on Machine Learning and Its Application to Monitoring Fisheries in the East China Sea. Remote Sens. 2023, 15, 2911. [Google Scholar] [CrossRef]
- Zuo, G.; Zhou, J.; Meng, Y.; Zhang, T.; Long, Z. Night-Time Vessel Detection Based on Enhanced Dense Nested Attention Network. Remote Sens. 2024, 16, 1038. [Google Scholar] [CrossRef]
- Fei, Y.; Yang, S.; Fan, W.; Shi, H.; Zhang, H.; Yuan, S. Relationship between the Spatial and Temporal Distribution of Squid-Jigging Vessels Operations and Marine Environment in the North Pacific Ocean. J. Mar. Sci. Eng. 2022, 10, 550. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Y.; Wu, X.; Gao, Z. Identifying the key factors influencing spatial and temporal variations of regional coastal fishing activities. Ocean Coast. Manag. 2024, 248, 106940. [Google Scholar] [CrossRef]
- Ji, S.; Zhou, W.; Wang, L.; Tang, F.; Wu, Z.; Chen, G. Relationship between temporal-spatial distribution of yellowfin tuna Thunnus albacares fishing grounds and sea surface temperature in the South China Sea and adjacent waters. Mar. Fish. 2016, 38, 9–16. [Google Scholar] [CrossRef]
- He, L. Research on the Relationship Between Key Environmental Factors and Typical Fishery Resources in the Northwestern South China Sea. Master’s Thesis, Guangdong Ocean University, Zhanjiang, China, 2022. [Google Scholar]
- Huang, W. Research on Light Fishing Grounds in the South China Sea Based on Remote Sensing Technology. Master’s Thesis, Dalian Ocean University, Dalian, China, 2018. [Google Scholar]
- Lu, Y.; Yu, J.; Lin, Z.; Chen, P. Environmental Influence on the Spatiotemporal Variability of Spawning Grounds in the Western Guangdong Waters, South China Sea. J. Mar. Sci. Eng. 2020, 8, 607. [Google Scholar] [CrossRef]
- Xie, L.; Cao, R.; Shang, Q. Progress of Study on Coastal Circulation near the Shore of Western Guangdong. J. Guangdong Ocean Univ. 2012, 32, 94–98. [Google Scholar]
- Tang, Q. Chinese Regional Oceanography: Fishery Oceanography; Ocean Press: Beijing, China, 2012. [Google Scholar]
- Wang, Y. Research of Spatial Interpolation Algorithm and its Application in Air Quality Monitoring. Master’s Thesis, Henan University, Kaifeng, China, 2010. [Google Scholar]
- Tang, D.; Kawamura, H.; Lee, M.; Dien, T. Van Seasonal and spatial distribution of chlorophyll- a concentrations and water conditions in the Gulf of Tonkin, South China Sea. Remote Sens. Environ. 2003, 85, 475–483. [Google Scholar] [CrossRef]
- Hastie, T.J. Generalized Additive Models. In Statistical Models in S; Routledge: London, UK, 2017; pp. 249–307. ISBN 9781118445112. [Google Scholar]
- Wu, J.; Guan, W. Study on the distribution and variation of fishing vessels in East China Sea and Yellow Sea based on the nighttime light remote sensing data from SNPP/VIIRS. J. Fish. Sci. China 2019, 26, 221–231. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, W.; Lei, R. Spatial distribution Features and Controlling Factors of Traditional Villages in Guangdong Province. Sci. Geogr. Sinia 2017, 37, 236–243. [Google Scholar] [CrossRef]
- Notification of the Ministry of Agriculture and Rural Affairs on Adjusting the System of Moratorium on Marine Fishing in Midsummer. Available online: http://www.moa.gov.cn/govpublic/YYJ/201701/t20170120_5460478.htm (accessed on 17 July 2025).
- Chen, G.; Li, Y.; Chen, P. A study on spawning ground of blue mackerel scad (Decapterus maruadsi) in continental shelf waters of northern South China Sea. J. Trop. Oceanogr. 2003, 22, 22–28. [Google Scholar] [CrossRef]
- Hu, X.; Chen, C.; Yang, Z.; Liu, Z. Reliable, large-scale, and automated remote sensing mapping of coastal aquaculture ponds based on Sentinel-1/2 and ensemble learning algorithms. Expert Syst. Appl. 2025, 293, 128740. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Yang, X.; Huang, C.; Su, F.; Liu, X.; Liu, Y.; Zhang, Y. Global mapping of the landside clustering of aquaculture ponds from dense time-series 10 m Sentinel-2 images on Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103100. [Google Scholar] [CrossRef]
- Meng, D.; Yang, X.; Wang, Z.; Liu, Y.; Zhang, J.; Liu, X.; Liu, B. Spatial Distribution and Differentiation Analysis of Coastal Aquaculture in China Based on Remote Sensing Monitoring. Remote Sens. 2024, 16, 1585. [Google Scholar] [CrossRef]
- Chen, W.; Ou, C.; Yang, M.; Shih, Y. China’s gray zone actions in the East China Sea, Taiwan Strait, and South China Sea: A comparative study and impact on fisheries. Mar. Policy 2024, 167, 106246. [Google Scholar] [CrossRef]
- Cope, S.; Tougher, B.; Zetterlind, V.; Gilfillan, L.; Aldana, A. Building a Practical Multi-Sensor Platform for Monitoring Vessel Activity near Marine Protected Areas: Case Studies from Urban and Remote Locations. Remote Sens. 2023, 15, 3216. [Google Scholar] [CrossRef]
Data Type | Product Name | Spatial Resolution | Temporal Resolution |
---|---|---|---|
Nighttime light data | VIIRS_SDR SVDNB | 750 m | Daily |
Cloud mask | VIIRS Cloud Mask EDR | 750 m | Daily |
Boat detection | VBD | - | Daily |
Chl-a | Chlor_a | 4 km | Monthly |
SST | MURSST | 0.01° | Monthly |
SSS | MOGOSSS | 0.125° | Monthly |
DEM | NGDC ETOPO | 15 arcsec | - |
Environmental Factors | Contribution Rate (%) | Accumulated Contribution Rate (%) | p-Value | d.f. |
---|---|---|---|---|
s(Chl-a) | 21.7 | 21.7 | 3.2 × 10−14 *** | 8.53 |
s(SSS) | 12.8 | 34.5 | 2.6 × 10−12 *** | 5.52 |
s(Lon) | 9.4 | 43.9 | 0.6 × 10−3 ** | 8.34 |
s(SST) | 4.2 | 48.1 | 5.8 × 10−8 *** | 6.75 |
s(Lat) | 0.5 | 48.6 | 0.024 * | 7.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Z.; Zuo, G.; Zhang, T.; Zheng, J. Exploring Nighttime Fishing and Its Impact Factors in the Northwestern South China Sea for Sustainable Fisheries. Sustainability 2025, 17, 8641. https://doi.org/10.3390/su17198641
Long Z, Zuo G, Zhang T, Zheng J. Exploring Nighttime Fishing and Its Impact Factors in the Northwestern South China Sea for Sustainable Fisheries. Sustainability. 2025; 17(19):8641. https://doi.org/10.3390/su17198641
Chicago/Turabian StyleLong, Zhiyong, Gao Zuo, Tao Zhang, and Jinjun Zheng. 2025. "Exploring Nighttime Fishing and Its Impact Factors in the Northwestern South China Sea for Sustainable Fisheries" Sustainability 17, no. 19: 8641. https://doi.org/10.3390/su17198641
APA StyleLong, Z., Zuo, G., Zhang, T., & Zheng, J. (2025). Exploring Nighttime Fishing and Its Impact Factors in the Northwestern South China Sea for Sustainable Fisheries. Sustainability, 17(19), 8641. https://doi.org/10.3390/su17198641