Spatial and Temporal Distribution of Riparian Vegetation and Its Influencing Factors in the Hilly Areas of Zhejiang Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Survey of Riparian Vegetation Composition and Diversity
2.3. Survey of Potential Impact Factors (Riparian Soil and Water Environmental Parameters)
2.4. Data Processing and Statistical Analysis
2.4.1. Calculation of Vegetation Diversity Index
2.4.2. Statistical Analysis
3. Results and Discussion
3.1. Vegetation Classification Statistics
3.2. Distribution Characteristics of Riparian Vegetation Biomass and Diversity at Different Scales
3.2.1. River Scale Distribution Characteristics
3.2.2. River Segment Scale Distribution Characteristics
3.3. Multi-Scale Distribution Mechanism of Riparian Vegetation
3.3.1. Environmental Factors Affecting Vegetation Distribution at the River Scale
3.3.2. Environmental Factors Affecting Vegetation Distribution at the River Segment Scale
3.3.3. Relations Between Vegetation Distribution and Hydrological Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.L.; Cheng, F.Y.; Zhu, Y.; Yang, Y.; Zhang, S.H. Urban land-use type influences summertime water quality in small and medium-sized urban rivers: A case study in Shanghai, China. Land 2022, 11, 511, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Signorile, A.; Saracino, R.; Dani, A.; Migliorini Giovannini, M.R.; Preti, F. Riparian vegetation surveys for roughness estimation. Ecol. Eng. 2024, 209, 107414. [Google Scholar] [CrossRef]
- Han, L.; Wang, H.Z.; Yv, J. Research progress and prospects on riparian zone ecology. Ecol. Environ. Sci. 2013, 22, 879–886, (In Chinese with English Abstract). [Google Scholar]
- Elliott, K.J.; Vose, J.M. Effects of riparian zone buffer widths on vegetation diversity in southern Appalachian headwater catchments. For. Ecol. Manag. 2016, 376, 9–23. [Google Scholar] [CrossRef]
- Xiang, H.; Zhang, Y.; Richardson, J.S. Importance of riparian zone: Effects of resource availability at land-water interface. Riparian Ecol. Conserv. 2017, 3, 1–17, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhejiang Provincial Department of Ecology and Environment. Guidelines for Assessing Lake and Reservoir Aquatic Ecological Health in Zhejiang Province (Trial). [EB/OL]. (2023-09-15). [2023-10-23]. Available online: https://sthjt.zj.gov.cn/art/2023/10/23/art_1229263469_2493820.html (accessed on 22 September 2025).
- Picco, L.; Sitzia, T.; Mao, L.; Comiti, F.; Lenzi, M.A. Linking riparian woody communities and fluviomorphological characteristics in a regulated gravel-bed river (Piave River, Northern Italy). Ecohydrology 2016, 9, 101–112. [Google Scholar] [CrossRef]
- Garssen, A.G.; Baattrup-Pedersen, A.; Voesenek, L.A.C.J.; Verhoeven, J.T.A.; Soons, M.B. Riparian plant community responses to increased flooding: A meta-analysis. Glob. Change Biol. 2015, 21, 2881–2890. [Google Scholar] [CrossRef]
- Denning, P.; Schulte, S. Integrative Review of Riparian Buffers Benefits in Urbanized Watersheds. Midwest. J. Undergrad. Sci. 2024, 3, 24–28. [Google Scholar] [CrossRef]
- Fonseca, A.; Ugille, J.-P.; Michez, A.; Rodríguez-González, P.M.; Duarte, G.; Ferreira, M.T.; Fernandes, M.R. Assessing the Connectivity of Riparian Forests across a Gradient of Human Disturbance: The Potential of Copernicus “Riparian Zones” in Two Hydroregions. Forests 2021, 12, 674. [Google Scholar] [CrossRef]
- Zelnik, I.; Mavrič Klenovšek, V.; Gaberščik, A. Complex Undisturbed Riparian Zones Are Resistant to Colonisation by Invasive Alien Plant Species. Water 2020, 12, 345. [Google Scholar] [CrossRef]
- Wu, X.Q.; Fan, B.S.; Teng, Y.W.; Li, R.Q.; Qu, K.Y.; Qian, J.P.; Tian, B. Relationship between distribution characteristics of herbaceous plant communities and soil environmental factors in the riparian zone of Baiyangdian Watershed. Chin. J. Appl. Environ. Biol. 2022, 28, 1608–1614, (In Chinese with English Abstract). [Google Scholar]
- Lou, Y.; Pan, Y.; Gao, C.; Jiang, M.; Lu, X.; Xu, Y.J. Response of plant height, species richness and aboveground biomass to flooding gradient along vegetation zones in floodplain wetlands, Northeast China. PLoS ONE 2016, 11, e0153972, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Moura, E.G.; Pott, A.; Severi, W.; Zickel, C.S. Response of aquatic macrophyte biomass to limnological changes under water level fluctuation in tropical reservoirs. Braz. J. Biol. 2019, 79, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Pielech, R.; Anioł-Kwiatkowska, J.; Szczęśniak, E. Landscape-scale factors driving plant species composition in mountain streamside and spring riparian forests. For. Ecol. Manag. 2015, 347, 217–227. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Shabbir, R.; Ahmed, M.N.; Wahid, A. Environmental diversification and spatial variations in riparian vegetation: A case study of Korang River, Islamabad. Pak. J. Bot. 2014, 46, 1203–1210. [Google Scholar]
- Kong, Q.X.; Xin, Z.B.; Xia, X.P. Analysis of plant diversity and influencing factors in the riverbank zone of the Huai River in Beijing. Sci. Technol. Rev. 2017, 35, 57–65. [Google Scholar]
- Zhang, Z.Y.; Liu, H.; Dong, F.Y.; Wang, L.; Chen, Y. Spatial distribution characteristics of plant communities along the banks of the Three Rivers Source Region and analysis of their driving factors. Environ. Sci. 2024, 45, 5351–5360, (In Chinese with English Abstract). [Google Scholar]
- Su, Y.; Li, W.; Liu, L.; Huang, W.; Wu, J.; Yang, Z. Health assessment of small-to-medium sized rivers: Comparison between comprehensive indicator method and biological monitoring method. Ecol. Indic. 2021, 126, 107686, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agro-Chemistrical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 22–74. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1963. [Google Scholar]
- Pielou, E.C. Species diversity and pattern diversity in the study of ecological succession. J. Theor. Biol. 1966, 10, 370–383. [Google Scholar] [CrossRef]
- Ling, L.; Yan, S.J.; Guan, Y.X.; Sun, Y.T.; Huang, Z.H.; Hu, K.H. Species composition and diversity distribution characteristics of riparian vegetation communities. World For. Res. 2023, 36, 27–33, (In Chinese with English Abstract). [Google Scholar]
- Yang, J.Y.; Zhang, Y.; Wu, H.L.; Wang, X.Y.; Li, Y. Investigation and analysis of the current status of the inflowing rivers into Baiyangdian Lake. China Water Resour. 2021, 11, 35–37, (In Chinese with English Abstract). [Google Scholar]
- Bao, Y.L.; Tian, B.; Zhang, Y.; Liu, X.; Li, F. Evaluation of river health in the Xiongan New Area. Acta Ecol. Sin. 2021, 41, 5988–5997, (In Chinese with English Abstract). [Google Scholar]
- Xu, K.; Xia, J.; Sheng, L.; Wang, Y.; Zu, J.; Wang, Q.; Ji, S. Spatial Distribution Heterogeneity of Riparian Plant Communities and Their Environmental Interpretation in Hillstreams. Appl. Sci. 2024, 14, 5114. [Google Scholar] [CrossRef]
- Mei, Y.; Huang, P.; Wang, P.; Zhu, K. Interactive effects of water level fluctuation and vegetation restoration on soil prokaryotic microbial community structure in the water-level fluctuation zone of the Three Gorges Reservoir. Environ. Sci. 2024, 45, 2715–2726. [Google Scholar]
- Li, W.; Siddique, M.S.; Liu, M.; Graham, N.; Yu, W. The migration and microbiological degradation of dissolved organic matter in riparian soils. Water Res. 2022, 224, 119080. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Tao, Y.; Yin, B.; Tucker, C.; Zhang, Y. Nitrogen pools in soil covered by biological soil crusts of different successional stages in a temperate desert in Central Asia. Geoderma 2020, 366, 114166, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Cui, P.P.; Yu, Y.; Qu, B.; Su, F.L. Effects of Enclosure on Plant Diversity and Vegetation Landscape in Degraded Riparian Grassland. Ecol. Environ. Sci. 2024, 33, 1708–1716. [Google Scholar]
- Xia, X.P.; Xin, Z.B.; Kong, Q.X.; Zhang, J.; Yang, X. Differences in vegetation and soil physical and chemical properties along the banks of the Huai River in Beijing. Chin. J. Soil Water Conserv. 2017, 15, 117–124, (In Chinese with English Abstract). [Google Scholar]
- Bao, Y.; Gao, P.; He, X. The water-level fluctuation zone of Three Gorges Reservoir—A unique geomorphological unit. Earth-Sci. Rev. 2015, 150, 14–24, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Kiss, T.; Fehérváry, I. Increased Riparian Vegetation Density and Its Effect on Flow Conditions. Sustainability 2023, 15, 12615. [Google Scholar] [CrossRef]
- Guo, M.; Xue, W.L.; Wang, C.; Li, W.Z.; Gao, H.; Saintilan, N.; Li, C.L.; Huang, G.; Wang, Y.Y. Environmental Flow Increases The Riparian Vegetation Diversity and Community Similarity. Wetlands 2024, 44, 57. [Google Scholar] [CrossRef]
- Bae, I.; Ji, U.; Järvelä, J.; Västilä, K. Blockage effect of emergent riparian vegetation patches on river flow. J. Hydrol. 2024, 635, 131197. [Google Scholar] [CrossRef]
- Ye, M.; Hu, H.; Wu, P.; Xie, Z.; Hu, Y.; Lu, X. Ecological responses to hydrological connectivity in grassland riparian zones: Insights from vegetation and ground-dwelling arthropods. Sci. Total Environ. 2024, 922, 171196. [Google Scholar] [CrossRef] [PubMed]
River Name | River Length (km) | Water Area (ha) | Watershed Area (km2) | Average Runoff Flow (m3/s) | Average Monthly Flow in a Year with Abundant Rainfall (m3/s) | Average Monthly Flow During Dry Years (m3/s) |
---|---|---|---|---|---|---|
TSX | 22.3 | 45.5 | 248 | 19.14 | 29.54 | 30.38 |
ZSX | 16.2 | 16.1 | 125.5 | 1.21 | 2.04 | 1.62 |
MHX | 15 | 24.8 | 102 | 26.61 | 93.04 | 100.19 |
River Name | River Section | Average Flow Velocity (cm/s) | Average Water Surface Width (m) | River Width (m) | Average Monthly Flow in a Year with Abundant Rainfall (m3/s) | Average Monthly Flow During Dry Years (m3/s) |
---|---|---|---|---|---|---|
TSX | S | 11.43 | 4.23 | 11. | 2.04 | 1.62 |
Z | 6.43 | 15. | 24.75 | 28.99 | 29.70 | |
X | 2.79 | 3 | 40 | 57.59 | 59.81 | |
ZSX | S | 3.30 | 4.5 | 10 | 2.04 | 1.62 |
Z | 13.96 | 6 | 18 | 2.04 | 1.62 | |
X | 5.03 | 13 | 18 | 2.04 | 1.62 | |
MHX | S | 6.86 | 20 | 22 | 64.82 | 67.43 |
Z | 3.20 | 14 | 21 | 107.15 | 116.57 | |
X | 2.63 | 16 | 18 | 107.15 | 116.57 |
Parameters | Analysis Methods |
---|---|
Soil moisture content (SM) | Oven-drying method (105 °C, 12 h) |
Soil pH | Potentiometric method |
Soil organic matter (SOM) | Potassium Di-chromate Titration Combined with External Heating Method |
Soil total nitrogen (STN) | Kjeldahl method |
Soil total phosphorus (STP) | Alkali Fusion Spectrophotometric Method for Molybdenum and Antimony |
Soil ammonium nitrogen (SNH4+-N) | Spectrophotometric Extraction Method for Potassium Chloride Solution |
Soil nitrate nitrogen (SNO3−-N) | Spectrophotometric Extraction Method for Potassium Chloride Solution |
Parameters | Analysis Methods |
---|---|
Total nitrogen (WTN) | Alkaline Potassium Persulfate Digestion with Ultraviolet Spectrophotometry |
Potassium permanganate (WP) | Acidic method |
Total phosphorus (WTP) | Potassium Persulfate Digestion Combined with Molybdenum-Antimony Spectrophotometry |
Ammonium nitrogen (WNH4+-N) | Nessler Reagent Spectrophotometric Method |
Nitrate nitrogen (WNO3−-N) | Ultraviolet Spectrophotometry |
River Name | Species | Family | Genus | Percentage of Total Species (%) | Dominant Families |
---|---|---|---|---|---|
TSX | 168 | 46 | 132 | 76.36 | Poaceae (29 species), Asteraceae (29 species) |
ZSX | 78 | 29 | 66 | 35.45 | Poaceae (20 species), Asteraceae (11 species), Polygonaceae (9 species) |
MHX | 77 | 27 | 66 | 35 | Poaceae (16 species), Asteraceae (14 species), Polygonaceae (7 species) |
River Name | River Section | Species | Family | Genus | Percentage of Total Species (%) | Dominant Families |
---|---|---|---|---|---|---|
TSX | S | 86 | 29 | 73 | 39.09 | Poaceae (21 species), Asteraceae (12 species) |
Z | 95 | 35 | 79 | 43.18 | Poaceae (17 species), Asteraceae (14 species) | |
X | 42 | 18 | 36 | 19.09 | Asteraceae (11 species), Poaceae (6 species) | |
ZSX | S | 52 | 21 | 43 | 23.64 | Poaceae (12 species), Asteraceae (9 species) |
Z | 32 | 15 | 29 | 14.55 | Poaceae (9 species), Polygonaceae (6 species) | |
X | 26 | 15 | 25 | 11.82 | Poaceae (8 species), Polygonaceae (3 species) | |
MHX | S | 41 | 22 | 39 | 18.64 | Poaceae (9 species), Asteraceae (8 species) |
Z | 37 | 13 | 33 | 16.82 | Poaceae (10 species), Polygonaceae (6 species), Asteraceae (4 species) | |
X | 35 | 14 | 31 | 15.91 | Asteraceae (9 species), Poaceae (9 species) |
Biomass (g/m2) | Shannon–Wiener | Richness of Species | Pielou | ||
---|---|---|---|---|---|
First principal component | SM | 0.7 | 0.69 | 0.46 | 0.72 |
SOM | 0.86 ** | 0.85 * | 0.32 | 0.87 ** | |
STP | 0.78 | 0.77 | 0.40 | 0.78 | |
SNH4+-N | 0.37 | 0.30 | 0.85 * | 0.46 | |
SNO3-N | 0.36 | 0.33 | 0.87 ** | 0.44 | |
WP | 0.62 | 0.51 | 0.58 | 0.66 | |
WTN | 0.36 | 0.17 | 0.58 | 0.44 | |
Second principal component | WTP | 0.41 | 0.43 | 0.16 | 0.36 |
WNH4+-N | 0.76 | 0.82 * | 0.54 | 0.72 |
Biomass (g/m2) | Shannon–Wiener | Richness of Species | Pielou | ||
---|---|---|---|---|---|
First principal component | SNH4+-N | 0.78 | 0.72 | 0.44 | 0.81 |
SOM | 0.78 | 0.62 | 0.49 | 0.67 | |
WP | 0.67 | 0.64 | 0.46 | 0.69 | |
WTN | 0.77 | 0.82 * | 0.64 | 0.86 ** | |
WNH4+-N | 0.78 | 0.80 | 0.64 | 0.84 * | |
STN | 0.59 | 0.74 | 0.5 | 0.8 | |
Second principal component | SNO3-N | 0.36 | 0.49 | 0.6 | 0.37 |
SM | 0.56 | 0.42 | 0.16 | 0.52 |
Biomass (g/m2) | Shannon–Wiener | Richness of Species | Pielou | ||
---|---|---|---|---|---|
First principal component | SM | 0.18 | 0.53 | 0.65 | 0.25 |
SNH4+-N | 0.28 | 0.57 | 0.66 | 0.33 | |
WNO3-N | 0.53 | 0.82 ** | 0.81 ** | 0.73 | |
WTP | 0.27 | 0.30 | 0.42 | 0.24 | |
WTN | 0.50 | 0.62 | 0.58 | 0.50 | |
Second principal component | STN | 0.32 | 0.26 | 0.13 | 0.38 |
WNH4+-N | 0.65 | 0.24 | 0.41 | 0.28 | |
STP | 0.61 | 0.16 | 0.54 | 0.50 | |
Ph | 0.24 | 0.43 | 0.51 | 0.27 |
Biomass (g/m2) | Shannon–Wiener | Richness of Species | Pielou | ||
---|---|---|---|---|---|
First principal component | SM | 0.79 * | 0.32 | 0.13 | 0.41 |
WNH4+-N | 0.70 | 0.58 | 0.29 | 0.71 | |
WNO3-N | 0.79 * | 0.56 | 0.40 | 0.59 | |
WP | 0.73 | 0.39 | 0.32 | 0.56 | |
WTP | 0.82 * | 0.39 | 0.10 | 0.49 | |
Second principal component | SOM | 0.69 | 0.36 | 0.35 | 0.39 |
STN | 0.41 | 0.19 | 0.44 | 0.24 | |
STP | 0.18 | 0.25 | 0.53 | 0.45 | |
Ph | 0.71 | 0.46 | 0.14 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Sheng, L.; Xia, J.; Dong, S.; Xu, J.; Sun, F.; Lu, Y. Spatial and Temporal Distribution of Riparian Vegetation and Its Influencing Factors in the Hilly Areas of Zhejiang Province, China. Sustainability 2025, 17, 8609. https://doi.org/10.3390/su17198609
Zhang H, Sheng L, Xia J, Dong S, Xu J, Sun F, Lu Y. Spatial and Temporal Distribution of Riparian Vegetation and Its Influencing Factors in the Hilly Areas of Zhejiang Province, China. Sustainability. 2025; 17(19):8609. https://doi.org/10.3390/su17198609
Chicago/Turabian StyleZhang, Huizhen, Liting Sheng, Jihong Xia, Shunan Dong, Jiaxin Xu, Feiyang Sun, and Yuanshuo Lu. 2025. "Spatial and Temporal Distribution of Riparian Vegetation and Its Influencing Factors in the Hilly Areas of Zhejiang Province, China" Sustainability 17, no. 19: 8609. https://doi.org/10.3390/su17198609
APA StyleZhang, H., Sheng, L., Xia, J., Dong, S., Xu, J., Sun, F., & Lu, Y. (2025). Spatial and Temporal Distribution of Riparian Vegetation and Its Influencing Factors in the Hilly Areas of Zhejiang Province, China. Sustainability, 17(19), 8609. https://doi.org/10.3390/su17198609