Green Value from Technology Finance Policies Towards Sustainability: Evidence of a Quasi-Natural Experiment on Urban Carbon Reduction in China
Abstract
1. Introduction
2. Theoretical Analysis and Hypotheses
2.1. Background of Technology Finance Policies
2.2. Direct Impact of Tech-Finance Policies on Urban Carbon Emissions
2.3. Transmission Mechanism of Tech-Finance Policies in Urban Carbon Emissions
3. Materials and Methods
3.1. Models
3.2. Variables
3.2.1. Dependent Variable
3.2.2. Independent Variable
3.2.3. Mechanism Variables
3.2.4. Control Variables
3.3. Samples and Data
4. Results
4.1. DID Regression Analysis
4.2. Parallel Trend Test
4.3. Placebo Test
4.4. Robustness Tests
4.5. Heterogeneity Analysis
4.6. Mechanisms Analysis
4.6.1. Intermediary Role of Technological Innovation
4.6.2. Intermediary Role of Industrial Structure Upgrading
5. Discussion
5.1. Conclusions
5.2. Practical Implications
5.3. Contributions
5.4. Limitations and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kollenbach, G.; Schopf, M. Unilaterally optimal climate policy and the green paradox. J. Environ. Econ. Manag. 2022, 113, 102649. [Google Scholar] [CrossRef]
- Atif, M.; Bottura, M.; Yasin, R. Public issues and public expectations: Disentangling responsibility discourse dimensions in CSR and sustainability books. Eur. Manag. J. 2024, 42, 957–967. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, L. Enhancing corporate sustainable development: Stakeholder pressures, organizational learning, and green innovation. Bus. Strateg. Environ. 2019, 28, 1012–1026. [Google Scholar] [CrossRef]
- Chishti, M.Z.; Sinha, A. Do the shocks in technological and financial innovation influence the environmental quality? Evidence from BRICS economies. Technol. Soc. 2022, 68, 101828. [Google Scholar] [CrossRef]
- Yuan, G.; Ye, Q.; Sun, Y. Financial innovation, information screening and industries’ green innovation-industry-level evidence from the OECD. Technol. Forecast. Soc. 2021, 171, 120998. [Google Scholar] [CrossRef]
- Song, X.L.; Yao, Y.M.; Wu, X.K. Digital finance, technological innovation, and carbon dioxide emissions. Econ. Anal. Policy 2023, 80, 482–494. [Google Scholar] [CrossRef]
- Wahab, S. Does technological innovation limit trade-adjusted carbon emissions? Environ. Sci. Pollut. Res. 2021, 28, 38043–38053. [Google Scholar] [CrossRef]
- Azam, A.; Rafiq, M.; Shafique, M.; Yuan, J. Mitigating carbon emissions in China: The role of clean energy, technological innovation, and political-institutional quality. Front. Environ. Sci. 2022, 10, 814439. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y. Influence of digital finance and green technology innovation on China’s carbon emission efficiency: Empirical analysis based on spatial metrology. Sci. Total Environ. 2022, 838, 156463. [Google Scholar] [CrossRef]
- Okere, K.I.; Onuoha, F.C.; Muoneke, O.B.; Oyeyemi, A.M. Towards sustainability path in Argentina: The role of finance, energy mix, and industrial value-added in low or high carbon emission-application of DARDL simulation. Environ. Sci. Pollut. Res. 2021, 28, 55053–55071. [Google Scholar] [CrossRef] [PubMed]
- Cegarra-Navarro, J.-G.; Reverte, C.; Gomez-Melero, E.; Wensley, A.K.P. Linking social and economic responsibilities with financial performance: The role of innovation. Eur. Manag. J. 2016, 34, 530–539. [Google Scholar] [CrossRef]
- Pitluck, A.Z. The interpretive and relational work of financial innovation: A resemblance of assurance in Islamic finance. J. Cult. Econ. 2023, 16, 793–811. [Google Scholar] [CrossRef]
- Wei, S.P.; Jiang, F.X.; Pan, J.W.; Cai, Q.H. Financial innovation, government auditing and corporate high-quality development: Evidence from China. Financ. Res. Lett. 2023, 58, 104567. [Google Scholar] [CrossRef]
- An, H.; Xu, J.; Ma, X. Does technological progress and industrial structure reduce electricity consumption? Evidence from spatial and heterogeneity analysis. Struct. Change Econ. Dynam. 2020, 52, 206–220. [Google Scholar] [CrossRef]
- Irshaid, J.; Mochizuki, J.; Schinko, T. Challenges to local innovation and implementation of low-carbon energy-transition measures: A tale of two Austrian regions. Energy Policy 2021, 156, 112432. [Google Scholar] [CrossRef]
- Laeven, L.; Levine, R.; Michalopoulos, S. Financial innovation and endogenous growth. J. Financ. Intermed. 2015, 24, 1–24. [Google Scholar] [CrossRef]
- Gonzalez, O.; Millechek, J.R.; Georgeson, A.R. Estimating latent baseline-by-treatment interactions in statistical mediation analysis. Struct. Equ. Model. A Multidiscip. J. 2023, 30, 914–925. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.L.; Zhang, J.; Wang, Y.P. Capital supervision, information disclosure and risk-taking-evidence from rural commercial banks in China. Emerg. Mark. Financ. Trade 2022, 58, 2273–2289. [Google Scholar] [CrossRef]
- DasGupta, R. Financial performance shortfall, ESG controversies, and ESG performance: Evidence from firms around the world. Financ. Res. Lett. 2022, 46, 102487. [Google Scholar] [CrossRef]
- Chen, Y.C.; Hung, M.Y.; Wang, Y.X. The effect of mandatory CSR disclosure on firm profitability and social externalities: Evidence from China. J. Account. Res. 2018, 65, 169–190. [Google Scholar] [CrossRef]
- Naqi, A.; Jang, J.G. Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review. Sustainability 2019, 11, 537. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, H. Effects of land urbanization and land finance on carbon emissions: A panel data analysis for Chinese provinces. Land Use Policy 2017, 63, 493–500. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renew. Sustain. Energy Rev. 2016, 60, 1074–1085. [Google Scholar] [CrossRef]
- Hailemariam, A.; Dzhumashev, R.; Shahbaz, M. Carbon emissions, income inequality and economic development. Empir. Econ. 2020, 59, 1139–1159. [Google Scholar] [CrossRef]
- Miao, X.; Feng, E.H.; Siu, Y.L.; Li, S.S.; Wong, C.W.Y. Can China’s carbon intensity constraint policies improve carbon emission performance? Evidence from regional carbon emissions. J. Environ. Manag. 2023, 348, 119268. [Google Scholar] [CrossRef] [PubMed]
- Wan, K.; Cao, L.; Xu, Q.L. Extreme weather and the financial sustainability of rural commercial banks: Evidence from China. Appl. Econ. 2025, 58, 1–16. [Google Scholar] [CrossRef]
- Han, H.S.; Wong, A.K.F.; Kim, S.; Cheng, X.; Chi, X.T. Assessing asymmetric selection of responsible airlines based on CSR, normative, and emotional factors: A complexity approach with SEM, fsQCA, and NCA. Asia Pac. J. Tour. Res. 2025, 30, 320–337. [Google Scholar] [CrossRef]
- Hall, S.; Foxon, T.J.; Bolton, R. Investing in low-carbon transitions: Energy finance as an adaptive market. Clim. Policy 2017, 17, 280–298. [Google Scholar] [CrossRef]
- Tian, X.; Bai, F.L.; Jia, J.H.; Liu, Y.; Shi, F. Realizing low-carbon development in a developing and industrializing region: Impacts of industrial structure change on CO2 emissions in southwest China. J. Environ. Manag. 2019, 233, 728–738. [Google Scholar] [CrossRef]
- Dong, B.; Xu, Y.; Fan, X. How to achieve a win-win situation between economic growth and carbon emission reduction: Empirical evidence from the perspective of industrial structure upgrading. Environ. Sci. Pollut. Res. 2020, 27, 43829–43844. [Google Scholar] [CrossRef]
- Sun, J.; Tang, D.; Kong, H.; Boamah, V. Impact of industrial structure upgrading on green total factor productivity in the yangtze river economic belt. Int. J. Environ. Res. Public Health 2022, 19, 3718. [Google Scholar] [CrossRef]
- Ridwan, M.; Urbee, A.J.; Voumik, L.C. Investigating the environmental Kuznets curve hypothesis with urbanization, industrialization, and service sector for six South Asian Countries: Fresh evidence from Driscoll Kraay standard error. Res. Glob. 2024, 8, 100223. [Google Scholar] [CrossRef]
- Naqvi, R.A.; Almohsen, B.; Sohail, A. Modeling the environmental Kuznets curve: A stochastic approach using economic and climate data. J. Environ. Manag. 2025, 373, 123108. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Gill, A.R.; Ghosal, K. Assessment of the environmental Kuznets curve within EU-27: Steps toward environmental sustainability (1990–2019). Environ. Sci. Ecotech. 2024, 18, 100312. [Google Scholar] [CrossRef]
- Mahmood, H.; Furqan, M.; Hassan, M.S. The environmental Kuznets Curve (EKC) hypothesis in China: A review. Sustainability 2023, 15, 6110. [Google Scholar] [CrossRef]
- Leal, P.H.; Marques, A.C. The evolution of the environmental Kuznets curve hypothesis assessment: A literature review under a critical analysis perspective. Heliyon 2022, 8, e11521. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Muslija, A.; Satrovic, E. Does economic prosperity lead to environmental sustainability in developing economies? Environmental Kuznets curve theory. Environ. Sci. Pollut. Res. 2021, 28, 22588–22601. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Li, R. Rethinking the environmental Kuznets curve hypothesis across 214 countries: The impacts of 12 economic, institutional, technological, resource, and social factors. Human. Soc. Sci. Commun. 2024, 11, 292. [Google Scholar] [CrossRef]
- Zhang, J. Environmental Kuznets curve hypothesis on CO2 emissions: Evidence for China. J. Risk Financ. Manag. 2021, 14, 93. [Google Scholar] [CrossRef]
- Jaeger, W.K.; Kolpin, V.; Siegel, R. The environmental Kuznets curve reconsidered. Energy Econ. 2023, 120, 106561. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Breitenbach, M.C. Exploring the moderating role of financial development in environmental Kuznets curve for South Africa: Fresh evidence from the novel dynamic ARDL simulations approach. Financ. Innov. 2023, 9, 5. [Google Scholar] [CrossRef]
- Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econom. 2021, 225, 254–277. [Google Scholar] [CrossRef]
- Dube, A.; Girardi, D.; Jorda, O. A local projections approach to difference-in-differences. J. Appl. Econom. 2025, 2023, 1–56. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, T.L. The impact of cross-region industrial structure optimization on economy, carbon emissions and energy consumption: A case of the Yangtze River Delta. Sci. Total Environ. 2021, 778, 146089. [Google Scholar] [CrossRef]
- Li, G.; Wei, W. Financial development, openness, innovation, carbon emissions, and economic growth in China. Energy Econ. 2021, 97, 105194. [Google Scholar] [CrossRef]
- Baker, A.C.; Larcker, D.F.; Wang, C.C.Y. How much should we trust staggered difference-in-differences estimates? J. Financ. Econ. 2022, 144, 370–395. [Google Scholar] [CrossRef]
- Ullah, H.; Wang, Z.; Mohsin, M.; Jiang, W.; Abbas, H. Multidimensional perspective of green financial innovation between green intellectual capital on sustainable business: The case of Pakistan. Environ. Sci. Pollut. Res. 2022, 29, 5552–5568. [Google Scholar] [CrossRef]
- Sun, Z.; Cao, C.; He, Z.; Feng, C. Examining the coupling coordination relationship between digital inclusive finance and technological innovation from a spatial spillover perspective: Evidence from China. Emerg. Mark. Financ. Trade 2023, 59, 1219–1231. [Google Scholar] [CrossRef]
- Chang, H.; Ding, Q.Y.; Zhao, W.Z.; Hou, N.; Liu, W.W. The digital economy, industrial structure upgrading, and carbon emission intensity-empirical evidence from China’s provinces. Energy Strategy Rev. 2023, 50, 101218. [Google Scholar] [CrossRef]
- Zhu, T.; Zhao, L.; Zhao, L. Impact of financial decentralisation on industrial structure upgrading: From the coordination perspective of fiscal decentralisation. Int. Rev. Financ. Anal. 2025, 104, 104301. [Google Scholar] [CrossRef]
- Li, D. The impact of marine industrial structure rationalization on marine economic growth. J. Sea. Res. 2023, 196, 102455. [Google Scholar] [CrossRef]
- Gu, R.; Li, C.; Li, D. The impact of rationalization and upgrading of industrial structure on carbon emissions in the Beijing-Tianjin-Hebei Urban Agglomeration. Int. J. Environ. Res. Public Health 2022, 19, 7997. [Google Scholar] [CrossRef]
- Teklie, D.K.; Doan, B. Analyzing the dynamics: Asymmetric effects of economic growth, technological innovation, and renewable energy on carbon emissions in Africa. Int. J. Energy Econ. Policy 2024, 14, 509–519. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Xie, L.H.; Xiao, J.H. Government procurement, digital economy development and industrial structure upgrading. Contemp. Financ. Econ. 2024, 3, 43–55. [Google Scholar] [CrossRef]
- Yusuf, H.; Gor, R.; Memon, R.S. Travel-associated carbon emissions of patients receiving cancer treatment from an urban safety net hospital. J. Clin. Oncol. 2024, 42, e13812. [Google Scholar] [CrossRef]
- Cai, M.; Shi, Y.; Ren, C. The need for urban form data in spatial modeling of urban carbon emissions in China: A critical review. J. Clean. Prod. 2021, 319, 128792. [Google Scholar] [CrossRef]
- Dezhbakhsh, H.; Levy, D. Interpolation and shock persistence of prewar U.S. macroeconomic time series: A reconsideration. Econ. Lett. 2022, 213, 110386. [Google Scholar] [CrossRef]
- Marcus, M.; Sant’Anna, P.H.C. The role of parallel trends in event study settings: An application to environmental economics. J. Assoc. Environ. Resour. Econ. 2021, 8, 235–275. [Google Scholar] [CrossRef]
- Rambachan, A.; Roth, J. A more credible approach to parallel trends. Rev. Econ. Stud. 2023, 90, 2555–2591. [Google Scholar] [CrossRef]
- Hartman, E.; Hidalgo, F.D. An equivalence approach to balance and placebo tests. Am. J. Politi. Sci. 2018, 62, 1000–1013. [Google Scholar] [CrossRef]
- Patatoukas, P.N.; Thomas, J.K. Placebo tests of conditional conservatism. Account. Rev. 2016, 91, 625–648. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, M.; Li, S. The effect evaluation of China’s energy-consuming right trading policy: Empirical analysis based on PSM-DID. Sustainability 2021, 13, 11612. [Google Scholar] [CrossRef]
- Cook, N. Increasing student access through aid: Differences in difference-in-differences estimates. Econ. Lett. 2024, 238, 111711. [Google Scholar] [CrossRef]
- Jorgensen, B.L.; Foster, D.; Jensen, J.F. Financial attitudes and responsible spending behavior of emerging adults: Does geographic location matter? J. Fam. Econ. Issues 2017, 38, 70–83. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Shi, K.F.; Cui, Y.Z.; Liu, S.R.; Liu, L.L. Differentiated effects of morphological and functional polycentric urban spatial structure on carbon emissions in China: An empirical analysis from remotely sensed nighttime light approach. Int. J. Digit. Earth 2023, 16, 532–551. [Google Scholar] [CrossRef]
- Wang, K.; Wu, M.; Sun, Y.; Shi, X.; Sun, A.; Zhang, P. Resource abundance, industrial structure, and regional carbon emissions efficiency in China. Resour. Policy 2019, 60, 203–214. [Google Scholar] [CrossRef]
- Hu, W.; Tian, J.; Chen, L. An industrial structure adjustment model to facilitate high-quality development of an eco-industrial park. Sci. Total Environ. 2021, 766, 142502. [Google Scholar] [CrossRef]
- Busch, T. Industrial ecology, climate adaptation, and financial risk. J. Ind. Ecol. 2020, 24, 285–290. [Google Scholar] [CrossRef]
- Morshedy, A.S.; Taha, M.H.; El-Aty, D.M.A.; Bakry, A.; El Naggar, A.M.A. Solid waste sub-driven acidic mesoporous activated carbon structures for efficient uranium capture through the treatment of industrial phosphoric acid. Environ. Technol. 2021, 21, 101363. [Google Scholar] [CrossRef]
- Bhatti, U.A.; Marjan, S.; Wahid, A.; Syam, M.S.; Huang, M.X.; Tang, H.; Hasnain, A. The effects of socioeconomic factors on particulate matter concentration in China’s: New evidence from spatial econometric model. J. Clean. Prod. 2023, 417, 137969. [Google Scholar] [CrossRef]
- Erikson, S.L.; Johnson, L. Will financial innovation transform pandemic response? Lancet Infect. Dis. 2020, 20, 529–530. [Google Scholar] [CrossRef]
- Fu, H.; Lyu, G.; Liu, X.Q. Spatial correlation between electricity generation and economic scale in Africa. PLoS ONE 2024, 19, e0300627. [Google Scholar] [CrossRef]
- Ye, F.; Deng, J.; Gong, B. Economic policy uncertainty, resource endowments and industrial structure transformation. J. Asia Pac. Econ. 2024, 29, 341–361. [Google Scholar] [CrossRef]
- Tekic, A.; Tekic, Z. Resource endowments as antecedents of high-impact entrepreneurship: Embracing the complexity of entrepreneurial ecosystems. J. Bus. Res. 2025, 197, 115444. [Google Scholar] [CrossRef]
- Shao, Y.; Xu, K.; Shan, Y.G. Leveraging corporate digitalization for green technology innovation: The mediating role of resource endowments. Technovation 2024, 133, 102999. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, L.; Liu, G. Carbon dioxide emissions reduction through technological innovation: Empirical evidence from Chinese provinces. Int. J. Environ. Res. Public Health 2022, 19, 9543. [Google Scholar] [CrossRef]
- Hardy, B.; Sever, C. Financial crises and innovation. Eur. Econ. Rev. 2021, 138, 103856. [Google Scholar] [CrossRef]
- Wilson, C. Disruptive low-carbon innovations. Energy Res. Soc. Sci. 2018, 37, 216–223. [Google Scholar] [CrossRef]
- Markandya, A.; Arto, I.; Gonzalez-Eguino, M.; Roman, M.V. Towards a green energy economy? Tracking the employment effects of low-carbon technologies in the European Union. Appl. Energy 2016, 179, 1342–1350. [Google Scholar] [CrossRef]
- Jing, L.; Jia, W.; Bo, Z. Are industrial structure adjustment and technical progress conducive to environmental improvement? J. Glob. Inf. Manag. 2022, 30, 1–17. [Google Scholar] [CrossRef]
- Casotto, C.; Silva, V.; Crowley, H.; Nascimbene, R.; Pinho, R. Seismic fragility of Italian RC precast industrial structures. Eng. Struct. 2015, 94, 122–136. [Google Scholar] [CrossRef]
- Borgersen, T.-A.; King, R.M. Industrial structure and jobless growth in transition economies. Post-Communist Econ. 2016, 28, 520–536. [Google Scholar] [CrossRef]
- Zhou, Y.; Kong, Y.; Sha, J.; Wang, H. The role of industrial structure upgrades in eco-efficiency evolution: Spatial correlation and spillover effects. Sci. Total Environ. 2019, 687, 1327–1336. [Google Scholar] [CrossRef]
- Frizziero, L.; Donnici, G.; Liverani, A.; Alessandri, G.; Menozzi, G.C.; Varotti, E. Developing innovative crutch using IDES (industrial design structure) methodology. Appl. Sci. 2019, 9, 5032. [Google Scholar] [CrossRef]
- Gong, Q.; Lin, J.Y.; Zhang, Y. Financial structure, industrial structure, and economic development: A new structural economics perspective. Manch. Sch. 2019, 87, 183–204. [Google Scholar] [CrossRef]
- Ahmad, S.; Shakir, M.I.; Azam, A.; Mahmood, S.; Zhang, Q.; Ahmad, Z. The impact of CSR and green consumption on consumer satisfaction and loyalty: Moderating role of ethical beliefs. Environ. Sci. Pollut. Res. 2023, 30, 113820–113834. [Google Scholar] [CrossRef]
- Mahmood, S.; Iqbal, A.; El-kenawy, E.S.M.; Eid, M.M.; Alhussan, A.A.; Khafaga, D.S. The impact of green technology innovation, pro-environmental behavior and eco-design on green new product success: Examine the moderating role of green corporate image. Environ. Res. Commun. 2025, 7, 015028. [Google Scholar] [CrossRef]
- Manaf, N.A.; Abbas, A. Economic and environmental sustainability of low-carbon power generation: Relevancy in the malaysia green technology master plan (GTMP). J. Chem. Technol. Biotechnol. 2019, 94, 1425–1432. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Newell, P.; Carley, S.; Fanzo, J. Equity, technological innovation and sustainable behaviour in a low-carbon future. Nat. Hum. Behav. 2022, 6, 326–337. [Google Scholar] [CrossRef]
Dimensions of Selection | Tech-Finance Policies | Tech-Finance | Comparing and Selecting Results |
---|---|---|---|
Purpose attribute | Public externalities | Profit-driven | Balance of dual objectives: Tech-finance policies |
Direction of technological innovation | Social welfare | Corporate interest | Environmentally friendly possibilities: Tech-finance policies |
Current research attention | Less | More | Possible research frontiers: Tech-finance policies |
Categories | Definitions | Notes | Calculations |
---|---|---|---|
Dependent variable | Urban carbon emissions | Ce | Ln (per capita CO2 emissions) |
Independent variable | Policy-time interaction term | Did | Dummy variable (1 or 0) |
Mechanism variables | Technological innovation | Tec | Number of patent grants per 10,000 people |
Industrial structure upgrading | Uis | Theil index and entropy weight method | |
Control variables | Urban economic development | Pgdp | Ln (per capita regional GDP) |
Fiscal pressure | Gov | Government general budget expenditure/revenue | |
Trade openness | Fil | Total foreign trade volume/regional GDP | |
Industrialization degree | Ind | Secondary industry output/regional GDP | |
Transportation development | Tra | Ln (regional highway mileage) | |
Education | Edu | Education expenditure/general budget expenditure |
Variables | Mean | Standard Deviation | Minimum | Median | Maximum |
---|---|---|---|---|---|
Ce | 10.9714 | 0.9162 | 8.1080 | 11.0217 | 14.1310 |
Did | 0.1099 | 0.3134 | 0.0000 | 0.0000 | 1.0000 |
Tec | 0.6491 | 1.7160 | 0.0054 | 0.7339 | 30.7090 |
Uis | 0.4983 | 0.1812 | 0.2561 | 0.4634 | 1.8216 |
Pgdp | 10.5135 | 0.7368 | 8.1493 | 10.5617 | 12.4639 |
Gov | 2.9041 | 1.9356 | 0.6490 | 2.3277 | 18.4008 |
Fil | 0.2225 | 0.4082 | 0.0031 | 0.8971 | 2.9230 |
Ind | 0.4618 | 0.1129 | 0.1070 | 0.4652 | 0.8588 |
Tra | 9.5485 | 0.7571 | 6.8459 | 9.5366 | 12.1317 |
Edu | 0.1787 | 0.0437 | 0.0202 | 0.1774 | 0.5916 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Did | −0.1292 *** | −0.1199 *** | −0.0978 *** | −0.0850 *** |
(−8.8861) | (−8.5427) | (−7.2090) | (−6.5066) | |
Pgdp | −0.1109 *** | −0.0863 *** | −0.0927 *** | |
(−6.3841) | (−4.3008) | (−4.7003) | ||
Gov | 0.0202 *** | 0.0185 *** | 0.0124 *** | |
(4.4087) | (4.0816) | (2.6654) | ||
Fil | −1.8388 *** | −1.3695 *** | ||
(−5.1582) | (−4.2722) | |||
Ind | 0.2023 *** | 0.1920 *** | ||
(2.7736) | (2.6330) | |||
Tra | −0.1451 *** | |||
(−5.2187) | ||||
Edu | −0.6400 *** | |||
(−3.9576) | ||||
Constant | 10.9860 *** | 9.7604 *** | 9.9562 *** | 11.4032 *** |
(92.4377) | (52.0251) | (50.1880) | (37.3370) | |
Control variables | Uncontrolled | Part. controlled | Part. controlled | Fully controlled |
City-fixed | Y | Y | Y | Y |
Time-fixed | Y | Y | Y | Y |
R2 | 0.6760 | 0.7369 | 0.7692 | 0.7801 |
N | 5434 | 5434 | 5434 | 5434 |
Variables | (1-a) | (1-b) | (2) | (3) | (4) |
---|---|---|---|---|---|
PSM—DID | Alternative Model | Variable Substitution | Sample Redefinition | ||
Neighbor Matching | Kernel Matching | ||||
Did | −0.0363 ** | −0.0851 *** | −0.0894 *** | −0.0497 *** | −0.0865 *** |
(−2.348) | (−6.507) | (−5.874) | (−4.438) | (−6.198) | |
Control variables | Y | Y | Y | Y | Y |
Constant | 11.7643 *** | 11.4028 *** | 11.2769 *** | 16.1940 *** | 11.4439 *** |
(24.455) | (37.333) | (36.469) | (55.196) | (36.822) | |
City-fixed | Y | Y | Y | Y | Y |
Time-fixed | Y | Y | Y | Y | Y |
R2 | 0.6851 | 0.5558 | 0.6382 | 0.7427 | 0.7770 |
Variables | Geographic Location | Economic Scale | Resource Endowments | |||
---|---|---|---|---|---|---|
Eastern | Central and Western | Large | Small | Resource-Based | Non-Resource-Based | |
Did | −0.0954 *** | −0.0523 | −0.0777 *** | −0.0108 | −0.0381 * | −0.1126 *** |
(−5.7360) | (−1.3256) | (−5.5264) | (−0.2772) | (−1.9038) | (−7.1241) | |
Control variables | Y | Y | Y | Y | Y | Y |
Constant | 11.6440 *** | 11.5389 *** | 12.7587 *** | 11.2581 *** | 12.4237 *** | 10.8084 *** |
(22.4626) | (14.8645) | (34.0583) | (23.0666) | (31.3039) | (22.7681) | |
City-fixed | Y | Y | Y | Y | Y | Y |
Time-fixed | Y | Y | Y | Y | Y | Y |
R2 | 0.6492 | 0.7227 | 0.7680 | 0.6749 | 0.7181 | 0.6662 |
Variables | Technological Effects | Structural Effects | ||
---|---|---|---|---|
Tec | Ce | Uis | Ce | |
Did | 0.3302 *** | −0.0807 *** | 0.0709 *** | −0.0741 *** |
(7.017) | (−6.246) | (5.917) | (−5.644) | |
Tec | −0.0131 *** | |||
(−2.903) | ||||
Uis | −0.1542 *** | |||
(−8.354) | ||||
Control variables | Y | Y | Y | Y |
City-fixed | Y | Y | Y | Y |
Time-fixed | Y | Y | Y | Y |
R2 | 0.686 | 0.664 | 0.632 | 0.623 |
Mechanisms | c | a | b | a × b | a × b (p-Value) | a × b (95% BootCI) | c′ | Effect Ratio (a × b)/c |
---|---|---|---|---|---|---|---|---|
Did ⇒ Tec ⇒ Ce | −0.085 *** | 0.330 *** | −0.013 *** | −0.004 | 0.031 ** | −0.122~−0.039 | −0.081 *** | 4.706% |
Did ⇒ Uis ⇒ Ce | −0.085 *** | 0.071 *** | −0.154 *** | −0.011 | 0.001 *** | −0.144~−0.013 | −0.074 *** | 12.941% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, J.; Bi, H.; Di, H.; Lin, J.; Zhao, X. Green Value from Technology Finance Policies Towards Sustainability: Evidence of a Quasi-Natural Experiment on Urban Carbon Reduction in China. Sustainability 2025, 17, 8437. https://doi.org/10.3390/su17188437
An J, Bi H, Di H, Lin J, Zhao X. Green Value from Technology Finance Policies Towards Sustainability: Evidence of a Quasi-Natural Experiment on Urban Carbon Reduction in China. Sustainability. 2025; 17(18):8437. https://doi.org/10.3390/su17188437
Chicago/Turabian StyleAn, Jiaji, Hongyuan Bi, He Di, Jingze Lin, and Xinran Zhao. 2025. "Green Value from Technology Finance Policies Towards Sustainability: Evidence of a Quasi-Natural Experiment on Urban Carbon Reduction in China" Sustainability 17, no. 18: 8437. https://doi.org/10.3390/su17188437
APA StyleAn, J., Bi, H., Di, H., Lin, J., & Zhao, X. (2025). Green Value from Technology Finance Policies Towards Sustainability: Evidence of a Quasi-Natural Experiment on Urban Carbon Reduction in China. Sustainability, 17(18), 8437. https://doi.org/10.3390/su17188437