Effects of Spartina Alterniflora Invasion on Soil Organic Carbon Dynamics and Potential Sequestration Mechanisms in Coastal Wetlands, Eastern China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Laboratory Analysis
2.3.1. Determination of Soil Physicochemical Properties and Organic Carbon Fractions
2.3.2. Determination of Soil Carbon Cycle-Related Enzyme Activities
2.4. Data Processing and Statistical Analysis
3. Results
3.1. Soil Physicochemical Properties and Carbon Cycle-Related Enzymes
3.2. Distribution Characteristics of SOC and Its Fractions
3.3. Relationship Between Environmental Factors and SOC and Its Fractions
4. Discussion
4.1. Effects of Spartina Alterniflora Invasion on SOC and Its Fractions in Coastal Wetlands
4.2. Potential Mechanism of Spartina Alterniflora Invasion on SOC Sequestration in Coastal Wetlands
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duarte, C.M.; Middelburg, J.J.; Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2005, 2, 1–8. [Google Scholar] [CrossRef]
- Wei, S.; Zhu, Z.; Wang, S. Spatio-temporal dynamics of net primary productivity and the economic value of Spartina alterniflora in the coastal regions of China. Sci. Total Environ. 2024, 953, 176099. [Google Scholar] [CrossRef]
- Bertram, C.; Quaas, M.; Reusch, T.B.H.; Vafeidis, A.T.; Wolff, C.; Rickels, W. The blue carbon wealth of nations. Nat. Clim. Change 2021, 11, 704–709. [Google Scholar] [CrossRef]
- Xu, C.; Xue, Z.; Jiang, M.; Lyu, X.; Zou, Y.; Gao, Y.; Sun, X.; Wang, D.; Li, R. Simulating potential impacts of climate change on the habitats and carbon benefits of mangroves in China. Glob. Ecol. Conserv. 2024, 54, e03048. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J. Blue carbon ecosystems for hypoxia solution: How to maximize their carbon sequestration potential. Mar. Env. Res. 2025, 209, 107202. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Sanders, C.; Santos, I.; Tang, J.; Schuerch, M.; Kirwan, M.; Kopp, R.; Zhu, K.; Li, X.; Yuan, J.; et al. Global blue carbon accumulation in tidal wetlands increases with climate change. Natl. Sci. Rev. 2021, 8, nwaa296. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Wang, D.; Tian, X.; Bi, X.; Zhou, Z.; Luo, F.; Ning, R.; Li, J. Exploring the factors influencing the carbon sink function of coastal wetlands in the Yellow River Delta. Sci. Rep. 2024, 14, 28938. [Google Scholar] [CrossRef]
- Zhao, W.; Li, X.; Costa, M.; Wartman, M.; Lin, S.; Wang, J.; Yuan, L.; Wang, T.; Yang, H.; Qin, Y.; et al. Modelling the spatiotemporal dynamics of blue carbon stocks in tidal marsh under Spartina alterniflora invasion. Ecol. Indic. 2024, 166, 112426. [Google Scholar] [CrossRef]
- Xia, S.; Song, Z.; Singh, B.; Guo, L.; Bolan, N.; Wang, W.; Lin, G.; Fang, Y.; Wen, X.; Wang, J.; et al. Contrasting patterns and controls of soil carbon and nitrogen isotope compositions in coastal wetlands of China. Plant Soil 2023, 489, 483–505. [Google Scholar] [CrossRef]
- Yuan, H.; Chen, J.; Ye, Y.; Lou, Z.; Jin, A.; Chen, X.; Jiang, Z.; Lin, Y.; Chen, C.; Loh, P. Sources and distribution of sedimentary organic matter along the Andong salt marsh, Hangzhou Bay. J. Mar. Syst. 2017, 174, 78–88. [Google Scholar] [CrossRef]
- Bernik, B.M.; Li, H.; Blum, M.J. Genetic variation of Spartina alterniflora intentionally introduced to China. Biol. Invasions 2016, 18, 1485–1498. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, H.; Leng, X.; Cheng, X.; An, S. Soil organic carbon and nitrogen dynamics following Spartina alterniflora invasion in a coastal wetland of eastern China. Catena 2017, 156, 281–289. [Google Scholar] [CrossRef]
- Huang, R.; He, J.; Wang, N.; Christakos, G.; Gu, J.; Song, L.; Luo, J.; Agusti, S.; Duarte, C.; Wu, J. Carbon sequestration potential of transplanted mangroves and exotic saltmarsh plants in the sediments of subtropical wetlands. Sci. Total Environ. 2023, 904, 166185. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, D.; Huang, J.; Wen, Y.; Tang, H.; Xu, J.; Lin, X.; Sun, D.; Gao, D. Invasive Spartina alterniflora alters sediment organic carbon mineralization dynamics in a coastal wetland of Southeastern China. Front. Mar. Sci. 2024, 11, 1400381. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Zhang, J.; Cui, J.; Wang, X.; Song, M.; Qiao, Q.; Long, X. Spatial soil heterogeneity rather than the invasion of Spartina alterniflora drives soil bacterial community assembly in an Eastern Chinese intertidal zone along an estuary coastline. Catena 2024, 237, 107784. [Google Scholar] [CrossRef]
- Yan, J.; Wang, L.; Hu, Y.; Tsang, Y.; Zhang, Y.; Wu, J.; Fu, X.; Sun, Y. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 2018, 319, 194–203. [Google Scholar] [CrossRef]
- Cui, Q.; Yang, H.; Wang, G.; Ma, J.; Feng, L.; Liu, J. Response of soil carbon fractions and enzyme activities to mowing management on in a coastal wetland of the Yellow River Delta. Front. Mar. Sci. 2022, 9, 993181. [Google Scholar] [CrossRef]
- Yan, J.; Wang, L.; Tsang, Y.F.; Qian, L.; Fu, X.; Sun, Y.; Wu, P. Conversion of organic carbon from decayed native and invasive plant litter in Jiuduansha wetland and its implications for SOC formation and sequestration. J. Soil Sediments 2019, 20, 675–689. [Google Scholar] [CrossRef]
- Yang, R. Interacting effects of plant invasion, climate, and soils on soil organic carbon storage in coastal wetlands. J. Geophys. Res. Biogeosci. 2019, 124, 2554–2564. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, N.; Yang, S.; Li, Y.; Yang, L.; Cao, W. Source and stability of soil organic carbon jointly regulate soil carbon pool, but source alteration is more effective in mangrove ecosystem following Spartina alterniflora invasion. Catena 2024, 235, 107681. [Google Scholar] [CrossRef]
- Yin, S.; Wang, J.; Yu, T.; Wang, M.; Wu, Y.; Zeng, H. Constraints on the spatial variations of soil carbon fractions in a mangrove forest in Southeast China. Catena 2023, 222, 106889. [Google Scholar] [CrossRef]
- Ma, W.; Li, G.; Wu, J.; Xu, G.; Wu, J. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai–Tibet Plateau. Geoderma 2020, 377, 114565. [Google Scholar] [CrossRef]
- Xie, X.F.; Wu, T.; Zhu, M.; Jiang, G.; Xu, Y.; Wang, X.; Pu, L. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 2021, 120, 106925. [Google Scholar] [CrossRef]
- Duan, J.; Yuan, M.; Jian, S. Soil extracellular oxidases mediated nitrogen fertilization effects on soil organic carbon sequestration in bioenergy croplands. GCB Bioenergy 2021, 13, 1303–1318. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Guan, S.Y.; Zhang, D.S.; Zhang, Z.M. Soil Enzyme and Its Research Methods; China Agriculture Press: Beijing, China, 1986. [Google Scholar]
- Qiu, S.; Wang, Z.; Xu, J.; Cui, E.; Yan, L. Influence of vegetation dynamics on soil organic carbon and its fractions in a coastal wetland. Ecosyst. Health Sustain. 2023, 9, 0016. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Li, Z.; Li, M.; Wu, H.; Jiang, M. Impacts of Spartina alterniflora invasion on soil carbon contents and stability in the Yellow River Delta, China. Sci. Total Environ. 2021, 775, 145188. [Google Scholar]
- Zhang, Y.; Ding, W.; Luo, J.; Donnison, A. Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora. Soil Biol. Biochem. 2010, 42, 1712–1720. [Google Scholar] [CrossRef]
- Jin, B.; Lai, D.; Gao, D.; Tong, C.; Zeng, C. Changes in soil organic carbon dynamics in a native C4 plant-dominated tidal marsh following Spartina alterniflora invasion. Pedosphere 2017, 27, 856–867. [Google Scholar] [CrossRef]
- He, S.; Lin, J.; Liu, X.; Jia, S.; Chen, S. Cordgrass Spartina alterniflora acts as a key carbon source to support macrozoobenthos in the salt marsh and nearby mudflat communities. Ecol. Indic. 2023, 148, 110052. [Google Scholar] [CrossRef]
- Cheng, H.; Zhou, X.; Dong, R.; Wang, X.; Liu, G.; Li, Q. Natural vegetation regeneration facilitated soil organic carbon sequestration and microbial community stability in the degraded karst ecosystem. Catena 2023, 222, 106856. [Google Scholar] [CrossRef]
- Cui, L.; Sun, H.; Du, X.; Feng, W.; Wang, Y.; Zhang, J.; Jiang, J. Dynamics of labile soil organic carbon during the development of mangrove and salt marsh ecosystems. Ecol. Indic. 2021, 129, 107875. [Google Scholar] [CrossRef]
- Han, X.; Liu, X.; Li, Z.; Li, J.; Yuan, Y.; Li, H.; Zhang, L.; Liu, S.; Wang, L.; You, C.; et al. Characteristics of soil organic carbon fractions and stability along a chronosequence of Cryptomeria japonica var. sinensis plantation in the rainy area of Western China. Forests 2022, 13, 1663. [Google Scholar] [CrossRef]
- Angst, G.; Mueller, K.E.; Castellano, M.J.; Vogel, C.; Wiesmeier, M.; Mueller, C.W. Unlocking complex soil systems as carbon sinks: Multi-pool management as the key. Nat. Commun. 2023, 14, 2967. [Google Scholar] [CrossRef]
- Haddix, M.L.; Paul, E.A.; Cotrufo, M.F. Dual, differential isotope labeling shows the preferential movement of labile plant constituents into mineral—Bonded soil organic matter. Glob. Change Biol. 2016, 22, 2301–2312. [Google Scholar] [CrossRef]
- Chen, R.; Yin, L.; Wang, X.; Chen, T.; Jia, L.; Jiang, Q.; Lyu, M.; Yao, X.; Chen, G. Mineral-associated organic carbon predicts the variations in microbial biomass and specific enzyme activities in a subtropical forest. Geoderma 2023, 439, 116671. [Google Scholar] [CrossRef]
- Gao, S.; Du, Y.F.; Xie, W.J.; Gao, W.H.; Wang, D.D.; Wu, X.D. Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines. Sci. China Earth Sci. 2014, 57, 2567–2586. [Google Scholar] [CrossRef]
- Yang, W.; An, S.Q.; Zhao, H.; Xu, L.Q.; Qiao, Y.J.; Chen, X.L. Impacts of Spartina alterniflora invasion on soil organic carbon and nitrogen pools sizes, stability, and turnover in a coastal salt marsh of eastern China. Ecol. Eng. 2016, 86, 174–182. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, S.; Lei, H.; Lei, X.; Liu, P.; Yan, J. Changes in soil quality over time focusing on organic acid content in restoration areas following coal mining. Catena 2022, 218, 106567. [Google Scholar] [CrossRef]
- Duan, H.; Wang, L.; Zhang, Y.; Fu, X.; Tsang, Y.; Wu, J.; Le, Y. Variable decomposition of two plant litters and their effects on the carbon sequestration ability of wetland soil in the Yangtze River estuary. Geoderma 2018, 319, 230–238. [Google Scholar] [CrossRef]
- Li, P.; Jia, L.; Chen, Q.; Zhang, H.; Deng, J.; Lu, J.; Xu, L.; Li, H.; Hu, F.; Jiao, J. Adaptive evaluation for agricultural sustainability of different fertilizer management options for a green manure-maize rotation system: Impacts on crop yield, soil biochemical properties and organic carbon fractions. Sci. Total Environ. 2024, 908, 168170. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Ranalli, M.G.; Haddix, M.L. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 2019, 12, 989–994. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Liu, L.; Li, T.; Dou, Y.; Qiao, J.; Wang, Y.; An, S.; Chang, S. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: A global meta-analysis. Glob. Change Biol. 2022, 28, 6446–6461. [Google Scholar] [CrossRef]
- Feng, J.; Song, Y.; Zhu, B. Ecosystem—Dependent responses of soil carbon storage to phosphorus enrichment. New Phytol. 2023, 238, 2363–2374. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Kuzyakov, Y.; Zhu, B.; Qiang, W.; Zhang, Y.; Pang, X. Phosphorus addition decreases plant lignin but increases microbial necromass contribution to soil organic carbon in a subalpine forest. Glob. Change Biol. 2022, 28, 4194–4210. [Google Scholar] [CrossRef] [PubMed]
- Tran, C.T.K.; Watts-Williams, S.J.; Smernik, R.; Cavagnaro, T. Root and arbuscular mycorrhizal effects on soil nutrient loss are modulated by soil texture. Appl. Soil Ecol. 2021, 167, 104097. [Google Scholar] [CrossRef]
- Mao, H.R.; Cotrufo, M.F.; Hart, S.C.; Sullivan, B.; Zhu, X.; Zhang, J.; Liang, C.; Zhu, M. Dual role of silt and clay in the formation and accrual of stabilized soil organic carbon. Soil Biol. Biochem. 2024, 192, 109390. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Tang, Y.; Du, Y.; Xu, L.; Hu, J.; Zhu, C. Coastal reclamation alters soil organic carbon dynamics: A meta-analysis in China. Catena 2024, 240, 107975. [Google Scholar] [CrossRef]
- Wang, G.; Pan, J.; Yu, J.; Yan, W.; Gu, D.; Du, J. Soil organic carbon storage in Liaohe River Estuary Wetlands under restoration and multiple management strategies, based on landscape patterns. Front. Mar. Sci. 2023, 10, 1100208. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, J.; Gonzalez-Ollauri, A.; Yang, Y.; Chen, F. Soil microbes-mediated enzymes promoted the secondary succession in post-mining plantations on the Loess Plateau, China. Soil Ecol. Lett. 2022, 5, 79–93. [Google Scholar] [CrossRef]
- Wang, L.; Luo, N.; Shi, Q.; Sheng, M. Responses of soil labile organic carbon fractions and enzyme activities to long-term vegetation restorations in the karst ecosystems, Southwest China. Ecol. Eng. 2023, 194, 107034. [Google Scholar] [CrossRef]
- Zuccarini, P.; Sardans, J.; Asensio, L.; Peñuelas, J. Altered activities of extracellular soil enzymes by the interacting global environmental changes. Glob. Change Biol. 2023, 29, 2067–2091. [Google Scholar] [CrossRef]
- Georgiou, K.; Jackson, R.B.; Vindušková, O.; Abramoff, R.; Ahlström, A.; Feng, W.; Harden, J.W.; Pellegrini, A.F.A.; Polley, H.W.; Soong, J.L.; et al. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 2022, 13, 3797. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Chen, X.; Yao, S.; Ye, Y.; Zhang, B. Responses of soil mineral-associated and particulate organic carbon to carbon input: A meta-analysis. Sci. Total Environ. 2022, 829, 154626. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Change Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Wang, X.; Hu, H.; Zhu, M.; Chen, J.; Zhang, S.; Cheng, C.; Zhu, Z.; Wu, C.; Zhu, L. Variation characteristics of soil organic carbon storage and fractions with stand age in north subtropical Quercus acutissima Carruth. Forest in China. Forests 2022, 13, 1649. [Google Scholar] [CrossRef]
- Wang, M.; Wang, S.; Cao, Y.; Jiang, M.; Wang, G.; Dong, Y. The effects of hummock-hollow microtopography on soil organic carbon stocks and soil labile organic carbon fractions in a sedge peatland in Changbai Mountain, China. Catena 2021, 201, 105204. [Google Scholar] [CrossRef]
- Tang, L.; Gao, Y.; Li, B.; Wang, Q.; Wang, C.; Zhao, B. Spartina alterniflora with high tolerance to salt stress changes vegetation pattern by outcompeting native species. Ecosphere 2014, 5, 1–18. [Google Scholar] [CrossRef]
- Fu, S.; Cai, L.; Cao, J.; Chen, X. Nematode responses to the invasion of exotic Spartina in mangrove wetlands in southern China. Estuaries Coasts 2017, 40, 1437–1449. [Google Scholar] [CrossRef]
Depth (cm) | Soil Properties | Vegetation Types | ||||
---|---|---|---|---|---|---|
BF | SM | SA2 | SA8 | PA | ||
0–10 | MC (%) | 33.3 ± 2.2 a | 25.9 ± 2.5 b | 30.2 ± 1.5 ab | 32.7 ± 3.2 a | 32.8 ± 0.4 a |
Clay (%) | 0.9 ± 0.4 b | 0.7 ± 0.5 b | 0.9 ± 0.3 b | 2.7 ± 0.5 a | 3.4 ± 0.3 a | |
Silt (%) | 46.1 ± 8.5 b | 42.4 ± 12.4 b | 46.7 ± 7.7 b | 62.8 ± 2.4 a | 69.2 ± 8.6 a | |
Sand (%) | 53.0 ± 8.9 a | 56.9 ± 12.7 a | 52.4 ± 7.7 a | 34.5 ± 2.9 b | 27.4 ± 8.3 b | |
pH | 8.9 ± 0.2 ab | 8.8 ± 0.1 ab | 8.9 ± 0.3 ab | 8.5 ± 0.1 b | 9.1 ± 0.3 a | |
EC (dS m−1) | 3.0 ± 0.2 b | 4.7 ± 0.5 a | 3.4 ± 0.7 b | 3.1 ± 0.3 b | 1.5 ± 0.1 c | |
TN (g kg−1) | 0.6 ± 0.0 c | 0.5 ± 0.1 cd | 0.4 ± 0.1 d | 0.8 ± 0.1 b | 1.2 ± 0.1 a | |
AN (mg kg−1) | 29.3 ± 8.1 c | 23.1 ± 1.2 c | 44.0 ± 25.4 bc | 70.7 ± 13.8 a | 61.3 ± 9.3 ab | |
TP (g kg−1) | 0.7 ± 0.0 b | 0.7 ± 0.1 ab | 0.7 ± 0.0 ab | 0.8 ± 0.0 a | 0.8 ± 0.1 a | |
10–20 | MC (%) | 31.2 ± 0.6 a | 27.1 ± 0.9 b | 29.8 ± 0.4 ab | 29.8 ± 1.3 ab | 28.6 ± 11.0 ab |
Clay (%) | 1.0 ± 0.5 b | 0.4 ± 0.0 b | 0.8 ± 0.2 b | 2.4 ± 0.6 a | 3.0 ± 0.5 a | |
Silt (%) | 49.1 ± 3.4 bc | 39.3 ± 4.9 c | 40.0 ± 15.9 c | 62.2 ± 2.2 ab | 66.4 ± 2.9 a | |
Sand (%) | 50.0 ± 3.9 a | 59.1 ± 2.8 a | 59.3 ± 16.0 a | 35.4 ± 2.1 b | 30.6 ± 3.1 b | |
pH | 9.0 ± 0.1 a | 8.7 ± 0.2 b | 8.6 ± 0.1 b | 8.5 ± 0.1 b | 9.1 ± 0.3 a | |
EC (dS m−1) | 2.0 ± 0.2 bc | 3.9 ± 0.35 a | 3.8 ± 1.1 a | 3.1 ± 0.4 b | 1.4 ± 0.2 c | |
TN (g kg−1) | 0.6 ± 0.1 b | 0.5 ± 0.1 c | 0.4 ± 0.0 c | 0.8 ± 0.1 a | 0.9 ± 0.1 a | |
AN (mg kg−1) | 40.1 ± 12.4 b | 23.1 ± 9.3 b | 48.2 ± 29.6 ab | 70.7 ± 13.8 a | 43.9 ± 4.2 ab | |
TP (g kg−1) | 0.7 ± 0.0 a | 0.7 ± 0.0 a | 0.7 ± 0.0 a | 0.8 ± 0.0 a | 0.7 ± 0.1 a |
Depth (cm) | Soil Carbon-Related Enzymes | Vegetation Types | ||||
---|---|---|---|---|---|---|
BF | SM | SA2 | SA8 | PA | ||
0–10 | SUC (mg g 24 h−1) | 1.2 ± 0.7 b | 0.7 ± 0.8 b | 0.7 ± 0.7 b | 39.5 ± 4.3 a | 34.5 ± 7.7 a |
AMY (mg g 24 h−1) | 3.4 ± 0.2 b | 8.9 ± 3.8 b | 9.6 ± 3.1 b | 23.3 ± 6.6 a | 25.4 ± 7.1 a | |
BG (μg g h−1) | 18.6 ± 3.9 c | 107.4 ± 18.9 bc | 204.9 ± 125.3 b | 242.1 ± 18.8 b | 515.6 ± 141.6 a | |
PPO (μg g 2 h−1) | 97.6 ± 18.9 a | 87.7 ± 27.8 a | 71.5 ± 11.4 a | 71.5 ± 8.1 a | 83.5 ± 24.4 a | |
10–20 | SUC (mg g 24 h−1) | 0.3 ± 0.3 c | 0.6 ± 0.1 c | 1.9 ± 1.1 c | 16.4 ± 3.4 a | 10.5 ± 2.1 b |
AMY (mg g 24 h−1) | 2.3 ± 0.6 c | 8.7 ± 5.6 bc | 9.6 ± 5.0 bc | 21.7 ± 5.9 a | 20.0 ± 10.4 ab | |
BG (μg g h−1) | 23.4 ± 8.1 c | 81.8 ± 25.7 bc | 120.3 ± 51.9 b | 194.0 ± 44.3 a | 202.9 ± 44.0 a | |
PPO (μg g 2 h−1) | 85.1 ± 4.0 b | 127.6 ± 20.2 a | 108.4 ± 14.2 a | 65.0 ± 3.4 bc | 57.1 ± 3.9 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Q.; Yao, Z.; Xie, X.; Pu, L.; Zhu, L.; Jia, Z.; Chen, S.; Xu, F.; Wu, T. Effects of Spartina Alterniflora Invasion on Soil Organic Carbon Dynamics and Potential Sequestration Mechanisms in Coastal Wetlands, Eastern China. Sustainability 2025, 17, 8638. https://doi.org/10.3390/su17198638
Cai Q, Yao Z, Xie X, Pu L, Zhu L, Jia Z, Chen S, Xu F, Wu T. Effects of Spartina Alterniflora Invasion on Soil Organic Carbon Dynamics and Potential Sequestration Mechanisms in Coastal Wetlands, Eastern China. Sustainability. 2025; 17(19):8638. https://doi.org/10.3390/su17198638
Chicago/Turabian StyleCai, Qi, Zhuyuan Yao, Xuefeng Xie, Lijie Pu, Lingyue Zhu, Zhenyi Jia, Shuntao Chen, Fei Xu, and Tao Wu. 2025. "Effects of Spartina Alterniflora Invasion on Soil Organic Carbon Dynamics and Potential Sequestration Mechanisms in Coastal Wetlands, Eastern China" Sustainability 17, no. 19: 8638. https://doi.org/10.3390/su17198638
APA StyleCai, Q., Yao, Z., Xie, X., Pu, L., Zhu, L., Jia, Z., Chen, S., Xu, F., & Wu, T. (2025). Effects of Spartina Alterniflora Invasion on Soil Organic Carbon Dynamics and Potential Sequestration Mechanisms in Coastal Wetlands, Eastern China. Sustainability, 17(19), 8638. https://doi.org/10.3390/su17198638