Big Data Cooperative Assets for Sustainability: Aligning User Revenue Preferences with Sustainable Goals
Abstract
1. Introduction
2. Research Hypothesis
3. Research Design
3.1. Model Design
3.2. Data and Sample
3.3. Variables
3.3.1. Potential Value (PV) and Immediate Value (IV) of Big Data Cooperative Assets
3.3.2. Matching Users’ Short-Term Revenue Preferences (P) Versus Matching Long-Term Revenue Preferences (O)
3.3.3. Mediating Variables
3.3.4. Control Variables
3.4. Descriptive Statistics
4. Analysis of Experimental Results
4.1. Variance Inflation Factor Test
4.2. Basic Regression Results
4.3. Robustness Check
4.3.1. Alternative Measures of Enterprises’ Matching with Users’ Preferences
4.3.2. Alternative Measures of the Immediate Value and Potential Value of Big Data Cooperative Assets
4.3.3. Alternative Model
4.3.4. Alternative Sample Period
4.4. Endogeneity Test
4.5. Mediation Effect Test
4.6. Heterogeneity Analysis
4.6.1. Heterogeneity Analysis of Construction and Non-Construction Industries
4.6.2. Heterogeneity Analysis Across Segments of the Construction Industry
4.6.3. Heterogeneity Analysis of Real Estate and Non-Real-Estate Firms in the Construction Industry
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Sun, H.; Li, D.; Song, J.; Ding, R. Effects of digital technology adoption on sustainability performance in construction projects: The mediating role of stakeholder collaboration. J. Manag. Eng. 2022, 38, 04022016. [Google Scholar] [CrossRef]
- Bekkerman, R.; Cohen, M.C.; Kung, E.; Maiden, J.; Proserpio, D. The effect of short-term rentals on residential investment. Mark. Sci. 2023, 42, 819–834. [Google Scholar] [CrossRef]
- Ren, S.; Fong, P.S.; Zhang, Y. Enriching Value of Big Data Cooperative Assets from a Time-Horizon Perspective. Sustainability 2024, 16, 10961. [Google Scholar] [CrossRef]
- Klievink, B.; Neuroni, A.; Fraefel, M.; Zuiderwijk, A. Digital strategies in action: A comparative analysis of national data infrastructure development. In Proceedings of the 18th Annual International Conference on Digital Government Research, Staten Island, NY, USA, 7–9 June 2017; pp. 129–138. [Google Scholar]
- Jabbour, C.; Rey-Valette, H.; Maurel, P.; Salles, J.-M. Spatial data infrastructure management: A two-sided market approach for strategic reflections. Int. J. Inf. Manag. 2019, 45, 69–82. [Google Scholar] [CrossRef]
- Wu, W.; Wang, S.; Jiang, X.; Zhou, J. Regional digital infrastructure, enterprise digital transformation and entrepreneurial orientation: Empirical evidence based on the broadband China strategy. Inf. Process. Manag. 2023, 60, 103419. [Google Scholar] [CrossRef]
- Kaplan, A.; Haenlein, M. Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Bus. Horiz. 2020, 63, 37–50. [Google Scholar] [CrossRef]
- Kopalle, P.K.; Kumar, V.; Subramaniam, M. How legacy firms can embrace the digital ecosystem via digital customer orientation. J. Acad. Mark. Sci. 2020, 48, 114–131. [Google Scholar] [CrossRef]
- Meyer, D.; Dunphy, S. The role of knowledge-based psychological climates in human resource management systems. Manag. Decis. 2016, 54, 1222–1246. [Google Scholar] [CrossRef]
- van Zanten, B.T.; Zasada, I.; Koetse, M.J.; Ungaro, F.; Häfner, K.; Verburg, P.H. A comparative approach to assess the contribution of landscape features to aesthetic and recreational values in agricultural landscapes. Ecosyst. Serv. 2016, 17, 87–98. [Google Scholar] [CrossRef]
- Ghasemaghaei, M.; Calic, G. Assessing the impact of big data on firm innovation performance: Big data is not always better data. J. Bus. Res. 2020, 108, 147–162. [Google Scholar] [CrossRef]
- Bradlow, E.T.; Gangwar, M.; Kopalle, P.; Voleti, S. The role of big data and predictive analytics in retailing. J. Retail. 2017, 93, 79–95. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, D. Healthcare wearable devices: An analysis of key factors for continuous use intention. Serv. Bus. 2020, 14, 503–531. [Google Scholar] [CrossRef]
- Sivarajah, U.; Irani, Z.; Gupta, S.; Mahroof, K. Role of big data and social media analytics for business to business sustainability: A participatory web context. Ind. Mark. Manag. 2020, 86, 163–179. [Google Scholar] [CrossRef]
- Günther, W.A.; Mehrizi, M.H.R.; Huysman, M.; Feldberg, F. Debating big data: A literature review on realizing value from big data. J. Strateg. Inf. Syst. 2017, 26, 191–209. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; Wang, F.-K.; He, W.; Tian, Z. How online reviews affect purchase intention: A new model based on the stimulus-organism-response (S-O-R) framework. Aslib J. Inf. Manag. 2020, 72, 463–488. [Google Scholar] [CrossRef]
- Roh, T.; Lee, K.; Yang, J.Y. How do intellectual property rights and government support drive a firm’s green innovation? The mediating role of open innovation. J. Clean. Prod. 2021, 317, 128422. [Google Scholar] [CrossRef]
- Bogers, M.; Hadar, R.; Bilberg, A. Additive manufacturing for consumer-centric business models: Implications for supply chains in consumer goods manufacturing. Technol. Forecast. Soc. Change 2016, 102, 225–239. [Google Scholar] [CrossRef]
- Testa, F.; Iovino, R.; Iraldo, F. The circular economy and consumer behaviour: The mediating role of information seeking in buying circular packaging. Bus. Strategy Environ. 2020, 29, 3435–3448. [Google Scholar] [CrossRef]
- Zahoor, N.; Al-Tabbaa, O.; Khan, Z.; Wood, G. Collaboration and internationalization of SMEs: Insights and recommendations from a systematic review. Int. J. Manag. Rev. 2020, 22, 427–456. [Google Scholar] [CrossRef]
- Ahlstrom, D.; Wang, L.C. Temporal strategies and firms’ speedy responses to COVID-19. J. Manag. Stud. 2021, 58, 592–596. [Google Scholar] [CrossRef]
- Ben-Oz, C.; Greve, H.R. Short-and long-term performance feedback and absorptive capacity. J. Manag. 2015, 41, 1827–1853. [Google Scholar] [CrossRef]
- Lin, X.; Germain, R. Organizational structure, context, customer orientation, and performance: Lessons from Chinese state-owned enterprises. Strateg. Manag. J. 2003, 24, 1131–1151. [Google Scholar] [CrossRef]
- Sarwar, H.; Aftab, J.; Ishaq, M.I.; Atif, M. Achieving business competitiveness through corporate social responsibility and dynamic capabilities: An empirical evidence from emerging economy. J. Clean. Prod. 2023, 386, 135820. [Google Scholar] [CrossRef]
- Petri, I.; Rezgui, Y.; Ghoroghi, A.; Alzahrani, A. Digital twins for performance management in the built environment. J. Ind. Inf. Integr. 2023, 33, 100445. [Google Scholar] [CrossRef]
- Chauhan, V.; Joshi, R.; Choudhary, V. Understanding intention to adopt telematics-based automobile insurance in an emerging economy: A mixed-method approach. J. Financ. Serv. Mark. 2024, 29, 1017–1036. [Google Scholar] [CrossRef]
- Huang, X. The roles of competition on innovation efficiency and firm performance: Evidence from the Chinese manufacturing industry. Eur. Res. Manag. Bus. Econ. 2023, 29, 100201. [Google Scholar] [CrossRef]
- Huang, X.; Yang, F.; Zheng, J.; Feng, C.; Zhang, L. Personalized human resource management via HR analytics and artificial intelligence: Theory and implications. Asia Pac. Manag. Rev. 2023, 28, 598–610. [Google Scholar] [CrossRef]
- Widajanti, E.; Ratnawati, T. Information technology infrastructure optimization for achieving innovation-based company performance. Int. J. Bus. Econ. Law 2020, 22, 180–187. [Google Scholar]
- Park, C.S.; Kaye, B.K. The tweet goes on: Interconnection of Twitter opinion leadership, network size, and civic engagement. Comput. Hum. Behav. 2017, 69, 174–180. [Google Scholar] [CrossRef]
- Pan, H.; Zhou, H. Study on convolutional neural network and its application in data mining and sales forecasting for E-commerce. Electron. Commer. Res. 2020, 20, 297–320. [Google Scholar] [CrossRef]
- McNamara, A.J.; Sepasgozar, S.M. Intelligent contract adoption in the construction industry: Concept development. Autom. Constr. 2021, 122, 103452. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Skibniewski, M.; Wu, Z.; Wang, R.; Le, Y. Information and communication technology applications in architecture, engineering, and construction organizations: A 15-year review. J. Manag. Eng. 2015, 31, A4014010. [Google Scholar] [CrossRef]
- Bao, Z.; Laovisutthichai, V.; Tan, T.; Wang, Q.; Lu, W. Design for manufacture and assembly (DfMA) enablers for offsite interior design and construction. Build. Res. Inf. 2022, 50, 325–338. [Google Scholar] [CrossRef]
- Li, Y.; Ren, S. Building Decorative Materials; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Riisberg, V.; Munch, A.V. Decoration and Durability: Ornaments and their “appropriateness” from fashion and design to architecture. Artifact J. Des. Pract. 2014, 3, 5.1–5.13. [Google Scholar]
- Brettel, M.; Friederichsen, N.; Keller, M.; Rosenberg, M. How virtualization, decentralization and network building change the manufacturing landscape: An industry 4.0 perspective. FormaMente 2017, 12, 47. [Google Scholar]
- Wind, J.; Rangaswamy, A. Customerization: The next revolution in mass customization. J. Interact. Mark. 2001, 15, 13–32. [Google Scholar] [CrossRef]
- Torfing, J.; Sørensen, E.; Røiseland, A. Transforming the public sector into an arena for co-creation: Barriers, drivers, benefits, and ways forward. Adm. Soc. 2019, 51, 795–825. [Google Scholar] [CrossRef]
- Nardelli, G.; Broumels, M. Managing innovation processes through value co-creation: A process case from business-to-business service practise. Int. J. Innov. Manag. 2018, 22, 1850030. [Google Scholar] [CrossRef]
- Popescul, D.; Murariu, L.; Radu, L.-D.; Georgescu, M.-R. Digital co-creation in socially sustainable smart city projects: Lessons from the European Union and Canada. IEEE Access 2024, 12, 71088–71108. [Google Scholar] [CrossRef]
- Zheng, M.; Li, T.; Ye, J. The confluence of AI and big data analytics in Industry 4.0: Fostering sustainable strategic development. J. Knowl. Econ. 2025, 16, 5479–5515. [Google Scholar]
- Singh, R.K.; Mathiyazhagan, K.; Scuotto, V.; Pironti, M. Green open innovation and circular economy: Investigating the role of big data management and sustainable supply chain. IEEE Trans. Eng. Manag. 2024, 71, 8417–8429. [Google Scholar] [CrossRef]
Variable | Definition | Symbol |
---|---|---|
Explanatory variable | Firm matches users’ short-term revenue preferences | |
Firm matches users’ long-term revenue preferences | ||
Explained variable | Immediate value of big data cooperative assets | |
Potential value of big data cooperative assets | ||
Control variable | Firm size | |
Liability-to-asset ratio | ||
Net profit margin on total assets | ||
Growth rate of revenue | ||
Dummy variable for loss | ||
Dummy variable for state-owned enterprises | ||
Number of years listed | ||
Years since incorporation | ||
Mediation variable | Data link mechanism | |
Data insight mechanism | ||
) | Digital enablement related to immediate value | |
Digital infrastructure related to immediate value | ||
Digital applications related to immediate value | ||
) | Digital enablement related to potential value | |
Digital infrastructure related to potential value | ||
Digital applications related to potential value |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
VARIABLES | N | Mean | Std. Dev. | Min. | Max. |
P | 53,630 | 0.164 | 0.370 | 0 | 1 |
O | 55,975 | 0.2279 | 0.4195 | 0 | 1 |
F1 | 53,630 | 1.128 | 9.124 | 0 | 508 |
F2 | 55,975 | 0.2198 | 2.9384 | 0 | 187 |
T1 | 53,630 | 0.134 | 0.982 | 0 | 35 |
T2 | 55,975 | 0.0993 | 0.7980 | 0 | 41 |
A1 | 53,630 | 0.451 | 3.745 | 0 | 306 |
A2 | 55,975 | 0.6034 | 3.1045 | 0 | 135 |
M1 | 53,630 | 0.645 | 4.261 | 0 | 229.8 |
M2 | 55,975 | 0.2543 | 1.5484 | 0 | 84.15 |
IV | 53,630 | 1.695 | 1.656 | 0 | 5.908 |
PV | 55,975 | 1.4114 | 1.5295 | 0 | 8.8406 |
IN | 53,630 | 0.634 | 0.482 | 0 | 1 |
Size | 53,630 | 22.00 | 1.432 | 19.27 | 27.00 |
Growth | 53,630 | 0.185 | 0.468 | −0.638 | 3.081 |
FirmAge | 53,630 | 2.766 | 0.448 | 1.386 | 3.526 |
RD | 53,630 | 0.0153 | 0.0193 | 0 | 0.0963 |
Lev | 53,630 | 0.446 | 0.220 | 0.0526 | 1.017 |
ROA | 53,630 | 0.0378 | 0.0707 | −0.276 | 0.228 |
Loss | 53,630 | 0.120 | 0.325 | 0 | 1 |
SOE | 53,630 | 0.354 | 0.478 | 0 | 1 |
ListAge | 53,630 | 1.976 | 0.917 | 0 | 3.332 |
Immediate Value of Big Data Cooperative Assets | Potential Value of Big Data Cooperative Assets | ||||
---|---|---|---|---|---|
Variable | VIF | Variable | VIF | Variable | VIF |
ROA | 2.30 | 0.435083 | ListAge | 1.64 | 0.435083 |
Loss | 1.92 | 0.522022 | FirmAge | 1.47 | 0.522022 |
ListAge | 1.73 | 0.578186 | SOE | 1.26 | 0.578186 |
Lev | 1.63 | 0.612035 | Size | 1.26 | 0.612035 |
FirmAge | 1.51 | 0.661632 | O | 1.15 | 0.661632 |
Size | 1.44 | 0.694943 | RD | 1.15 | 0.694943 |
SOE | 1.26 | 0.792286 | Loss | 1.07 | 0.792286 |
RD | 1.24 | 0.804298 | ROA | 1.03 | 0.804298 |
P | 1.11 | 0.899201 | Lev | 1.01 | 0.899201 |
Growth | 1.09 | 0.919627 | Growth | 1.00 | 0.919627 |
Mean VIF | 1.52 | Mean VIF | 1.20 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
IV | IV | PV | PV | |
P | 0.258 *** | 0.181 *** | ||
(7.428) | (10.002) | |||
O | 0.229 *** | 0.109 *** | ||
(6.783) | (6.598) | |||
Size | 0.291 *** | 0.285 *** | ||
(23.400) | (19.836) | |||
Growth | −0.000 *** | −0.0000 *** | ||
(−2.745) | (−2.247) | |||
FirmAge | 0.467 *** | 0.243 *** | ||
(10.560) | (5.846) | |||
RD | 11.127 *** | 15.967 *** | ||
(18.289) | (21.708) | |||
Lev | 0.005 *** | 0.005 *** | ||
(3.573) | (3.110) | |||
ROA | 0.004 | 0.002 | ||
(0.213) | (0.128) | |||
Loss | −0.059 *** | −0.043 *** | ||
(−3.969) | (−3.244) | |||
Soe | 0.128 *** | 0.114 *** | ||
(6.467) | (6.324) | |||
ListAge | 0.038 *** | 0.056 ** | ||
(2.665) | (3.847) | |||
Constant | 1.631 *** | −6.308 *** | 1.368 *** | −5.650 *** |
(294.437) | (−21.673) | (190.981) | (−17.221) | |
N | 55,504 | 53,224 | 55,504 | 55,504 |
r2 | 0.720 | 0.738 | 0.710 | 0.735 |
Firm fixed effects | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
VARIABLES | IV | IV | PV | PV |
Size | 0.288 *** | 0.294 *** | 0.301 *** | 0.302 *** |
(14.366) | (14.612) | (14.588) | (14.597) | |
Growth | −0.000 *** | −0.000 *** | −0.000 *** | −0.000 *** |
(−3.485) | (−3.525) | (−3.579) | (−3.612) | |
FirmAge | 0.468 *** | 0.461 *** | 0.380 *** | 0.398 *** |
(5.189) | (5.114) | (4.438) | (4.414) | |
RD | 11.317 *** | 11.343 *** | 16.168 *** | 16.143 *** |
(10.70) | (10.280) | (12.923) | (12.913) | |
Lev | 0.005 *** | 0.005 *** | 0.005 *** | 0.005 *** |
(4.052) | (4.047) | (3.417) | (3.420) | |
ROA | 0.004 | 0.004 | 0.003 | 0.003 |
(0.225) | (0.222) | (0.148) | (0.153) | |
Loss | −0.060 *** | −0.061 *** | −0.043 *** | −0.043 *** |
(−3.508) | (−3.597) | (−2.690) | (−2.703) | |
SOE | 0.130 *** | 0.129 *** | 0.133 *** | 0.133 *** |
(3.319) | (3.283) | (3.677) | (3.678) | |
ListAge | 0.042 * | 0.044 * | 0.044 * | 0.044 * |
(1.787) | (1.875) | (1.950) | (1.954) | |
DI | 0.077 *** | |||
(4.48) | ||||
DP | 0.036 * | |||
(2.085) | ||||
iscioset | 0.375 *** | |||
(2.842) | ||||
iscioset1 | 0.216 ** | |||
(2.17) | ||||
Constant | −6.303 *** | −6.341 *** | −6.667 *** | −6.711 *** |
(−13.111) | (−13.188) | (−13.799) | (−13.897) | |
N | 53,224 | 53,224 | 53,224 | 53,224 |
r2 | 0.738 | 0.738 | 0.736 | 0.736 |
Firm fixed effects | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
VARIABLES | IV1 | IV2 | PV1 | PV2 |
P | 1.214 *** | 12.508 *** | ||
(3.316) | (6.225) | |||
O | 16.638 *** | 8.054 *** | ||
(6.107) | (6.458) | |||
Size | 1.912 *** | 10.901 *** | 7.835 *** | 5.538 *** |
(12.860) | (15.133) | (6.973) | (10.315) | |
Growth | 0.000 | 0.000 | 0.000 ** | 0.000 |
(−2.348) | (0.375) | (2.146) | (1.066) | |
FirmAge | −0.148 | 48.114 *** | 39.998 *** | 18.236 *** |
(−0.174) | (6.656) | (5.162) | (6.523) | |
RD | 104.439 *** | 532.906 *** | 840.263 *** | 505.989 *** |
(11.381) | (13.138) | (7.963) | (8.796) | |
Lev | 0.035 ** | 0.187 *** | 0.251 | 0.101 ** |
(2.447) | (2.703) | (1.510) | (2.494) | |
ROA | 0.023 | −0.114 | −0.438 | −0.115 |
(0.223) | (−0.172) | (−0.631) | (−0.337) | |
Loss | −0.347 * | −3.005 *** | −0.781 | −1.518 ** |
(−1.896) | (−3.151) | (−0.546) | (−2.392) | |
SOE | 0.313 | −1.662 | −11.855 *** | −5.406 *** |
(0.861) | (−0.678) | (−2.651) | (−3.148) | |
ListAge | −0.169 | −8.175 *** | −37.639 *** | −7.204 *** |
(−0.660) | (−6.812) | (−14.748) | (−8.273) | |
Constant | −38.503 *** | −343.229 *** | −188.673 *** | −149.742 *** |
(−10.645) | (−14.752) | (−7.245) | (−11.825) | |
N | 53,224 | 53,224 | 55,504 | 55,504 |
r2 | 0.603 | 0.539 | 0.383 | 0.501 |
Firm fixed effects | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | IV | IV | PV | PV |
P | 1.346 *** | 0.123 *** | ||
(55.909) | (5.447) | |||
O | 1.410 *** | 0.268 *** | ||
(66.524) | (12.85) | |||
Size | 0.562 *** | 0.145 *** | ||
(54.451) | (18.20) | |||
Growth | −0.001 ** | −0.001 ** | ||
(−2.527) | (−1.39) | |||
FirmAge | 1.278 *** | 1.337 *** | ||
(38.101) | (39.15) | |||
RD | 13.081 *** | 18.31 *** | ||
(25.008) | (36.81) | |||
Lev | −0.007 | −0.033 *** | ||
(−0.745) | (−3.15) | |||
ROA | 0.029 | −0.025 | ||
(0.699) | (−0.62) | |||
Loss | −0.126 *** | −0.223 *** | ||
(−5.796) | (−10.60) | |||
SOE | −0.096 *** | 0.140 *** | ||
(−3.673) | (5.42) | |||
ListAge | −0.118 *** | 0.118 *** | ||
(−7.186) | (7.56) | |||
Constant | 0.985 *** | −14.612 *** | 0.674 *** | −6.244 *** |
(34.794) | (−70.108) | (25.684) | (−40.09) | |
sigma_u | 1.861 *** | 1.845 *** | 1.707 *** | 1.974 *** |
(82.323) | (82.011) | (82.708) | (70.66) | |
sigma_e | 1.488 *** | 1.222 *** | 1.387 *** | 1.153 *** |
(235.586) | (234.257) | (233.187) | (229.01) | |
N | 55,975 | 53,630 | 55,975 | 55,975 |
(2) | (2) | |
---|---|---|
VARIABLES | IV | PV |
P | 0.177 *** | |
(5.300) | ||
O | 0.019 *** | |
(2.625) | ||
Size | 0.279 *** | 0.292 *** |
(14.026) | (14.180) | |
Growth | −0.000 *** | −0.000 *** |
(−3.616) | (−4.063) | |
FirmAge | 0.468 *** | 0.403 *** |
(5.205) | (4.523) | |
RD | 11.452 *** | 16.100 *** |
(9.730) | (12.433) | |
Lev | 0.005 *** | 0.005 *** |
(4.194) | (3.205) | |
ROA | 0.002 | 0.002 |
(0.116) | (0.142) | |
Loss | −0.057 *** | −0.036 ** |
(−3.303) | (−2.196) | |
SOE | 0.126 *** | 0.134 *** |
(3.176) | (3.736) | |
ListAge | 0.043 * | 0.047 ** |
(1.826) | (2.075) | |
Constant | −6.088 *** | −6.514 *** |
(−12.852) | (−13.551) | |
N | 48,072 | 49,118 |
r2 | 0.733 | 0.731 |
Firm fixed effects | Yes | Yes |
Year fixed effects | Yes | Yes |
(2) | (2) | |
---|---|---|
IV | PV | |
P | 0.172 *** | |
(9.353) | ||
O | 0.0905 *** | |
(5.355) | ||
Size | 0.298 *** | 0.306 *** |
(21.980) | (37.87) | |
Growth | −0.000 *** | −0.000 *** |
(−2.871) | (−2.25) | |
FirmAge | 0.449 *** | 0.226 *** |
(9.860) | (6.26) | |
RD | 11.845 *** | 16.79 *** |
(22.875) | (19.80) | |
Lev | 0.017 *** | 0.005 *** |
(4.170) | (3.44) | |
ROA | 0.014 * | −0.003 |
(1.678) | (−0.14) | |
Loss | −0.055 *** | −0.032 ** |
(−3.580) | (−2.37) | |
SOE | 0.128 *** | 0.114 *** |
(6.141) | (6.22) | |
ListAge | 0.032 ** | 0.056 *** |
(2.119) | (4.12) | |
Constant | −6.401 *** | −6.038 *** |
(−20.293) | (−33.74) | |
N | 49,902 | 52,198 |
r2 | 0.740 | 0.731 |
Firm fixed effects | Yes | Yes |
Year fixed effects | Yes | Yes |
(1) | (2) | (2) | (2) | |
---|---|---|---|---|
M1 | IV | M2 | PV | |
P | 0.305 *** | 0.178 *** | ||
(5.515) | (9.861) | |||
M1 | 0.008 *** | |||
(5.949) | ||||
O | 0.462 *** | 0.094 *** | ||
(21.85) | (5.65) | |||
M2 | 0.0325 *** | |||
(6.41) | ||||
Size | 0.115 *** | 0.290 *** | 0.0677 *** | 0.283 *** |
(9.044) | (23.377) | (8.18) | (19.78) | |
Growth | 0.000 *** | −0.000 *** | −0.000 *** | −0.000 *** |
(5.219) | (−2.766) | (2.74) | (−2.28) | |
FirmAge | −0.113 | 0.468 *** | −0.0263 | 0.244 *** |
(−1.207) | (10.584) | (−0.66) | (5.88) | |
RD | 5.421 *** | 11.081 *** | 3.595 *** | 15.85 *** |
(3.310) | (18.258) | (4.85) | (21.64) | |
Lev | 0.002 ** | 0.005 *** | 0.001 *** | 0.005 *** |
(2.170) | (3.580) | (2.50) | (3.11) | |
ROA | −0.003 | 0.004 | 0.000 | 0.002 |
(−0.391) | (0.215) | (0.02) | (0.13) | |
Loss | 0.087 ** | −0.060 *** | 0.002 | −0.043 *** |
(2.122) | (−4.020) | (0.16) | (−3.25) | |
SOE | 0.008 | 0.128 *** | −0.063 *** | 0.116 *** |
(0.193) | (6.469) | (−3.39) | (6.44) | |
ListAge | 0.191 *** | 0.037 ** | −0.016 | 0.056 *** |
(3.821) | (2.554) | (−0.98) | (3.89) | |
Constant | −2.115 *** | −6.290 *** | −1.204 *** | −5.611 *** |
(−5.867) | (−21.656) | (−6.28) | (−17.19) | |
N | 53,224 | 53,224 | 55,504 | 55,504 |
r2 | 0.660 | 0.738 | 0.671 | 0.736 |
Firm fixed effects | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Construction | Non-Construction | Construction | Non-Construction | |
VARIABLES | IV | IV | PV | PV |
P | 0.316 *** | 0.161 *** | ||
(3.375) | (8.741) | |||
O | 0.485 *** | 0.095 *** | ||
(7.028) | (5.601) | |||
Size | 0.304 *** | 0.322 *** | 0.179 *** | 0.330 *** |
(10.658) | (20.861) | (6.692) | (17.635) | |
Growth | −0.0000 | −0.0000 | 0.000 | −0.0000 |
(−1.271) | (−3.375) | (0.180) | (−2.474) | |
FirmAge | 0.528 *** | 0.368 *** | 0.387 ** | 0.168 *** |
(2.829) | (7.945) | (2.422) | (3.676) | |
RD | 16.140 * | 10.140 *** | 14.367 | 15.110 *** |
(1.676) | (17.640) | (1.633) | (22.227) | |
Lev | 0.031 *** | 0.005 *** | 0.014 *** | 0.006 *** |
(3.631) | (3.574) | (2.637) | (3.100) | |
ROA | 0.175 | 0.003 | 0.146 | 0.002 |
(1.506) | (0.149) | (1.526) | (0.076) | |
Loss | −0.079 | −0.059 *** | −0.074 | −0.040 *** |
(−1.341) | (−3.813) | (−1.481) | (−2.905) | |
SOE | 0.042 | 0.114 *** | −0.039 | 0.108 *** |
(0.551) | (5.498) | (−0.595) | (5.713) | |
ListAge | 0.320 *** | 0.022 | 0.206 *** | 0.043 *** |
(4.404) | (1.466) | (3.096) | (2.782) | |
Constant | −8.141 *** | −6.609 *** | −4.606 *** | −6.326 *** |
(−10.327) | (−18.950) | (−6.948) | (−15.108) | |
N | 3475 | 49,741 | 3692 | 51,804 |
r2 | 0.801 | 0.739 | 0.782 | 0.738 |
Firm fixed effects | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Building Decoration | Non-Building Decoration | Building Decoration | Non-Building Decoration | |
IV | IV | PV | PV | |
P | 0.516 * | 0.443 *** | ||
(1.819) | (4.350) | |||
O | 0.241 | 0.475 *** | ||
(1.177) | (6.570) | |||
Size | 0.748 *** | 0.289 *** | 0.898 *** | 0.169 *** |
(3.51) | (10.166) | (5.406) | (6.346) | |
Growth | 0.029 (0.74) | −0.000 (−1.391) | 0.059 (1.533) | −0.000 (−0.132) |
FirmAge | −0.810 (−1.48) | 0.886 *** (4.528) | −0.952 * (−1.96) | 0.610 *** (3.687) |
RD | 5.067 | 12.292 | 1.575 | 10.694 |
(0.73) | (1.451) | (0.21) | (1.415) | |
Lev | −2.551 *** | 0.031 *** | −2.702 *** | 0.014 *** |
(−4.53) | (3.583) | (−5.29) | (2.702) | |
ROA | −0.0904 | 0.069 | 0.209 | 0.041 |
(−0.09) | (0.674) | (0.21) | (0.541) | |
Loss | 0.236 | −0.105 * | 0.131 | −0.080 |
(1.02) | (−1.726) | (0.62) | (−1.566) | |
SOE | 0.597 ** | −0.011 | 0.0676 | −0.053 |
(2.11) | (−0.139) | (0.21) | (−0.811) | |
ListAge | 0.642 *** | 0.083 | 0.393 ** | −0.022 |
(3.41) | (1.081) | (2.16) | (−0.333) | |
_Cons | −11.28 ** | −8.404 *** | −13.48 *** | −4.534 *** |
(−2.21) | (−10.356) | (−4.21) | (−6.554) | |
N | 324 | 3146 | 354 | 3334 |
r2 | 0.803 | 0.800 | 0.811 | 0.791 |
Firm fixed effects | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Real Estate in Construction | Non-Real-Estate in Construction | Real Estate in Construction | Non-Real-Estate in Construction | |
IV | IV | PV | PV | |
P | 0.696 *** | 0.306 ** | ||
(5.10) | (2.544) | |||
O | 0.270 *** | 0.535 *** | ||
(3.54) | (4.832) | |||
Size | 0.219 *** | 0.324 *** | 0.153 *** | 0.201 ** |
(7.51) | (3.566) | (5.60) | (2.576) | |
Growth | −0.000 | 0.014 | −0.000 *** | 0.016 |
(−1.49) | (0.582) | (−0.28) | (0.646) | |
FirmAge | 0.019 | 0.115 | 0.139 | 0.332 |
(0.09) | (0.501) | (0.98) | (1.456) | |
RD | 3.474 | 25.601 *** | 3.374 | 18.127 *** |
(1.32) | (5.464) | (1.16) | (4.003) | |
Lev | 0.021 *** | 0.021 | 0.0126 ** | 0.025 |
(2.95) | (0.575) | (2.57) | (0.656) | |
ROA | 0.044 | 0.018 | 0.0763 | 0.225 |
(0.44) | (0.035) | (0.94) | (0.431) | |
Loss | −0.040 | −0.174 | −0.0401 | −0.082 |
(−0.58) | (−1.456) | (−0.71) | (−0.789) | |
SOE | −0.053 | 0.154 | −0.137 ** | 0.043 |
(−0.65) | (0.976) | (−2.50) | (0.284) | |
ListAge | 0.026 | 0.157 | −0.0544 | −0.019 |
(0.27) | (1.542) | (−0.66) | (−0.201) | |
_Cons | −4.666 *** | −5.841 *** | −3.194 *** | −3.696 ** |
(−6.05) | (−2.756) | (−5.80) | (−2.130) | |
N | 2170 | 1302 | 2318 | 1371 |
r2 | 0.557 | 0.836 | 0.480 | 0.837 |
Firm fixed effects | Yes | Yes | Yes | Yes |
Year fixed effects | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bo, X.; Zhang, Y.; Fong, P.S.W. Big Data Cooperative Assets for Sustainability: Aligning User Revenue Preferences with Sustainable Goals. Sustainability 2025, 17, 8403. https://doi.org/10.3390/su17188403
Bo X, Zhang Y, Fong PSW. Big Data Cooperative Assets for Sustainability: Aligning User Revenue Preferences with Sustainable Goals. Sustainability. 2025; 17(18):8403. https://doi.org/10.3390/su17188403
Chicago/Turabian StyleBo, Xuze, Yi Zhang, and Patrick S.W. Fong. 2025. "Big Data Cooperative Assets for Sustainability: Aligning User Revenue Preferences with Sustainable Goals" Sustainability 17, no. 18: 8403. https://doi.org/10.3390/su17188403
APA StyleBo, X., Zhang, Y., & Fong, P. S. W. (2025). Big Data Cooperative Assets for Sustainability: Aligning User Revenue Preferences with Sustainable Goals. Sustainability, 17(18), 8403. https://doi.org/10.3390/su17188403