Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,672)

Search Parameters:
Keywords = filtration membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2614 KiB  
Article
Porphyrin-Modified Polyethersulfone Ultrafiltration Membranes for Enhanced Bacterial Inactivation and Filtration Performance
by Funeka Matebese, Nonkululeko Malomane, Meladi L. Motloutsi, Richard M. Moutloali and Muthumuni Managa
Membranes 2025, 15(8), 239; https://doi.org/10.3390/membranes15080239 - 6 Aug 2025
Abstract
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone [...] Read more.
Municipal wastewaters pose a severe risk to the environment and human health when discharged untreated. This is due to their high content of pathogens, such as viruses and bacteria, which can cause diseases like cholera. Herein, the research and development of porphyrin-modified polyethersulfone (PES) ultrafiltration (UF) membranes was conducted to improve bacterial inactivation in complex municipal wastewater and enhance the fouling resistance and filtration performance. The synthesis and fabrication of porphyrin nanofillers and the resultant membrane characteristics were studied. The incorporation of porphyrin-based nanofillers improved the membrane’s hydrophilicity, morphology, and flux (247 Lm−2 h−1), with the membrane contact angle (CA) decreasing from 90° to ranging between 58° and 50°. The membrane performance was monitored for its flux, antifouling properties, reusability potential, municipal wastewater, and humic acid. The modified membranes demonstrated an effective application in wastewater treatment, achieving notable antibacterial activity, particularly under light exposure. The In-BP@SW/PES membrane demonstrated effective antimicrobial photodynamic effects against both Gram-positive S. aureus and Gram-negative E. coli. It achieved at least a 3-log reduction in bacterial viability, meeting Food and Drug Administration (FDA) standards for efficient antimicrobial materials. Among the variants tested, membranes modified with In-PB@SW nanofillers exhibited superior antifouling properties with flux recovery ratios (FRRs) of 78.9% for the humic acid (HA) solution and 85% for the municipal wastewater (MWW), suggesting a strong potential for long-term filtration use. These results highlight the promise of porphyrin-functionalized membranes as multifunctional tools in advanced water treatment technologies. Full article
Show Figures

Figure 1

24 pages, 2930 KiB  
Article
Improved Antimicrobial Properties of White Wastewater Protein Hydrolysate Through Electrodialysis with an Ultrafiltration Membrane (EDUF)
by Diala Damen, Jacinthe Thibodeau, Sami Gaaloul, Steve Labrie, Safia Hamoudi and Laurent Bazinet
Membranes 2025, 15(8), 238; https://doi.org/10.3390/membranes15080238 - 6 Aug 2025
Abstract
This study investigated white wastewater (WW) as a potential source of antimicrobial peptides, employing hydrolysis with Pronase E followed by separation through electrodialysis with ultrafiltration membranes (EDUF) to increase the value of dairy components within a circular economy framework. The WW hydrolysate was [...] Read more.
This study investigated white wastewater (WW) as a potential source of antimicrobial peptides, employing hydrolysis with Pronase E followed by separation through electrodialysis with ultrafiltration membranes (EDUF) to increase the value of dairy components within a circular economy framework. The WW hydrolysate was divided into two key fractions: the cationic recovery compartment (CRC) and the anionic recovery compartment (ARC). The EDUF process effectively separated peptides, with peptide migration rates reaching 6.83 ± 0.59 g/m2·h for CRC and 6.19 ± 0.66 g/m2·h for ARC. Furthermore, relative energy consumption (REC) increased from 1.15 Wh/g to 2.05 Wh/g over three hours, in line with trends observed in recent studies on electrodialysis energy use. Although 29 peptides were statistically selected from the CRC (20) and ARC (9) compartments, no antibacterial activity was exhibited against Clostridium tyrobutyricum and Pseudomonas aeruginosa; however, antifungal activity was observed in the feed and ARC compartments. Peptides from the ARC demonstrated activity against Mucor racemosus (MIC = 0.156 mg/mL) and showed selective antifungal effects against Penicillium commune (MIC = 0.156 mg/mL). This innovative approach paves the way for improving the recovery of anionic peptides through further optimization of the EDUF process. Future perspectives include synthesizing selected peptides and evaluating their antifungal efficacy against these and other microbial strains, offering exciting potential for applications in food preservation and beyond. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

19 pages, 5480 KiB  
Article
Numerical Study of the Filtration Performance for Electrospun Nanofiber Membranes
by Wenyuan Hu, Fuping Qian, Simin Cheng, Lumin Chen, Xiao Ma and Huaiyu Zhong
Appl. Sci. 2025, 15(15), 8667; https://doi.org/10.3390/app15158667 (registering DOI) - 5 Aug 2025
Abstract
To solve the limitations of these models for submicron materials like electrospun nanofiber membranes, a numerical simulation was used to construct a three-dimensional model closer to the actual structure to explore the filtration resistance and efficiency of these membranes. Based on the actual [...] Read more.
To solve the limitations of these models for submicron materials like electrospun nanofiber membranes, a numerical simulation was used to construct a three-dimensional model closer to the actual structure to explore the filtration resistance and efficiency of these membranes. Based on the actual polydisperse electrospun nanofiber filter, the three-dimensional structure (fiber diameter 280 nm–1300 nm, thickness 0.0150 mm–0.0240 mm, and solid volume fraction 11.3–17.7%) was reconstructed by GeoDict software. The filtration resistance was simulated with the FlowDict module (surface velocity 6.89 cm/s, 20 °C), and the filtration efficiency was calculated with the FilterDict module (2.5 μm particles, tracking 20,000). The results are compared with the experimental values, Davids empirical formula, Happel model, and Kuwabara model. The results show that the simulated values of filtration resistance are generally higher than the experimental values (deviation ≤ 20%), among which the simulation and experiment have the highest consistency, followed by the Davids formula (such as the relative error of 41.62% at 9% spinning solution concentration), and the Kuwabara model has the largest error (59.86%). The simulated value of filtration efficiency is higher than the experimental value (deviation ≤ 7%), because the model assumes that the particles adhere directly after contacting the fiber, and the actual sliding off is not considered. This study confirms that numerical simulation can efficiently predict the filtration performance of electrospun nanofiber membranes. Therefore, it provides a basis for optimizing material structure by adjusting spinning parameters and promoting the engineering application of submicron filter materials. Full article
Show Figures

Figure 1

29 pages, 3303 KiB  
Review
Nanoplastics (NPs): Environmental Presence, Ecological Implications, and Mitigation Approaches
by Vyoma Jani and Shenghua Wu
Microplastics 2025, 4(3), 48; https://doi.org/10.3390/microplastics4030048 - 4 Aug 2025
Viewed by 65
Abstract
Nanoplastics (NPs), the tiniest and one of the most problematic fractions of plastic pollution, present dangers because of their size, reactivity, and ecosystem interactions. This review highlights the distinct characteristics, sources, routes, and ecological effects of NPs, a substantial subgroup of plastic pollution. [...] Read more.
Nanoplastics (NPs), the tiniest and one of the most problematic fractions of plastic pollution, present dangers because of their size, reactivity, and ecosystem interactions. This review highlights the distinct characteristics, sources, routes, and ecological effects of NPs, a substantial subgroup of plastic pollution. With a focus on their ecological and toxicological implications, this review highlights the unique qualities of NPs and their functions in wastewater and urban runoff systems. The analysis of NPs’ entry points into terrestrial, aquatic, and atmospheric ecosystems reveals difficulties with detection and quantification that make monitoring more difficult. Filtration technologies, adsorption-based techniques, and membrane bioreactors are examples of advanced technical solutions emphasized as efficient NP mitigation measures that can integrated into current infrastructure. Environmental effects are examined, including toxicological hazards to organisms in freshwater, terrestrial, and marine environments, bioaccumulation, and biomagnification. This analysis emphasizes the serious ecological problems that NPs present and the necessity of using civil and environmental engineering techniques to improve detection techniques, enact stronger laws, and encourage public participation. Full article
Show Figures

Figure 1

8 pages, 3048 KiB  
Communication
Layer-by-Layer Nanoassembly of Cu(OH)2 Multilayer Membranes for Nanofiltration
by Wenbo Sun, Yanpeng Xue and Guozhi Liu
Coatings 2025, 15(8), 895; https://doi.org/10.3390/coatings15080895 (registering DOI) - 1 Aug 2025
Viewed by 158
Abstract
A facile way to prepare Cu(OH)2 inorganic nanofiltration membranes with neatly arranged multilayers has been developed based on the reaction of a sodium hydroxide solution and a copper ammonia solution at the liquid–liquid interfaces. The effects of the concentration, temperature, and time [...] Read more.
A facile way to prepare Cu(OH)2 inorganic nanofiltration membranes with neatly arranged multilayers has been developed based on the reaction of a sodium hydroxide solution and a copper ammonia solution at the liquid–liquid interfaces. The effects of the concentration, temperature, and time of the liquid–liquid reaction on membrane structure and pore sizes were studied by SEM, TEM, and X-ray diffraction. The growth mechanism of the membrane was discussed and the formation process model was proposed. It was found that the reaction temperature was a key factor in obtaining a Cu(OH)2 monolayer, and this could be used to adjust the thickness and pore size of the monolayer. The as-prepared Cu(OH)2 membranes exhibited excellent filtration performance with the pure water fluxes of 156.2 L·m−2 h−1 bar−1 and retention rates of 100% for methylene blue (50 ppm) at a pressure of 0.1 MPa. This successfully opens up a new method of synthesizing multilayer nanoarrays’ Cu(OH)2 structure for nanofiltration. Full article
(This article belongs to the Special Issue Deposition-Based Coating Solutions for Enhanced Surface Properties)
Show Figures

Graphical abstract

15 pages, 1619 KiB  
Article
Reducing Energy Penalty in Wastewater Treatment: Fe-Cu-Modified MWCNT Electrodes for Low-Voltage Electrofiltration of OMC
by Lu Yu, Jun Zeng, Xiu Fan, Fengxiang Li and Tao Hua
Energies 2025, 18(15), 4077; https://doi.org/10.3390/en18154077 - 1 Aug 2025
Viewed by 177
Abstract
Pseudo-persistent organic pollutants, such as pharmaceuticals, personal care products (PPCPs), and organic dyes, are a major issue in current environmental engineering. Considering the limitations of traditional wastewater treatment plant methods and degradation technologies for organic pollutants, the search for new technologies more suitable [...] Read more.
Pseudo-persistent organic pollutants, such as pharmaceuticals, personal care products (PPCPs), and organic dyes, are a major issue in current environmental engineering. Considering the limitations of traditional wastewater treatment plant methods and degradation technologies for organic pollutants, the search for new technologies more suitable for treating these new types of pollutants has become a research hotspot in recent years. Membrane filtration, adsorption, advanced oxidation, and electrochemical advanced oxidation technologies can effectively treat new organic pollutants. The electro-advanced oxidation process based on sulfate radicals is renowned for its non-selectivity, high efficiency, and environmental friendliness, and it can improve the dewatering performance of sludge after wastewater treatment. Therefore, in this study, octyl methoxycinnamate (OMC) was selected as the target pollutant. A new type of electrochemical filtration device based on the advanced oxidation process of sulfate radicals was designed, and a new type of modified carbon nanotube material electrode was synthesized to enhance its degradation effect. In a mixed system of water and acetonitrile, the efficiency of the electrochemical filtration device loaded with the modified electrode for degrading OMC is 1.54 times that at room temperature. The experimental results confirmed the superiority and application prospects of the self-designed treatment scheme for organic pollutants, providing experience and a reference for the future treatment of PPCP pollution. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

19 pages, 4365 KiB  
Article
Fecal Virome Transplantation Confirms Non-Bacterial Components (Virome and Metabolites) Participate in Fecal Microbiota Transplantation-Mediated Growth Performance Enhancement and Intestinal Development in Broilers with Spatial Heterogeneity
by Shuaihu Chen, Tingting Liu, Junyao Chen, Hong Shen and Jungang Wang
Microorganisms 2025, 13(8), 1795; https://doi.org/10.3390/microorganisms13081795 - 31 Jul 2025
Viewed by 228
Abstract
Fecal microbiota transplantation (FMT) promotes growth performance and intestinal development in yellow-feathered broilers, but whether the virome and metabolites contribute to its growth-promoting effect remains unclear. This study removed the microbiota from FMT filtrate using a 0.45 μm filter membrane, retaining the virome [...] Read more.
Fecal microbiota transplantation (FMT) promotes growth performance and intestinal development in yellow-feathered broilers, but whether the virome and metabolites contribute to its growth-promoting effect remains unclear. This study removed the microbiota from FMT filtrate using a 0.45 μm filter membrane, retaining the virome and metabolites to perform fecal virome transplantation (FVT), aiming to investigate its regulatory role in broiler growth. Healthy yellow-feathered broilers with high body weights (top 10% of the population) were used as FVT donors. Ninety-six 8-day-old healthy male yellow-feathered broilers (95.67 ± 3.31 g) served as FVT recipients. Recipient chickens were randomly assigned to a control group and an FVT group. The control group was gavaged with 0.5 mL of normal saline daily, while the FVT group was gavaged with 0.5 mL of FVT solution daily. Growth performance, immune and antioxidant capacity, intestinal development and related gene expression, and microbial diversity were measured. The results showed that FVT improved the feed utilization rate of broilers (the feed conversion ratio decreased by 3%; p < 0.05), significantly increased jejunal length (21%), villus height (69%), and crypt depth (84%) (p < 0.05), and regulated the jejunal barrier: insulin-like growth factor-1 (IGF-1) (2.5 times) and Mucin 2 (MUC2) (63 times) were significantly upregulated (p < 0.05). FVT increased the abundance of beneficial bacteria Lactobacillales. However, negative effects were also observed: Immunoglobulin A (IgA), Immunoglobulin G (IgG), Immunoglobulin M (IgM), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α), and Interferon-gamma (IFN-γ) in broilers were significantly upregulated (p < 0.05), indicating immune system overactivation. Duodenal barrier-related genes Mucin 2 (MUC2), Occludin (OCLN), Claudin (CLDN1), and metabolism-related genes solute carrier family 5 member 1 (SLC5A1) and solute carrier family 7 member 9 (SLC7A9) were significantly downregulated (p < 0.05). The results of this trial demonstrate that, besides the microbiota, the gut virome and metabolites are also functional components contributing to the growth-promoting effect of FMT. The differential responses in the duodenum and jejunum reveal spatial heterogeneity and dual effects of FVT on the intestine. The negative effects limit the application of FMT/FVT. Identifying the primary functional components of FMT/FVT to develop safe and targeted microbial preparations is one potential solution. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

16 pages, 2715 KiB  
Article
Composite Behavior of Nanopore Array Large Memristors
by Ian Reistroffer, Jaden Tolbert, Jeffrey Osterberg and Pingshan Wang
Micromachines 2025, 16(8), 882; https://doi.org/10.3390/mi16080882 - 29 Jul 2025
Viewed by 176
Abstract
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior [...] Read more.
Synthetic nanopores were recently demonstrated with memristive and nonlinear voltage-current behaviors, akin to ion channels in a cell membrane. Such ionic devices are considered a promising candidate for the development of brain-inspired neuromorphic computing techniques. In this work, we show the composite behavior of nanopore-array large memristors, formed with different membrane materials, pore sizes, electrolytes, and device arrangements. Anodic aluminum oxide (AAO) membranes with 5 nm and 20 nm diameter pores and track-etched polycarbonate (PCTE) membranes with 10 nm diameter pores are tested and shown to demonstrate memristive and nonlinear behaviors with approximately 107–1010 pores in parallel when electrolyte concentration across the membranes is asymmetric. Ion diffusion through the large number of channels induces time-dependent electrolyte asymmetry that drives the system through different memristive states. The behaviors of series composite memristors with different configurations are also presented. In addition to helping understand fluidic devices and circuits for neuromorphic computing, the results also shed light on the development of field-assisted ion-selection-membrane filtration techniques as well as the investigations of large neurons and giant synapses. Further work is needed to de-embed parasitic components of the measurement setup to obtain intrinsic large memristor properties. Full article
(This article belongs to the Section D4: Glassy Materials and Micro/Nano Devices)
Show Figures

Figure 1

17 pages, 2524 KiB  
Article
A Model-Driven Approach to Assessing the Fouling Mechanism in the Crossflow Filtration of Laccase Extract from Pleurotus ostreatus 202
by María Augusta Páez, Mary Casa-Villegas, Vanesa Naranjo-Moreno, Neyda Espín Félix, Katty Cabezas-Terán and Alfonsina Andreatta
Membranes 2025, 15(8), 226; https://doi.org/10.3390/membranes15080226 - 29 Jul 2025
Viewed by 353
Abstract
Membrane technology is primarily used for the separation and purification of biotechnological products, which contain proteins and enzymes. Membrane fouling during crossflow filtration remains a significant challenge. This study aims to initially validate crossflow filtration models, particularly related to pore-blocking mechanisms, through a [...] Read more.
Membrane technology is primarily used for the separation and purification of biotechnological products, which contain proteins and enzymes. Membrane fouling during crossflow filtration remains a significant challenge. This study aims to initially validate crossflow filtration models, particularly related to pore-blocking mechanisms, through a comparative analysis with dead-end filtration models. One crossflow microfiltration (MF) and six consecutive ultrafiltration (UF) stages were implemented to concentrate laccase extracts from Pleurotus ostreatus 202 fungi. The complete pore-blocking mechanism significantly impacts the MF, UF 1000, UF 100 and UF 10 stages, with the highest related filtration constant (KbF) estimated at 12.60 × 10−4 (m−1). Although the intermediate pore-blocking mechanism appears across all filtration stages, UF 100 is the most affected, with an associated filtration constant (KiF) of 16.70 (m−1). This trend is supported by the highest purification factor (6.95) and the presence of 65, 62 and 56 kDa laccases in the retentate. Standard pore blocking occurs at the end of filtration, only in the MF and UF 1000 stages, with filtration constants (KsF) of 29.83 (s−0.5m−0.5) and 31.17 (s−0.5m−0.5), respectively. The absence of cake formation and the volume of permeate recovered indicate that neither membrane was exposed to exhaustive fouling that could not be reversed by backwashing. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 282
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

22 pages, 747 KiB  
Review
Viticultural and Pre-Fermentation Strategies to Reduce Alcohol Levels in Wines
by Francesca Coppola, Bruno Testa, Mariantonietta Succi, Gianluca Paventi, Catello Di Martino and Massimo Iorizzo
Foods 2025, 14(15), 2647; https://doi.org/10.3390/foods14152647 - 28 Jul 2025
Viewed by 329
Abstract
Changes in lifestyles, as well as the growing attention to healthy nutrition, led to the increasing demand for wines with reduced alcohol content. The reduction in fermentable sugars in the pre-fermentation stage of wine is one of the common methods for the production [...] Read more.
Changes in lifestyles, as well as the growing attention to healthy nutrition, led to the increasing demand for wines with reduced alcohol content. The reduction in fermentable sugars in the pre-fermentation stage of wine is one of the common methods for the production of wines with lower alcohol content. Viticultural practices such as early harvesting, use of growth regulators, reducing leaf area to limit photosynthetic rate, and pre-harvest irrigation are utilized. Additionally, techniques such as juice dilution, juice filtration with membranes, and the use of enzymes (e.g., glucose oxidase) are also employed in the pre-fermentation stage. This review summarizes and describes the classic and innovative viticultural and pre-fermentation techniques used to reduce the alcohol content and their main impact on the compositional characteristics of wine. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

14 pages, 752 KiB  
Article
Versatile High-Performance Liquid Chromatography and Ultraviolet Detection-Based Method for the Determination of Thioproline in Pharmaceutical and Cosmetic Products
by Marta Gaweł, Martyna Płodzik, Rafał Głowacki and Justyna Piechocka
Molecules 2025, 30(15), 3152; https://doi.org/10.3390/molecules30153152 - 28 Jul 2025
Viewed by 277
Abstract
The article presents the first method based on high-performance liquid chromatography and ultraviolet detection (HPLC-UV) for the determination of timonacic (thioproline, 1,3-thiazolidine-4-carboxylic acid, tPro) in pharmaceutical tablets and face care products (creams, sera, foundations, suncreams). Sample preparation primarily involves solid-liquid extraction (SLE) of [...] Read more.
The article presents the first method based on high-performance liquid chromatography and ultraviolet detection (HPLC-UV) for the determination of timonacic (thioproline, 1,3-thiazolidine-4-carboxylic acid, tPro) in pharmaceutical tablets and face care products (creams, sera, foundations, suncreams). Sample preparation primarily involves solid-liquid extraction (SLE) of tPro with 0.2 mol/L phosphate buffer pH 6, derivatization with 0.25 mol/L 2-chloro-1-methylquinolinium tetrafluoroborate (CMQT), followed by polytetrafluoroethylene (PTFE) membrane filtration. The chromatographic separation of the stable UV-absorbing 2-S-quinolinium derivative is achieved within 14 min at 25 °C on a Zorbax SB-C18 (150 × 4.6 mm, 5 µm) column using gradient elution. The eluent consists of 0.1 mol/L trichloroacetic acid (TCA), pH 1.7, in a mixture with acetonitrile (ACN) delivered at a flow rate of 1 mL/min. The analyte is quantified by monitoring at 348 nm. The assay linearity was observed within 0.5–125 μmol/L. The limit of quantification (LOQ) was found to be 0.5 μmol/L. The accuracy ranged from 93.22% to 104.31% and 97.38% to 103.48%, while precision varied from 0.30% to 11.23% and 1.13% to 9.64% for intra- and inter-assay measurements, respectively. The method was successfully applied to commercially available on the Polish market pharmaceutical and cosmetic products. Full article
(This article belongs to the Special Issue Recent Advances in Chromatography for Pharmaceutical Analysis)
Show Figures

Figure 1

13 pages, 3429 KiB  
Article
Membrane Fouling Control and Treatment Performance Using Coagulation–Tubular Ceramic Membrane with Concentrate Recycling
by Yawei Xie, Yichen Fang, Dashan Chen, Jiahang Wei, Chengyue Fan, Xiwang Zhu and Hongyuan Liu
Membranes 2025, 15(8), 225; https://doi.org/10.3390/membranes15080225 - 27 Jul 2025
Viewed by 289
Abstract
A comparative study was conducted to investigate membrane fouling control and treatment performance using natural surface water as the feed source. The evaluated processes included: (1) direct filtration–tubular ceramic membrane (DF-TCM, control); (2) coagulation–tubular ceramic membrane (C-TCM); and (3) coagulation–tubular ceramic membrane with [...] Read more.
A comparative study was conducted to investigate membrane fouling control and treatment performance using natural surface water as the feed source. The evaluated processes included: (1) direct filtration–tubular ceramic membrane (DF-TCM, control); (2) coagulation–tubular ceramic membrane (C-TCM); and (3) coagulation–tubular ceramic membrane with concentrate recycling (C-TCM-CR). Experimental results demonstrated that under constant flux operation at 75 L/(m2·h) for 8 h, the C-TCM-CR process reduced the transmembrane pressure (TMP) increase by 83% and 35% compared to DF-TCM and C-TCM, respectively. Floc size distribution analysis and cake layer characterization revealed that the C-TCM-CR process enhanced coagulation efficiency and formed high-porosity cake layers on membrane surfaces, thereby mitigating fouling development. Notably, the coagulation-assisted processes demonstrated improved organic matter removal, with 13%, 10%, and 10% enhancement in CODMn, UV254, and medium molecular weight organics (2000–10,000 Da) removal compared to DF-TCM, along with a moderate enhancement in fluorescent substances removal efficiency. All three processes achieved over 99% turbidity removal efficiency, as the ceramic membranes demonstrate excellent filtration performance. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

16 pages, 10544 KiB  
Article
Development and Performance Evaluation of Hydrophobically Modified Nano-Anti-Collapsing Agents for Sustainable Deepwater Shallow Drilling
by Jintang Wang, Zhijun He, Haiwei Li, Jian Guan, Hao Xu and Shuqiang Shi
Sustainability 2025, 17(15), 6678; https://doi.org/10.3390/su17156678 - 22 Jul 2025
Viewed by 352
Abstract
Sustainable deepwater drilling for oil and gas offers significant potential. In this work, we synthesized a nanoscale collapse-prevention agent by grafting didecyldimethylammonium chloride onto spherical nano-silica and characterized it using Fourier-transform infrared spectroscopy, thermogravimetric analysis, zeta-potential, and particle-size measurements, as well as SEM [...] Read more.
Sustainable deepwater drilling for oil and gas offers significant potential. In this work, we synthesized a nanoscale collapse-prevention agent by grafting didecyldimethylammonium chloride onto spherical nano-silica and characterized it using Fourier-transform infrared spectroscopy, thermogravimetric analysis, zeta-potential, and particle-size measurements, as well as SEM and TEM. Adding 1 wt% of this agent to a bentonite slurry only marginally alters its rheology and maintains acceptable low-temperature flow properties. Microporous-membrane tests show filtrate passing through 200 nm pores drops to 55 mL, demonstrating excellent plugging. Core-immersion studies reveal that shale cores retain integrity with minimal spalling after prolonged exposure. Rolling recovery assays increase shale-cutting recovery to 68%. Wettability tests indicate the water contact angle rises from 17.1° to 90.1°, and capillary rise height falls by roughly 50%, reversing suction to repulsion. Together, these findings support a synergistic plugging–adsorption–hydrophobization mechanism that significantly enhances wellbore stability without compromising low-temperature rheology. This work may guide the design of high-performance collapse-prevention additives for safe, efficient deepwater drilling. Full article
(This article belongs to the Special Issue Sustainability and Challenges of Underground Gas Storage Engineering)
Show Figures

Figure 1

1 pages, 122 KiB  
Retraction
RETRACTED: Yang et al. Biological Activated Carbon Filtration Controls Membrane Fouling and Reduces By-Products from Chemically Enhanced Backwashing During Ultrafiltration Treatment. Water 2023, 15, 3803
by Yao Yang, Shuai Zhang, Guangfei Yang, Haihui Li, Jinjin Wang and Wenyan Li
Water 2025, 17(15), 2169; https://doi.org/10.3390/w17152169 - 22 Jul 2025
Viewed by 153
Abstract
The journal retracts the article titled “Biological Activated Carbon Filtration Controls Membrane Fouling and Reduces By-Products from Chemically Enhanced Backwashing During Ultrafiltration Treatment” [...] Full article
Back to TopTop