Removal of Heavy Metals from Galvanic Industry Wastewater: A Review of Different Possible Methods
Abstract
1. Introduction
2. Galvanic Wastewater
- –
- Chromium wastewater containing Cr(VI) and other components of a bath for chrome plating, chromating, and etching of copper and alloys;
- –
- Cyanide wastewater containing simple cyanides, complex cyanides, metal ions (e.g., Zn, Cu), and other substances that compose plating baths;
- –
- Acidic–alkaline wastewater, which contains, depending on the technology and the composition of process baths, mineral acids (sulphuric, nitric, phosphorus, hydrofluoric, and others), alkali (sodium and potassium hydroxides, sodium carbonate), mineral salts (silicates, phosphates), metals (iron, nickel, copper, zinc), and surfactants (wetting agents);
- –
3. Chemical Precipitation
4. Coagulation/Flocculation
5. Ion Exchange
6. Adsorption
7. Membrane Technologies
8. Treatment of Galvanic Wastewater in the CE Model
- –
- Valuable raw material recovery from galvanic solutions through the separation of heavy metals (e.g., zinc, chromium, nickel, copper), facilitating their reuse in production processes, thus reducing the demand for primary raw materials and minimising waste;
- –
- Water recycling, leading to a considerable decrease in water use in galvanic processes and minimising the discharge of wastewater to the environment;
- –
- Reduction in cleaning costs through raw material recovery and lower costs connected with waste disposal;
- –
- Meeting the environmental requirements pertaining to the quality of wastewater discharged to receivers.
9. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smol, M.; Duda, J.; Czaplicka-Kotas, A.; Szołdrowska, D. Transformation towards Circular Economy (CE) in municipal waste management system: Model solutions for Poland. Sustainability 2020, 12, 4561. [Google Scholar] [CrossRef]
- Tomaszewska, J. Polish transition towards Circular Economy: Materials management and implications for the construction sector. Materials 2020, 13, 5228. [Google Scholar] [CrossRef]
- Ulusoy, A.; Atılgan, A.; Rolbiecki, R.; Jagosz, B.; Rolbiecki, S. Innovative approaches for sustainable wastewater resource management. Agriculture 2024, 14, 2111. [Google Scholar] [CrossRef]
- Pandey, A.K. Sustainable water management through integrated technologies and circular resource recovery. Environ. Sci. Water Res. Technol. 2025, 11, 1822–1846. [Google Scholar] [CrossRef]
- Rozkrut, D. Statistical Yearbook of Industry; Central Statistical Office: Warsaw, Poland, 2018. [Google Scholar]
- Zelinski, R.; Silvestre, W.P.; Duarte, J.; Livinalli, N.F.; Zeni, M.; Baldasso, C. Evaluation of the use of reverse osmosis in the treatment of galvanic effluents. J. Membr. Sci. Res. 2023, 9, 562616. [Google Scholar]
- Chavez Porras, Á.; Cristancho Montenegro, D.L.; Ospina Granados, É.A. A clean alternative for galvanic wastewater treatment: Literature review. Rev. Ing. Univ. Medellin 2009, 8, 39–50. [Google Scholar]
- Rajoria, S.; Vashishtha, M.; Sangal, V.K. Treatment of electroplating industry wastewater: A review on the various techniques. Environ. Sci. Pollut. Res. 2022, 29, 72196–72246. [Google Scholar] [CrossRef] [PubMed]
- Oladimeji, T.E.; Oyedemi, M.; Emetere, M.E.; Agboola, O.; Adeoye, J.B.; Odunlami, O.A. Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon 2024, 23, e40370. [Google Scholar] [CrossRef]
- Sodhi, K.K.; Mishra, L.C.; Singh, C.K.; Kumar, M. Perspective on the heavy metal pollution and recent remediation strategies. Curr. Res. Microb. Sci. 2022, 3, 100166. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Mala, J.; Maly, J. Effect of heavy metals on self-purification processes in rivers. Appl. Ecol. Environ. Res. 2009, 7, 333–340. [Google Scholar] [CrossRef]
- Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Integrated Pollution Prevention and Control). Available online: https://eur-lex.europa.eu/eli/dir/2010/75/oj/eng (accessed on 23 September 2025).
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Cherrat, A.; Drif, B.; Erradi, E.M.; Oubaouz, M.; Blaise, N.; El Ossmani, H.; Labjar, N.; El laoui-Belghiti, H.; Bettach, M.; Benzaazoua, M.; et al. Valorization of electric arc furnace FTP dust from Morocco steel industry for efficient recovery of refined zinc via coal treatment. Process Saf. Environ. Protect. 2025, 196, 106961. [Google Scholar] [CrossRef]
- Bharti, V. Hexavalent chromium reduction from real electroplating wastewater by chemical precipitation. Bull. Chem. Soc. Ethiop. 2020, 34, 67–74. [Google Scholar] [CrossRef]
- Meng, S.; Wen, S.; Han, G.; Wang, X.; Feng, Q. Wastewater treatment in mineral processing of non-ferrous metal resources: A review. Water 2022, 14, 726. [Google Scholar] [CrossRef]
- Ghirisan, A.L.; Dragan, S.; Pop, A. Heavy metal removal and neutralization of acid mine waste water-kinetic study. Can. J. Chem. Eng. 2007, 85, 900–905. [Google Scholar] [CrossRef]
- Chen, Q.; Luo, Z.; Hills, C. Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide. Water Res. 2009, 43, 2605–2614. [Google Scholar] [CrossRef]
- Giannopoulou, I.; Panias, D. Differential precipitation of copper and nickel from acidic polymetallic aqueous solutions. Hydrometallurgy 2008, 90, 137–146. [Google Scholar] [CrossRef]
- Guo, Z.R.; Zhang, G.; Fang, J. Enhanced chromium recovery from tanning wastewater. J. Clean. Prod. 2006, 14, 75–79. [Google Scholar] [CrossRef]
- Alvarez, M.T.; Crespo, C.; Mattiasson, B. Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfidefrom the utilization of volatile fatty acids. Chemosphere 2007, 66, 1677–1683. [Google Scholar] [CrossRef] [PubMed]
- Azis, M.Y.; Amedyan, N.N.; Hanefiatni; Suprabawati, A. Study of reducing chromium(VI) to chromium(III) ion using reduction and coagulation methods for electroplating industrial waste. J. Phys. Conf. Ser. 2021, 1763, 012042. [Google Scholar] [CrossRef]
- Yan, F.L.; Wang, Y.; Wang, W.H.; Zhao, J.X.; Feng, L.L.; Li, J.J.; Zhao, J.C. Application of biochars obtained through the pyrolysis of Lemna minor in the treatment of Ni-electroplating wastewater. J. Water Process Eng. 2020, 37, 101464. [Google Scholar] [CrossRef]
- Wu, B.; Dai, X.; Chai, X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations. Water Res. 2020, 180, 115912. [Google Scholar] [CrossRef]
- Arroub, H.; Hsissou, R.; Elharfi, A. Investigation of modified chitosan as potential polyelectrolyte polymer and eco-friendly for the treatment of galvanization wastewater using novel hybrid process. Results Chem. 2020, 2, 100047. [Google Scholar] [CrossRef]
- Zueva, S.B.; Ferella, F.; Innocenzi, V.; De Michelis, I.; Corradini, V.; Ippolito, N.M.; Vegliò, F. Recovery of zinc from treatment of spent acid solutions from the pickling stage of galvanizing plants. Sustainability 2021, 13, 407. [Google Scholar] [CrossRef]
- Lucas, M.S.; Teixeira, A.R.; Jorge, N.; Peres, J.A. Industrial wastewater treatment by coagulation–flocculation and advanced oxidation processes: A review. Water 2025, 17, 1934. [Google Scholar] [CrossRef]
- García-Ávila, F.; Mayancela-Santander, E.; Alvarado-Pacheco, B.; Valdiviezo-Gonzales, L.; Cadme-Galabay, M.; Zhindón-Arévalo, C.; Reynoso-Quispe, P. Comparative analysis of coagulants for selective removal of iron and aluminum from galvanic wastewater: A practical and effective approach. Ain Shams Eng. J. 2025, 16, 103393. [Google Scholar] [CrossRef]
- Hargreaves, A.J.; Vale, P.; Whelan, J.; Alibardi, L.; Constantino, C.; Dotro, G.; Cartmell, E.; Campo, P. Coagulation–flocculation process with metal salts, synthetic polymers and biopolymers for the removal of trace metals (Cu, Pb, Ni, Zn) from municipal wastewater. Clean Technol. Environ. Policy 2018, 20, 393–402. [Google Scholar] [CrossRef]
- Msemwa, G.G.; Nasr, M.; Abdelhaleem, A.; Fujii, M.; Ibrahim, M.G. Coagulation-flocculation/pyrolysis integrated system for dye-laden wastewater treatment: A techno-economic and sustainable approach. Water Air Soil Pollut. 2025, 236, 57. [Google Scholar] [CrossRef]
- Mensah-Akutteh, H.; Buamah, R.; Wiafe, S.; Nyarko, K.B. Optimization of coagulation-flocculation processes with aluminum coagulation using response surface methods. Appl. Water Sci. 2022, 12, 188. [Google Scholar] [CrossRef]
- Gandiwa, B.I.; Moyo, L.B.; Ncube, S.; Mamvura, T.A.; Mguni, L.L.; Hlabangana, N. Optimization of using a blend of plant based natural and synthetic coagulants for water treatment: Moringa Oleifera-Cactus Opuntia-alum blend. S. Afr. J. Chem. Eng. 2020, 34, 158–164. [Google Scholar]
- Daud, N.M.; Abdullah, S.R.S.; Hasan, H.A.; Othman, A.R.; Ismail, N. Coagulation-flocculation treatment for batik effluent as a baseline study for the upcoming application of green coagulants/flocculants towards sustainable batik industry. Heliyon 2023, 9, e17284. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.M.; Fawzy, M.E.; Nassar, H.F. Effective Chemical Coagulation Treatment Process for Cationic and Anionic Dyes Degradation. Egypt. J. Chem. 2022, 65, 299–307. [Google Scholar] [CrossRef]
- García-Ávila, F.; Criollo-Illescas, F.; Zhindón-Arévalo, C.; García-Uzca, C.; Donoso-Moscoso, S.; Alfaro-Paredes, E. Integration of rapid filters for the provision of drinking water at rural home level. Groundw. Sustain. Dev. 2024, 26, 101217. [Google Scholar] [CrossRef]
- Xiao, X.; Sun, Y.; Liu, J.; Zheng, H. Flocculation of heavy metal by functionalized starch-based bioflocculants: Characterization and process evaluation. Sep. Purif. Technol. 2021, 267, 118628. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, S.; Sun, W.; Zhu, S.; Zheng, H. Flocculation activity and evaluation of chitosan-based flocculant CMCTS-g-P(AM-CA) for heavy metal removal. Sep. Purif. Technol. 2020, 241, 116737. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, A.; Pan, S.Y.; Sun, W.; Zhu, C.; Shah, K.J.; Zheng, H. Novel chitosan-based flocculants for chromium and nickle removal in wastewater via integrated chelation and flocculation. J. Environ. Manag. 2019, 248, 109241. [Google Scholar] [CrossRef] [PubMed]
- López-Maldonado, E.A.; Zavala García, O.G.; Escobedo, K.C.; Oropeza-Guzman, M.T. Evaluation of the chelating performance of biopolyelectrolyte green complexes (NIBPEGCs) for wastewater treatment from the metal finishing industry. J. Hazard. Mater. 2017, 335, 18–27. [Google Scholar] [CrossRef]
- El Ouardi, Y.; Virolainen, S.; Mouele, E.S.M.; Laatikainen, M.; Repo, E.; Laatikainen, K. The recent progress of ion exchange for the separation of rare earths from secondary resources—A review. Hydrometallurgy 2023, 218, 106047. [Google Scholar] [CrossRef]
- Jasim, A.Q.; Ajjam, S.K. Removal of heavy metal ions from wastewater using ion exchange resin in a batch process with kinetic isotherm. S. Afr. J. Chem. Eng. 2024, 49, 43–54. [Google Scholar] [CrossRef]
- Verbych, S.; Hilal, N.; Sorokin, G.; Leaper, M. Ion exchange extraction of heavy metal ions from wastewater. Sep. Sci. Technol. 2005, 39, 2031–2040. [Google Scholar] [CrossRef]
- Li, T.; Xiao, K.; Yang, B.; Peng, G.; Liu, F.; Tao, L.; Chen, S.; Wei, H.; Yu, G.; Deng, S. Recovery of Ni(II) from real electroplating wastewater using fixed-bed resin adsorption and subsequent electrodeposition. Front. Environ. Sci. Eng. 2019, 13, 91. [Google Scholar] [CrossRef]
- Zhang, S.; Ning, S.; Liu, H.; Wang, X.; Wei, Y.; Yin, X. Preparation of ion-exchange resin via in-situ polymerization for highly selective separation and continuous removal of palladium from electroplating wastewater. Sep. Purif. Technol. 2021, 258, 117670. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, S.; Xia, L.; Wang, Z.; Suo, N.; Chen, H.; Long, Y.; Zhou, B.; Yu, Y. In-situ ion exchange electrocatalysis biological coupling (i-IEEBC) for simultaneously enhanced degradation of organic pollutants and heavy metals in electroplating wastewater. J. Hazard. Mater. 2019, 364, 562–570. [Google Scholar] [CrossRef]
- Ye, Z.; Yin, X.; Chen, L.; He, X.; Lin, Z.; Liu, C.; Ning, S.; Wang, X.; Wei, Y. An integrated process for removal and recovery of Cr(VI) from electroplating wastewater by ion exchange and reduction–precipitation based on a silica-supported pyridine resin. J. Clean. Prod. 2019, 236, 117631. [Google Scholar] [CrossRef]
- Bożęcka, A.M.; Sanak-Rydlewska, S. The use of ion exchangers for removing cobalt and nickel ions from water solutions. Arch. Min. Sci. 2018, 63, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Kowalik-Klimczak, A.; Gajewska-Midziałek, A.; Buczko, Z.; Łożyńska, M.; Życki, M.; Barszcz, W.; Ciciszwili, T.; Dąbrowski, A.; Kasierot, S.; Charasińska, J.; et al. Circular economy approach in treatment of galvanic wastewater employing membrane processes. Membranes 2023, 13, 325. [Google Scholar] [CrossRef]
- Raji, Z.; Karim, A.; Karam, A.; Khalloufi, S. Adsorption of heavy metals: Mechanisms, kinetics, and applications of various adsorbents in wastewater remediation—A review. Waste 2023, 1, 775–805. [Google Scholar] [CrossRef]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of heavy metal ions by various low-cost adsorbents: A review. Int. J. Environ. Anal. Chem. 2020, 102, 342–379. [Google Scholar] [CrossRef]
- Korus, I. Separation of chosen heavy metals from multi-component mixtures and galvanic wastewater in adsorption on unmodified and modified magnetite. Desalination Water Treat. 2023, 301, 197–208. [Google Scholar] [CrossRef]
- Karnib, M.; Kabbani, A.; Holail, H.; Olama, Z. Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia 2014, 50, 113–120. [Google Scholar] [CrossRef]
- Ayub, S.; Siddique, A.A.; Khursheed, M.S.; Zarei, A.; Alam, I.; Asgari, E.; Changani, F. Removal of heavy metals (Cr, Cu, and Zn) from electroplating wastewater by electrocoagulation and adsorption processes. Desalination Water Treat. 2020, 179, 263–271. [Google Scholar] [CrossRef]
- Bankole, M.T.; Abdulkareem, A.S.; Mohammed, I.A.; Ochigbo, S.S.; Tijani, J.O.; Abubakre, O.K.; Roos, W.D. Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Sci. Rep. 2019, 9, 4475. [Google Scholar] [CrossRef]
- Thajeel, A.S. Isotherm, kinetic and thermodynamic of adsorption of heavy metal ions onto local activated carbon. Aquat. Sci. Technol. 2013, 1, 53–77. [Google Scholar] [CrossRef]
- Aguayo-Villarreal, I.A.; Bonilla-Petriciolet, A.; Muñiz-Valencia, R. Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions. J. Mol. Liq. 2017, 230, 686–695. [Google Scholar] [CrossRef]
- Yadav, V.B.; Gadi, R.; Kalra, S. Clay based nanocomposites for removal of heavy metals from water: A review. J. Environ. Manag. 2019, 232, 803–817. [Google Scholar] [CrossRef]
- Ahmed, S.; Fatema-Tuj-Zohra; Mahdi, M.M.; Mahmudunnabi, D.M.; Choudhury, T.R.; Zahangir Alam, M.; Nurnabi, M. Synthesis and characterization of graphene oxide for removal of Cr(III) from tannery effluent. Desalination Water Treat. 2021, 244, 201–211. [Google Scholar] [CrossRef]
- Abu-Nada, A.; McKay, G.; Abdala, A. Recent advances in applications of hybrid graphene materials for metals removal from wastewater. Nanomaterials 2020, 10, 595. [Google Scholar] [CrossRef] [PubMed]
- Kaźmierczak, B.; Molenda, J.; Swat, M. The adsorption of chromium (III) ions from water solutions on biocarbons obtained from plant waste. Environ. Technol. Innov. 2021, 23, 101737. [Google Scholar] [CrossRef]
- Barszcz, W.; Łożyńska, M.; Molenda, J. Impact of pyrolysis process conditions on the structure of biochar obtained from apple waste. Sci. Rep. 2024, 14, 10501. [Google Scholar] [CrossRef]
- Syarifuddin, S.; Heryanto, H.; Suryani, S.; Tahir, D. Biochar from diverse wastes: A comprehensive bibliometric analysis of heavy metal adsorption in wastewater. Desalination Water Treat. 2024, 317, 100089. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Masindi, V.; Gitari, W.M. The potential of ball-milled South African bentonite clay for attenuation of heavy metals from acidic wastewaters: Simultaneous sorption of Co2+, Cu2+, Ni2+, Pb2+, and Zn2+ ions. J. Environ. Chem. Eng. 2015, 3, 2416–2425. [Google Scholar]
- .Wan Ngah, W.S.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar] [CrossRef]
- He, Y.; Zhang, P.; Wang, L. Adsorption and removal of Cr6+, Cu2+, Pb2+, and Zn2+ from aqueous solution by magnetic nano-chitosan. Molecules 2023, 28, 2607. [Google Scholar] [CrossRef]
- Janani, R.; Gurunathan, B.; Sivakumar, K.; Varjani, S.; Ngo, H.H.; Gnansounou, E. Advancements in heavy metals removal from effluents employing nano-adsorbents: Way towards cleaner production. Environ. Res. 2022, 203, 111815. [Google Scholar] [CrossRef]
- Kumari, P.; Alam, M.; Siddiqi, W.A. Usage of nanoparticles as adsorbents for wastewater treatment: An emerging trend. Sustain. Mater. Technol. 2019, 22, e00128. [Google Scholar]
- Wang, Q.; Wang, Y.; Tang, J.; Yang, Z.; Zhang, L.; Huang, X. New insights into the interactions between Pb(II) and fruit waste biosorbent. Chemosphere 2022, 303, 135048. [Google Scholar] [CrossRef]
- Xie, S. Biosorption of heavy metal ions from contaminated wastewater: An eco-friendly approach. Green Chem. Lett. Rev. 2024, 17, 2357213. [Google Scholar] [CrossRef]
- Abas, S.N.A.; Ismail, M.H.S.; Kamal, L.M.; Izhar, S. Adsorption process of heavy metals by low-cost adsorbent: A review. World Appl. Sci. J. 2013, 28, 1518–1530. [Google Scholar]
- Ahmaruzzaman, M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Sci. 2011, 166, 36–59. [Google Scholar] [CrossRef]
- Korus, I.; Bobik, M.; Bąk, K. Influence of ionic environment on the process of adsorption of heavy metal ions on magnetic iron oxides. Desalination Water Treat. 2020, 186, 224–233. [Google Scholar] [CrossRef]
- Phouthavong, V.; Yan, R.; Nijpanich, S.; Hagio, T.; Ichino, R.; Kong, L.; Li, L. Magnetic adsorbents for wastewater treatment: Advancements in their synthesis methods. Materials 2022, 15, 1053. [Google Scholar] [CrossRef] [PubMed]
- Aragaw, T.A.; Bogale, F.M.; Aragaw, B.A. Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanism. J. Saudi Chem. Soc. 2021, 25, 101280. [Google Scholar] [CrossRef]
- Wardani, D.A.P.; Rosmainar, L.; Iqbal, R.M.; Simarmat, S.N. Synthesis and characterization of magnetic adsorbent based on Fe2O3 -fly ash from Pulang Pisau’s power plant of Central Kalimantan. IOP Conf. Ser. Mater. Sci. Eng. 2020, 980, 012014. [Google Scholar] [CrossRef]
- Ordóñez, J.I.; Cortés, S.; Maluenda, P.; Soto, I. Biosorption of heavy metals with algae: Critical review of its application in real effluents. Sustainability 2023, 15, 5521. [Google Scholar] [CrossRef]
- Ciobanu, A.A.; Lucaci, A.R.; Bulgariu, L. Efficient metal ions biosorption on red and green algae biomass: Isotherm, kinetic and thermodynamic study. J. Appl. Phycol. 2024, 36, 3809–3827. [Google Scholar] [CrossRef]
- Baran, M.F.; Duz, Z.; Baran, A.; Keskin, C.; Aktepe, N. Removal of heavy metals in water by biosorption method using three different Bacillus sp- derived biosorbents. KSU J. Agric. Nat. 2022, 25, 449–458. [Google Scholar] [CrossRef]
- Pham, V.H.T.; Kim, J.; Chang, S.; Chung, W. Bacterial biosorbents, an efficient heavy metals green clean-up strategy: Prospects, challenges, and opportunities. Microorganisms 2022, 10, 610. [Google Scholar] [CrossRef]
- Legorreta-Castañeda, A.J.; Lucho-Constantino, C.A.; Beltrán-Hernández, R.I.; Coronel-Olivares, C.; Vázquez-Rodríguez, G.A. Biosorption of water pollutants by fungal pellets. Water 2020, 12, 1155. [Google Scholar] [CrossRef]
- El-Bondkly, A.M.A.; El-Gendy, M.M.A.A. Bioremoval of some heavy metals from aqueous solutions by two different indigenous fungi Aspergillus sp. AHM69 and Penicillium sp. AHM96 isolated from petroleum refining wastewater. Heliyon 2022, 8, e09854. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.H.; Shartooh, S.M.; Trigui, M. Biosorption and isotherm modeling of heavy metals using Phragmites australis. Sustainability 2025, 17, 5366. [Google Scholar] [CrossRef]
- Anis Mani, K.; Swarnalatha, A.P.; Naveen, K.N.; Suryanarayana Raju, J.N.S.; Shankramma, S.K.; Priyadharsini, K. Biosorption of heavy metals using plant-derived sorbents: An environmental solution for industrial wastewater. Glob. NEST J. 2025, 27, 06874. [Google Scholar]
- Karim, A.; Raji, Z.; Karam, A.; Khalloufi, S. Valorization of fibrous plant-based food waste as biosorbents for remediation of heavy metals from wastewater—A review. Molecules 2023, 28, 4205. [Google Scholar] [CrossRef] [PubMed]
- Hegazi, H.A. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J. 2013, 9, 276–282. [Google Scholar] [CrossRef]
- Abdić, Š.; Memić, M.; Šabanović, E.; Sulejmanović, J.; Begić, S. Adsorptive removal of eight heavy metals from aqueous solution by unmodified and modified agricultural waste: Tangerine peel. Int. J. Environ. Sci. Technol. 2018, 15, 2511–2518. [Google Scholar] [CrossRef]
- Karnwal, A. Unveiling the promise of biosorption for heavy metal removal from water sources. Desalination Water Treat. 2024, 319, 100523. [Google Scholar] [CrossRef]
- Ghiaci, M.; Dorostkar, N.; Gil, A. Chicken bone ash as an efficient metal biosorbent for cadmium, lead, nickel, and zinc from aqueous solutions. Desalination Water Treat. 2014, 52, 3115–3121. [Google Scholar] [CrossRef]
- Pervov, A.G.; Adrianov, A.P.; Gorbunova, T.P.; Bagdasaryan, A.S. Membrane technologies in the solution of environmental problems. Pet. Chem. 2015, 55, 879–886. [Google Scholar] [CrossRef]
- Hegoburu, I.; Zedda, K.L.; Velizarov, S. Treatment of electroplating wastewater using NF pH-stable membranes: Characterization and application. Membranes 2020, 10, 399. [Google Scholar] [CrossRef]
- Kumar, J.; Joshi, H.; Malyan, S.K. Removal of copper, nickel, and zinc ions from an aqueous solution through electrochemical and nanofiltration membrane processes. Appl. Sci. 2022, 12, 280. [Google Scholar] [CrossRef]
- Rubel, E.; Tomassi, P.; Ziółkowski, J. Best Available Techniques (BAT) Guidelines for the Surface Treatment of Metals and Plastics; Institute of Precision Mechanics: Warsaw, Poland, January 2009. [Google Scholar]
- Brinkmann, T.; Giner, S.G.; Yükseler, H.; Roudier, S.; Delgado, S.L. Best Available Techniques (BAT) Reference Document for Common Waste Water and Waste Gas Treatment/Management Systems in the Chemical Sector; Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control): Warsaw, Poland, 2016. [Google Scholar]
- Ren, J.; Jiang, Y.; Ren, H.; Xue, X.; Yang, Z.; Yang, L.; Wang, J.; Tao, L. Micellar-enhanced ultrafiltration of heavy metal wastewater with palygorskite under various temperatures and pressures. J. Water Process Eng. 2024, 67, 106208. [Google Scholar] [CrossRef]
- Borbély, G.; Nagy, E. Removal of zinc and nickel ions by complexation–membrane filtration process from industrial wastewater. Desalination 2009, 240, 218–226. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, P.; Xu, D.; Zheng, J.; Zhan, Z.M.; Gao, Q.; Yuan, S.; Xu, Z.L.; Bruggen, B.V.D. Triethanolamine modification produces ultra-permeable nanofiltration membrane with enhanced removal efficiency of heavy metal ions. J. Membr. Sci. 2022, 644, 120127. [Google Scholar] [CrossRef]
- Mahmoud, A.E.D.; Mostafa, E. Nanofiltration membranes for the removal of heavy metals from aqueous solutions: Preparations and applications. Membranes 2023, 13, 789. [Google Scholar] [CrossRef]
- Dawam, M.; Gobara, M.; Oraby, H.; Zorainy, M.Y.; Nabil, I.M. Advances in membrane technologies for heavy metal removal from polluted water: A comprehensive review. Water Air Soil Pollut. 2025, 236, 461. [Google Scholar] [CrossRef]
- Castro, K.; Abejón, R. Removal of heavy metals from wastewaters and other aqueous streams by pressure-driven membrane technologies: An outlook on reverse osmosis, nanofiltration, ultrafiltration and microfiltration potential from a bibliometric analysis. Membranes 2024, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Min, X.; Tang, C.-J.; Sillanpää, M.A.; Zhao, F. Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. J. Water Process Eng. 2022, 49, 103023. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Othaman, R.; Hilal, N. Potential use of nanofiltration membranes in treatment of industrial wastewater from Ni-P electroless plating. Desalination 2004, 168, 241–252. [Google Scholar] [CrossRef]
- Figoli, A.; Cassano, A.; Criscuoli, A.; Mozumder, M.S.I.; Uddin, M.T.; Islam, M.A.; Drioli, E. Influence of operating parameters on the arsenic removal by nanofiltration. Water Res. 2010, 44, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Kowalik-Klimczak, A.; Zalewski, M.; Gierycz, P. Removal of Cr(III) ions from salt solution by nanofiltration: Experimental and modelling analysis. Pol. J. Chem. Technol. 2016, 18, 10–16. [Google Scholar] [CrossRef]
- Petrinic, I.; Korenak, J.; Povodnik, D.; Hélix-Nielsen, C. A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry. J. Clean. Prod. 2015, 101, 292–300. [Google Scholar] [CrossRef]
- Innocenzi, V.; Cantarini, F.; Amato, A.; Morico, B.; Ippolito, N.M.; Beolchini, F.; Prisciandaro, M.; Vegliò, F. Case study on technical feasibility of galvanic wastewater treatment plant based on life cycle assessment and costing approach. J. Environ. Chem. Eng. 2020, 8, 104535. [Google Scholar] [CrossRef]
- Mendil, J.; Alalou, A.; Mazouz, H.; Al-Dahhan, M.H. Review of emulsion liquid membrane for heavy metals recovery from wastewater/water: Stability, efficiency, and optimization. Chem. Eng. Process. Process Intensif. 2024, 196, 109647. [Google Scholar] [CrossRef]
- Kaczorowska, M.A. The use of polymer inclusion membranes for the removal of metal ions from aqueous solutions—The latest achievements and potential industrial applications: A review. Membranes 2022, 12, 1135. [Google Scholar] [CrossRef]
- Kadłubowicz, A.; Janiszewska, M.; Baraniak, M.; Lota, G.; Staszak, K.; Regel-Rosocka, M. Diffusion dialysis and extraction integrated system for recovery of cobalt(II) from industrial effluent. J. Water Process. Eng. 2020, 39, 101754. [Google Scholar] [CrossRef]
- Cerrillo-Gonzalez, M.D.M.; Villen-Guzman, M.; Rodriguez-Maroto, J.M.; Paz-Garcia, J.M. Metal recovery from wastewater using electrodialysis separation. Metals 2024, 14, 38. [Google Scholar] [CrossRef]
- Siekierka, A.; Yalcinkaya, F.; Bryjak, M. Recovery of transition metal ions with simultaneous power generation by reverse electrodialysis. J. Environ. Chem. Eng. 2023, 11, 110145. [Google Scholar] [CrossRef]
- AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G. A Comprehensive review on membrane fouling: Mathematical modelling, prediction, diagnosis, and mitigation. Water 2021, 13, 1327. [Google Scholar] [CrossRef]
- Matin, A.; Rahman, F.; Shafi, H.Z.; Zubair, S.M. Scaling of reverse osmosis membranes used in water desalination: Phenomena, impact, and control; future directions. Desalination 2019, 455, 135–157. [Google Scholar] [CrossRef]
- AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G.A. A Review on membrane biofouling: Prediction, characterization, and mitigation. Membranes 2022, 12, 1271. [Google Scholar] [CrossRef]
- Pinem, J.A.; Wardani, A.K.; Aryanti, P.T.P.; Khoiruddin, K.; Wenten, I.G. Hydrophilic modification of polymeric membrane using graft polymerization method: A mini review. IOP Conf. Ser. Mater. Sci. Eng. 2019, 547, 012054. [Google Scholar] [CrossRef]
- Suresh, D.; Goh, P.S.; Ismail, A.F.; Hilal, N. Surface design of liquid separation membrane through graft polymerization: A state of the art review. Membranes 2021, 11, 832. [Google Scholar] [CrossRef]
- Numaan, M.M.; Jasim, A.M.; Xing, Y.; Fidalgo, M.M. Thin-layer TiO2 membrane fabrication by condensed layer deposition. Materials 2024, 17, 4436. [Google Scholar] [CrossRef]
- Kacprzyńska-Gołacka, J.; Kowalik-Klimczak, A.; Woskowicz, E.; Wieciński, P.; Łożyńska, M.; Sowa, S.; Barszcz, W.; Kaźmierczak, B. Microfiltration membranes modified with silver oxide by plasma treatment. Membranes 2020, 10, 133. [Google Scholar] [CrossRef] [PubMed]
- Nain, A.; Sangili, A.; Hu, S.-R.; Chen, C.-H.; Chen, Y.-L.; Chang, H.-T. Recent progress in nanomaterial-functionalized membranes for removal of pollutants. IScience 2022, 25, 104616. [Google Scholar] [CrossRef] [PubMed]
- Polak, D.; Szwast, M.; Fabianowski, W.; Rosiński, M. Ceramic membranes modified by carbon used for laundry wastewater treatment. Chem. Eng. Trans. 2019, 74, 931–936. [Google Scholar]
- Tiwary, S.K.; Singh, M.; Chavan, S.V.; Karim, A. Graphene oxide-based membranes for water desalination and purification. npj 2D Mater. Appl. 2024, 8, 27. [Google Scholar] [CrossRef]
- Kowalik-Klimczak, A.; Woskowicz, E.; Kacprzyńska-Gołacka, J. The surface modification of polyamide membranes using graphene oxide. Colloids Surf. A 2020, 587, 124281. [Google Scholar] [CrossRef]
- Lee, B.; Kim, C. Innovative membrane technology for water treatment solutions: Current status and future prospects of carbon nanotube membranes. Environ. Eng. Res. 2024, 29, 240104. [Google Scholar] [CrossRef]
- Mergola, L.; Carbone, L.; Bloise, E.; Lazzoi, M.R.; Del Sole, R. Sustainable and reusable modified membrane based on green gold nanoparticles for efficient methylene blue water decontamination by a photocatalytic process. Nanomaterials 2024, 14, 1611. [Google Scholar] [CrossRef] [PubMed]
- García, A.; Rodríguez, B.; Giraldo, H.; Quintero, Y.; Quezada, R.; Hassan, N.; Estay, H. Copper-modified polymeric membranes for water treatment: A comprehensive review. Membranes 2021, 11, 93. [Google Scholar] [CrossRef]
- Mozia, S.; Jose, M.; Sienkiewicz, P.; Szymański, K.; Darowna, D.; Zgrzebnicki, M.; Markowska-Szczupa, A. Polyethersulfone ultrafiltration membranes modified with hybrid Ag/titanate nanotubes: Physicochemical characteristics, antimicrobial properties, and fouling resistance. Desalination Water Treat. 2018, 128, 106–118. [Google Scholar] [CrossRef]
- Kowalik-Klimczak, A.; Stanisławek, E.; Kacprzyńska-Gołacka, J.; Bednarska, A.; Osuch-Słomka, E.; Skowroński, J. The polyamide membranes functionalized by nanoparticles for biofouling control. Desalination Water Treat. 2018, 128, 243–252. [Google Scholar] [CrossRef]
- Buonomenna, M.G.; Mousavi, S.M.; Hashemi, S.A.; Lai, C.W. Water cleaning adsorptive membranes for efficient removal of heavy metals and metalloids. Water 2022, 14, 2718. [Google Scholar] [CrossRef]
- Khulbe, K.C.; Matsuura, T. Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci. 2018, 8, 19. [Google Scholar] [CrossRef]
- Vo, T.S.; Hossain, M.M.; Jeong, H.M.; Kim, K. Heavy metal removal applications using adsorptive membranes. Nano Converg. 2020, 7, 36. [Google Scholar] [CrossRef]
- Mondal, M.; Indurkar, P.D. Heavy metals remediation using MOF5@ GO composite incorporated mixed matrix ultrafiltration membrane. Chem. Eng. J. 2024, 494, 153155. [Google Scholar] [CrossRef]
- Song, J.; Chen, L.; Zhou, Y.; Yuan, Z.; Niu, Y.; Wei, Z. Efficient adsorptive separation of Cu(II) from Ph by ZIF-8 constructed with sodium alginate polymer backbone. Int. J. Biol. Macromol. 2024, 279, 135501. [Google Scholar] [CrossRef]
- Mokubung, K.E.; Madzivha, N.N.; Lau, W.J.; Nxumalo, E.N. Polyethersulfone/biochar-Fe3O4/GO mixed matrix membranes with enhanced antifouling properties for heavy metals removal from acid mine drainage. Inorg. Chem. Commun. 2025, 176, 114190. [Google Scholar] [CrossRef]
- Mukherjee, R.; Bhunia, P.; De, S. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem. Eng. J. 2016, 292, 284–297. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, F.; Xue, J.; Chen, S.; Wang, J.; Yang, Y. Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar: Behavior and mechanism. Sci. Rep. 2020, 10, 6067. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Gavrilescu, M. Removal of some environmentally relevant heavy metals using low-cost natural sorbents. Environ. Eng. Manag. J. 2009, 8, 353–372. [Google Scholar] [CrossRef]
- Tian, C.; Chen, J.; Bai, Z.; Wang, X.; Dai, R.; Wang, Z. Recycling of end-of-life polymeric membranes for water treatment: Closing the loop. J. Membr. Sci. Lett. 2023, 3, 100063. [Google Scholar] [CrossRef]
- Somrani, A.; Abohelal, K.; Pontié, M. A Mini Review of Reused End-of-Life Reverse Osmosis (EoL RO) Membranes. Membranes 2025, 15, 217. [Google Scholar] [CrossRef]
- Neelamegam, P.; Muthusubramanian, B. A sustainable novel approach of recycling end-of-life reverse osmosis (RO) membrane as additives in concrete and mathematical model with response surface methodology (RSM). Environ. Sci. Pollut. Res. 2024, 31, 19304–19328. [Google Scholar] [CrossRef]
- Benalia, M.C.; Youcef, L.; Bouaziz, M.G.; Achour, S.; Menasra, H. Removal of heavy metals from industrial wastewater by chemical precipitation: Mechanisms and sludge characterization. Arab. J. Sci. Eng. 2022, 47, 5587–5599. [Google Scholar] [CrossRef]
- Macena, M.; Pereira, H.; Cruz-Lopes, L.; Grosche, L.; Esteves, B. Competitive Adsorption of Metal Ions by Lignocellulosic Materials: A Review of Applications, Mechanisms and Influencing Factors. Separations 2025, 12, 70. [Google Scholar] [CrossRef]
- Sgreccia, E.; Rogalska, C.; Gallardo Gonzalez, F.S.; Prosposito, P.; Burratti, L.; Knauth, P.; Vona, M.L.B. Heavy metal decontamination by ion exchange polymers for water purification: Counterintuitive cation removal by an anion exchange polymer. J. Mater. Sci. 2024, 59, 2776–2787. [Google Scholar] [CrossRef]
- Zhu, Y.; Fan, W.; Zhou, T.; Li, X. Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Sci. Total Environ. 2019, 678, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
Parameter | Range |
---|---|
pH | 2.02–7.6 |
Turbidity [NTU] | 34.8–256 |
TDS [mS/cm] | 1200–6500 |
TSS [mg/dm3] | 175–380 |
Chlorides [mg/dm3] | 500–2100 |
Sulphates [mg/dm3] | 400–1450 |
Fluorides [mg/dm3] | 100–305 |
Oils/greases [mg/dm3] | 4–8 |
COD [mg/dm3] | 180–3404.4 |
BOD [mg/dm3] | 1.56–1600 |
TOC [ mg/dm3] | 60.9–1278.4 |
Nitrates [mg/dm3] | 8.92–91.00 |
Phosphorates [mg/dm3] | 50–278 |
Cyanides [mg/dm3] | 120–261 |
Nickel (Ni) [mg/dm3] | 5.82–1550 |
Copper (Cu) [mg/dm3] | 2–2980 |
Chromium (Cr) [mg/dm3] | 0.19–25,176 |
Cadmium (Cd) [mg/dm3] | 0.03–102 |
Calcium [mg/dm3] | 4.2–14.3 |
Type of Metal | Value |
---|---|
Nickel (Ni) [mg/dm3] | 0.5 |
Copper (Cu) [mg/dm3] | 0.5 |
Chromium (Cr) [mg/dm3] | 0.5 |
Cadmium (Cd) [mg/dm3] | 0.05 |
Zinc (Zn) [mg/dm3] | 1.5 |
Type of Chemical | Heavy Metals | Max. Removal Rate [%] | References |
---|---|---|---|
Apatite | Cu(II), Zn(II) | >90 | [18] |
CaO | Cu(II), Zn(II) | >99 | [19] |
NaOH | Ni(II) | >99 | [20] |
CaO/MgO | Cr(III) | >99 | [21] |
H2S | Cu(II), Zn(II) | >90 | [22] |
Type of Coagulants/Flocculants | Heavy Metals | Max. Removal Rate [%] | References |
---|---|---|---|
SAA/SAS | Cu(II), Zn(II) | >80 | [37] |
Ni(II) | >90 | ||
CMCTS-g-P(AM-CA) | Ni(II) | >70 | [38] |
CAC and CPCTS-g-PAM | Ni(II) | >99 | [39] |
NIBPEGCs | Cd(II) | 79 | [40] |
Ni(II) | 90 | ||
Zn(II) | 89 | ||
Cu(II) | 99 | ||
Cr(III) | 99 |
Type of Resin | Heavy Metals | Max. Removal Rate [%] | References |
---|---|---|---|
Novel mesoporous ion exchange resin (SiAcyl) | Pb(II) | 100 | [45] |
Strongly acid sulfonated polystyrene CER, cation exchange resin | Cu(II) | 91 | [46] |
Cr(III) | 96 | ||
Strong-base silica-supported pyridine resin, SiPyR-N4 | Cr(VI) | 99 | [47] |
Cation exchange resin | Ni(II) | 96 | [44] |
Type of Adsorbent | Maximum Adsorption Rate [%] | References | ||||
---|---|---|---|---|---|---|
Pb(II) | Cu(II) | Ni(II) | Zn(II) | Cr(III) | ||
Activated carbon | 83 | 97 | 90 | 96 | 86 | [53,54] |
Carbon nanotubes | 99 | 93 | 89 | 89 | 99 | [55] |
Graphene oxide | 98 | - | - | 99 | 98 | [59,60] |
Biochars | 98 | 99 | 93 | 95 | 97 | [63] |
Bentonite clay | 99 | 78 | 99 | 90 | - | [64,65] |
Chitosan | 94 | 88 | - | 70 | - | [67] |
Type of Biosorbent Material | Mechanism |
---|---|
Algal biomass | Physical adsorption and chemical binding on the algae surface |
Bacterial biomass | Electrostatic attraction, ion exchange, and complexation reactions on bacterial cell surfaces |
Fungal biomass | Functional groups (carboxyl and amino) present in the cell wall of fungal cultures |
Plant biomass | Surface complexation, ion exchange, and chelation |
Agricultural waste | Physical and chemical interaction with the waste surface |
Industrial waste | Trapped in the waste structure |
Type of Biosorbent | Maximum Adsorption Rate [%] | References | ||||
---|---|---|---|---|---|---|
Pb(II) | Cu(II) | Ni(II) | Zn(II) | Cd(II) | ||
Marine algae | [79] | |||||
Callithamnion corymbosum | - | 83 | - | 89 | - | |
Ulva lactuca | - | 79 | - | 82 | - | |
Bacterial isolate | [80] | |||||
Bacillus licheniformis sp. | 96 | 79 | 77 | 91 | 96 | |
Bacillus subtilis sp. | 92 | 68 | 58 | 84 | 94 | |
Bacillus subtilis | 97 | 88 | 79 | 93 | 98 | |
Fungal isolate | [83] | |||||
Aspergillus sp. AHM69 | 100 | 97 | 100 | 100 | 76 | |
Penicillium sp. AHM96 | 100 | 90 | 82 | 100 | 100 | |
Plants | ||||||
Phragmites australis | 43 | 53 | - | 31 | 43 | [84] |
Prosopis juliflora | 95 | 90 | - | - | 90 | [85] |
Agriculture residue | ||||||
Rice husk | 87 | 98 | 97 | - | 68 | [87] |
Tangerine peel | 93 | 97 | 93 | 97 | 98 | [88] |
Industrial waste | ||||||
Chicken bone ash | 100 | - | 23 | 74 | 75 | [90] |
Type of Process | Maximum Retention Rate [%] | References | ||||
---|---|---|---|---|---|---|
Pb(II) | Cu(II) | Ni(II) | Zn(II) | Cd(II) | ||
Micellar-enhanced ultrafiltration | - | 100 | - | 99 | 99 | [96] |
Polymer-enhanced ultrafiltration | - | 94 | 98 | 92 | - | [97] |
Nanofiltration | [100] | |||||
Negative charge | 98 | 92 | 88 | - | 99 | |
Positive charge | 99 | - | 99 | - | 98 | |
Reverse osmosis | 99 | 99 | 99 | 99 | 99 | [100] |
Technology | Advantages | Limitations | References |
---|---|---|---|
Chemical precipitation | Ease of operation Inexpensive Suitable for most metals Effective in high-concentration metal treatment | Sludge dewatering and disposal Cost of sludge utilisation pH dependency In the case of complexed metals, an oxidation step is required Ineffective in low-concentration metal treatment | [16,17,18,19,20,21,22,23,24,25,26,51,142] |
Coagulation/flocculation | Ease of operation Inexpensive | Sludge dewatering and disposal Cost of sludge utilisation High chemical consumption | [28,29,30,31,32,33,34,35,36,37,38,39,40,143] |
Ion exchange | Fast kinetics Ease of operation Selective and high removal of metals Combination with other techniques | High operational costs Ineffective in high-concentration metal treatment Regeneration or disposal of ion resin Secondary pollution in form of spent regeneration baths Requires physicochemical pretreatment | [41,42,43,44,45,46,47,48,86,144] |
Adsorption | Ease of operation Inexpensive High efficiency Combination with other techniques | Rapid saturation Not selective Regeneration or disposal of adsorbent Chemicals for desorption Secondary pollution in the form of spent regeneration baths Require physicochemical pretreatment | [50,51,52,53,54,55,56,57,145] |
Pressure membrane filtration | Simple and rapid process Efficient method for a wide range of metal concentrations High metal separation selectivity Possible recovery of metals for reuse Space-saving Combination with other techniques | High investment cost High membrane cost Energy consumption Regeneration or disposal of spent membranes Secondary pollution in the form of retentate or spent membranes | [49,107,108,139,140,141,146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalik-Klimczak, A. Removal of Heavy Metals from Galvanic Industry Wastewater: A Review of Different Possible Methods. Sustainability 2025, 17, 8562. https://doi.org/10.3390/su17198562
Kowalik-Klimczak A. Removal of Heavy Metals from Galvanic Industry Wastewater: A Review of Different Possible Methods. Sustainability. 2025; 17(19):8562. https://doi.org/10.3390/su17198562
Chicago/Turabian StyleKowalik-Klimczak, Anna. 2025. "Removal of Heavy Metals from Galvanic Industry Wastewater: A Review of Different Possible Methods" Sustainability 17, no. 19: 8562. https://doi.org/10.3390/su17198562
APA StyleKowalik-Klimczak, A. (2025). Removal of Heavy Metals from Galvanic Industry Wastewater: A Review of Different Possible Methods. Sustainability, 17(19), 8562. https://doi.org/10.3390/su17198562