Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = galvanic industry effluents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1837 KB  
Review
Removal of Heavy Metals from Galvanic Industry Wastewater: A Review of Different Possible Methods
by Anna Kowalik-Klimczak
Sustainability 2025, 17(19), 8562; https://doi.org/10.3390/su17198562 - 24 Sep 2025
Viewed by 2350
Abstract
The galvanic industry requires considerable amounts of water and produces significant quantities of wastewater. Two types of wastewater are created in the processes of the galvanic application of metal coatings: used galvanic baths and wastewater generated while rinsing coated elements. The composition and [...] Read more.
The galvanic industry requires considerable amounts of water and produces significant quantities of wastewater. Two types of wastewater are created in the processes of the galvanic application of metal coatings: used galvanic baths and wastewater generated while rinsing coated elements. The composition and amount of wastewater depend on the type of process, the plant’s operational system, and the quantity of water utilised to rinse the coated elements. In this article, the possibilities of using different techniques, such as chemical precipitation, coagulation and flocculation, ion exchange, adsorption, and membrane filtration, to remove heavy metals from galvanic wastewater were analysed and assessed. It was determined that the use of physicochemical methods (i.e., chemical precipitation, coagulation, and flocculation) to remove heavy metals has significant disadvantages, including operational costs connected with the purchase of chemical reagents and the emergence of metal complexes requiring management/utilisation. On the other hand, the processes of ion exchange and adsorption can be used only for wastewater characterised by a low heavy metal concentration, with organic matter preliminarily removed. In addition, waste polluted with heavy metals in the form of used regenerative baths and used sorbents is generated during these processes. In turn, the advanced techniques of membrane filtration allow for the removal of different types of organic pollutants and heavy metals. The processes of membrane wastewater treatment exhibit a range of advantages compared to traditional technologies, including the complete, environmentally friendly removal of permanent organic pollution, easy integration into conventional technologies, a limited amount of residue, a high level of separation, and a shorter process time. The efficiency of membrane wastewater treatment depends on many parameters, including, most of all, the composition, pH, and type of membrane, as well as process conditions. The possibility of using new types of membranes to remove heavy metals from spent galvanic baths was analysed, and the possibility of using the processes in wastewater treatment systems according to the circular economy model was assessed. The assessment of the efficiency of heavy metal removal in hybrid systems combining specific individual processes and the development of state-of-the-art material solutions to realise these processes may be an interesting direction of research in this field. Full article
Show Figures

Graphical abstract

19 pages, 3668 KB  
Article
Photocatalytic Reduction of Cr(VI) in the Presence of Humic Acid Using Immobilized Ce–ZrO2 under Visible Light
by Fabrício Eduardo Bortot Coelho, Victor M. Candelario, Estêvão Magno Rodrigues Araújo, Tânia Lúcia Santos Miranda and Giuliana Magnacca
Nanomaterials 2020, 10(4), 779; https://doi.org/10.3390/nano10040779 - 18 Apr 2020
Cited by 42 | Viewed by 5968
Abstract
Cr(VI) has several industrial applications but it is one of the most dangerous pollutants because of its carcinogenicity and high toxicity. Thus, the removal of Cr(VI) by photocatalytic reduction was investigated. The catalyst applied, Ce–ZrO2, was immobilized, through a sol–gel process [...] Read more.
Cr(VI) has several industrial applications but it is one of the most dangerous pollutants because of its carcinogenicity and high toxicity. Thus, the removal of Cr(VI) by photocatalytic reduction was investigated. The catalyst applied, Ce–ZrO2, was immobilized, through a sol–gel process on a silicon carbide (SiC) support, to increase the efficiency and avoid using suspended nanoparticles. The influence of initial pH, humic acid (HA), and catalyst dosage was investigated for Cr(VI) containing solutions. Then, a real galvanizing industry effluent (Cr(VI) = 77 mg L-1mg.L−1, Zn = 1789 mg L−1) was treated. It was observed that Cr(VI) adsorption and photoreduction are greatly favored at low pH values. HA can decrease Cr(VI) adsorption but also acts as holes scavenger, reducing the electron–hole recombination, favoring then the photoreduction. With the immobilized Ce–ZrO2, more than 97% of Cr(VI) was removed from the diluted effluent. These results indicate the feasibility to treat Cr(VI) effluents even in the presence of other metals and natural organic matter. The developed material has great chemical and mechanical resistances and avoids the use of nanoparticles, dangerous for the environment and hard to recover. Moreover, solar light can be used to drive the process, which contributes to the development of more sustainable, cleaner, and cost-effective wastewater treatments. Full article
Show Figures

Graphical abstract

Back to TopTop