Spatial Patterns and Environmental Drivers of Leaf Litter Nutrients in Nitraria tangutorum and Nitraria sphaerocarpa in the Desert Region of Northwestern China
Abstract
1. Introduction
2. Methods
2.1. Study Area
2.2. Experimental Design and Sample Collection
2.3. Litter Sample Determination
2.4. Environmental Data Collection
2.5. Data Analysis
3. Results
3.1. Litter N-P-K Stoichiometry and the Scaling Relationships of Two Nitraria Species
3.2. Geographic and Climatic Patterns of Litter Stoichiometry of Two Nitraria Species
3.3. Effects of Geographic, Climatic, and Soil Variables on Litter Stoichiometry of Two Nitraria Species
3.4. Drivers of Litter N, P, and K Variations in Two Nitraria Species
4. Discussion
4.1. Stoichiometric Characteristics of Litter N, P, and K of Two Nitraria Species and Their Spatial Scale Effects
4.2. Variations in Litter Stoichiometry of Two Nitraria Species Along with Environmental Factors
4.3. Impacts of Environmental Factors on Litter Stoichiometry of Two Nitraria Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.Y.; Li, Z.T.; Xu, T.; Luo, A.R. Leaf litter decomposition characteristics and controlling factors across two contrasting forest types. J. Plant Ecol. 2022, 15, 1285–1301. [Google Scholar] [CrossRef]
- Miao, R.H.; Ma, J.; Liu, Y.Z.; Liu, Y.C.; Yang, Z.L.; Guo, M.X. Variability of aboveground litter inputs alters soil carbon and nitrogen in a coniferous–broadleaf mixed forest of central China. Forests 2019, 10, 188. [Google Scholar] [CrossRef]
- Qin, L.H.; Liu, Q.J.; Sun, Z.; Xu, Z.Z.; Siqing, B.L. Leaf litter decomposition rate of main tree species in broad-leaved Korean pine forest and its relationship with leaf traits. Acta Ecol. Sin. 2022, 42, 5894–5905. [Google Scholar] [CrossRef]
- Jia, B.R. Litter decomposition and its underlying mechanisms. Chin. J. Plant Ecol. 2019, 43, 648–657. [Google Scholar] [CrossRef]
- Liang, J.L.; Liu, J.; Jia, P.; Yang, T.T.; Zeng, Q.W.; Zhang, S.C.; Liao, B.; Shu, W.S.; Li, J.T. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 2020, 14, 1600–1613. [Google Scholar] [CrossRef]
- Killingbeck, K.T. Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology 1996, 77, 1716–1727. [Google Scholar] [CrossRef]
- Johnson, R.; Vishwakarma, K.; Hossen, M.S.; Kumar, V.; Shackira, A.M.; Puthur, J.T.; Abdi, G.; Sarra, M.; Hasanuzzaman, M. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiol. Bioch. 2022, 172, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Rawat, J.; Pandey, N.K.; Saxena, J. Role of potassium in plant photosynthesis, transport, growth and yield. In Role of Potassium in Abiotic Stress; Springer: Singapore, 2022; pp. 1–14. [Google Scholar]
- Güsewell, S.; Verhoeven, J.T.A. Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter. Plant Soil 2006, 287, 131–143. [Google Scholar] [CrossRef]
- Ge, J.L.; Xie, Z.Q. Leaf litter carbon, nitrogen, and phosphorus stoichiometric patterns as related to climatic factors and leaf habits across Chinese broad-leaved tree species. Plant Ecol. 2017, 218, 1063–1076. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C. Plant Litter. Decomposition, Humus Formation, Carbon Sequestration; Springer Nature: Cham, Switzerland, 2014. [Google Scholar]
- Sariyildiz, T.; Anderson, J.M. Interactions between litter quality, decomposition and soil fertility: A laboratory study. Soil Biol. Biochem. 2003, 35, 391–399. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, B.R.; An, S.S. Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China. Catena 2018, 166, 328–338. [Google Scholar] [CrossRef]
- Yuan, Z.Y. Global trends in senesced-leaf nitrogen and phosphorus. Glob. Ecol. Biogeogr. 2009, 18, 532–542. [Google Scholar] [CrossRef]
- Tang, S.S.; Yang, W.Q.; Wang, H.P.; Li, X. Stoichiometri characteristics and controlling factors of N and P in forest leaf toichiometri characteristics and controlling factors of N and P in forest leaf llitter of China. Chin. J. Appl. Environ. Biol. 2015, 21, 316–322. [Google Scholar]
- Kang, H.Z.; Xin, Z.; Berg, B.; Burgess, P.J.; Liu, Q.L.; Liu, Z.C.; Li, Z.H.; Liu, C.J. Global pattern of leaf litter nitrogen and phosphorus in woody plants. Ann. For. Sci. 2010, 67, 811. [Google Scholar] [CrossRef]
- Xie, Y.; Cao, Y.; Xie, Y. Global-scale latitudinal patterns of twelve mineral elements in leaf litter. Catena 2022, 208, 105743. [Google Scholar] [CrossRef]
- He, X.J.; Hou, E.Q.; Liu, Y.; Wen, D.Z. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. Sci. Rep. 2016, 6, 24261. [Google Scholar] [CrossRef]
- Shah, J.; Liu, W.F.; Ullah, S.; Duan, H.L.; Shen, F.F.; Liao, Y.C.; Huang, G.M.; Wu, J.P. Linkages among leaf nutrient concentration, resorption efficiency, litter decomposition and their stoichiometry to canopy nitrogen addition and understory removal in subtropical plantation. Ecol. Process. 2024, 13, 27. [Google Scholar] [CrossRef]
- Tang, L.Y.; Han, W.X.; Chen, Y.H.; Fang, J.Y. Resorption proficiency and efficiency of leaf nutrients in woody plants in eastern China. J. Plant Ecol. 2013, 6, 408–417. [Google Scholar] [CrossRef]
- Zou, Z.G.; Zhang, M.X.; Huang, X.Y.; Zhang, X.Y.; Li, S.B.; Zhou, L.L. Carbon, nitrogen and phosphorus release and their stoichiometric ratio change during decomposition of Cunninghamia lanceolata leaf litter at different temperatures. For. Res. 2024, 37, 52–62. [Google Scholar]
- Zhang, Y.; Xie, J.B.; Li, Y. Effects of increasing root carbon investment on the mortality and resprouting of Haloxylon ammodendron seedlings under drought. Plant Biol. 2016, 19, 191–200. [Google Scholar] [CrossRef]
- Chen, Y.M.; Shan, L.S.; Ma, J.; Wang, H.Y.; Xie, T.T.; Yang, J.; Li, M. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of desert plants in arid region of Northwest China. Acta Ecol. Sin. 2024, 44, 3648–3659. [Google Scholar]
- Wei, Y.J.; Guo, J.; Dang, X.H.; Xie, Y.H.; Wang, J.; Li, X.L.; Wu, H.M. Morphological characteristics and influencing mechanisms of Nitraria tangutorum nebkhas at different sandy land types in desert-oasis ecotone of Jilantai. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2023, 47, 172–180. [Google Scholar]
- Zhang, Q.; Yang, J.H.; Wang, W.; Ma, P.L.; Lu, G.Y.; Liu, X.Y.; Yu, H.P.; Fang, F. Climatic Warming and Humidification in the Arid Region of Northwest China: Multi-Scale Characteristics and Impacts on Ecological Vegetation. J. Meteorol. Res. 2021, 35, 113–127. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Silveira, M.; Reddy, K.; Comerford, N. Litter decomposition and soluble carbon, nitrogen, and phosphorus release in a forest ecosystem. Open J. Soil. Sci. 2011, 1, 86–96. [Google Scholar] [CrossRef]
- Heyduk, K.; Moreno-Villena, J.J.; Gilman, I.S.; Christin, P.A.; Edwards, E.J. The genetics of convergent evolution: Insights from plant photosynthesis. Nat. Rev. Genet. 2019, 20, 485–493. [Google Scholar] [CrossRef]
- Sackton, T.; Clark, N. Convergent evolution in the genomics era: New insights and directions. Philos. Trans. R. Soc. Lond. Proc. R. Soc. B 2019, 374, 20190102. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef]
- Zhao, Q.G.; Zhang, Y.H.; Wang, Y.B.; Han, G.D. Different responses of foliar nutrient resorption efficiency in two dominant species to grazing in the desert steppe. Sci. Rep. 2024, 14, 4090. [Google Scholar] [CrossRef]
- He, M.S.; Yan, Z.B.; Cui, X.Q.; Gong, Y.M.; Li, K.H.; Han, W.X. Scaling the leaf nutrient resorption efficiency: Nitrogen vs. phosphorus in global plants. Sci. Total Environ. 2020, 729, 138920. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Güsewell, S. N: P ratios in terrestrial plants: Variation and functional significance: Tansley review. New Phytol. 2004, 164, 243–266. [Google Scholar]
- Olde Venterink, H.; Wassen, M.J.; Verkroost, A.W.M.; Ruiter, P.C.D. Species richness–productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 2003, 84, 2191–2199. [Google Scholar]
- Niklas, K.; Owens, T.; Reich, P.; Cobb, E. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol. Lett. 2005, 8, 636–642. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J.; Wright, I.J.; Niklas, K.J.; Hedin, L.; Elser, J. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc. R. Soc. B 2010, 277, 877–883. [Google Scholar]
- Zhao, N.; Yu, G.R.; He, N.P.; Xia, F.C.; Wang, Q.F.; Wang, R.L.; Xu, Z.W.; Jia, Y.L. Invariant allometric scaling of nitrogen and phosphorus in leaves, stems, and fine roots of woody plants along an altitudinal gradient. J. Plant Res. 2016, 129, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, S.S.; Li, J.R.; Huang, D. The Utilization and Roles of Nitrogen in Plants. Forests 2024, 15, 1191. [Google Scholar] [CrossRef]
- Klausmeier, C.A.; Litchman, E.; Daufresne, T.; Levin, S. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 2004, 429, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Chen, L.Y.; Peng, Y.F.; Ding, J.Z.; Li, F.; Yang, G.B.; Kou, D.; Liu, L.; Fang, K.; Zhang, B.B.; et al. Linking microbial C:N:P stoichiometry to microbial community and abiotic factors along a 3500-km grassland transect on the Tibetan Plateau. Glob. Ecol. Biogeogr. 2016, 25, 1416–1427. [Google Scholar] [CrossRef]
- Du, B.; Ji, H.; Peng, C.; Liu, X.J.; Liu, C.J. Altitudinal patterns of leaf stoichiometry and nutrient resorption in Quercus variabilis in the Baotianman Mountains, China. Plant Soil 2017, 413, 193–202. [Google Scholar] [CrossRef]
- Hu, Y.K.; Zhang, Y.L.; Liu, G.F.; Pan, X.; Yang, X.J.; Li, W.B.; Dai, W.H.; Tang, S.L.; Xiao, T.; Chen, L.Y.; et al. Intraspecific N and P stoichiometry of Phragmites australis: Geographic patterns and variation among climatic regions. Sci. Rep. 2017, 7, 43018. [Google Scholar] [CrossRef]
- Zhang, J.K.; Yu, W.Y.; Wang, Y.; Huang, Z.Y.; Liu, G.F. Effects of climate, soil, and leaf traits on nutrient resorption efficiency and proficiency of different plant functional types across arid and semiarid regions of northwest China. BMC Plant Biol. 2024, 24, 1093. [Google Scholar] [CrossRef]
- Tian, D.; Yan, Z.B.; Fang, J.Y. Review on characteristics and main hypotheses of plant ecological stoichiometry. Chin. J. Plant Ecol. 2021, 45, 682–713. [Google Scholar] [CrossRef]
- Luo, Y.H.; Shen, Y.; Elrys, A.S.; Du, L.; Mahmood, M.; Zhang, J.T.; Ren, H.Y.; Zhang, J.B.; Li, N.; Tian, R.; et al. Drought and nitrogen deposition regulate plant nutrient resorption in a typical steppe. Agric. Ecosyst. Environ. 2024, 374, 109160. [Google Scholar] [CrossRef]
- Lü, X.T.; Han, X.G. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant Soil 2010, 327, 481–491. [Google Scholar]
- Ren, H.; Kang, J.; Yuan, Z.; Xu, Z.W. Responses of nutrient resorption to warming and nitrogen fertilization in contrasting wet and dry years in a desert grassland. Plant Soil 2018, 432, 65–73. [Google Scholar] [CrossRef]
- Sardans, J.; Rivas-Ubach, A.; Penuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry 2012, 111, 1–39. [Google Scholar]
- Gotelli, N.; Mouser, P.; Hudman, S.; Morales, S.; Ross, D.; Ellison, A. Geographic variation in nutrient availability, stoichiometry, and metal concentrations of plants and pore-water in ombrotrophic bogs in New England, USA. Wetlands 2008, 28, 827–840. [Google Scholar] [CrossRef]
- Ge, J.L.; Wang, Y.; Xu, W.T.; Xie, Z.Q. Latitudinal patterns and climatic drivers of leaf litter multiple nutrients in chinese broad-leaved tree species: Does leaf habit matter? Ecosystems 2017, 20, 1124–1136. [Google Scholar]
- Parton, W.J.; Silver, W.L.; Burke, I.C.; Grassens, L.; Harmon, M.E.; Currie, W.S.; King, J.Y.; Adair, E.; Brandt, L.; Hart, S.; et al. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 2007, 315, 361–364. [Google Scholar]
- Gong, X.S.; Xu, Z.Y.; Lu, W.; Tian, Y.Q.; Liu, Y.H.; Wang, Z.X.; Dai, C.; Zhao, J.H.; Li, Z.Q. Spatial patterns of leaf carbon, nitrogen, and phosphorus stoichiometry of aquatic macrophytes in the arid zone of northwestern China. Front. Plant Sci. 2018, 9, 1398. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.L.; Yang, J.L.; Xu, L.G.; Zhang, G.L. The spatial variations and driving factors of C, N, P stoichiometric characteristics of plant and soil in the terrestrial ecosystem. Sci. Total Environ. 2024, 951, 175543. [Google Scholar] [CrossRef]
- Xu, H.W.; Wang, M.G.; You, C.M.; Tan, B.; Xu, L.; Li, H.; Zhang, L.; Wang, L.X.; Liu, S.N.; Hou, G.R.; et al. Warming effects on C:N:P stoichiometry and nutrient limitation in terrestrial ecosystems. Soil Till. Res. 2024, 235, 105896. [Google Scholar] [CrossRef]
- Li, X.W.; You, X.L.; Wang, Y. Research progress of HAK/KUP/KT potassium transporter family in plant response to salt stress. Plant Sci. J. 2019, 37, 101–108. [Google Scholar]
- Luo, W.T.; Li, M.H.; Sardans, J.; Lü, X.T.; Wang, C.; Peñuelas, J.; Wang, Z.W.; Han, X.G.; Jiang, Y. Carbon and nitrogen allocation shifts in plants and soils along aridity and fertility gradients in grasslands of China. Ecol. Evol. 2017, 7, 6927–6934. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, C.; Tao, Y.; Zhang, Y.; Zhang, J.; Zhou, X.; Zhou, D.; Zhang, Y. Spatial Patterns and Environmental Drivers of Leaf Litter Nutrients in Nitraria tangutorum and Nitraria sphaerocarpa in the Desert Region of Northwestern China. Sustainability 2025, 17, 8405. https://doi.org/10.3390/su17188405
Liu J, Wang C, Tao Y, Zhang Y, Zhang J, Zhou X, Zhou D, Zhang Y. Spatial Patterns and Environmental Drivers of Leaf Litter Nutrients in Nitraria tangutorum and Nitraria sphaerocarpa in the Desert Region of Northwestern China. Sustainability. 2025; 17(18):8405. https://doi.org/10.3390/su17188405
Chicago/Turabian StyleLiu, Jiyuan, Cheng Wang, Ye Tao, Yuanyuan Zhang, Jing Zhang, Xiaobing Zhou, Duoqi Zhou, and Yuanming Zhang. 2025. "Spatial Patterns and Environmental Drivers of Leaf Litter Nutrients in Nitraria tangutorum and Nitraria sphaerocarpa in the Desert Region of Northwestern China" Sustainability 17, no. 18: 8405. https://doi.org/10.3390/su17188405
APA StyleLiu, J., Wang, C., Tao, Y., Zhang, Y., Zhang, J., Zhou, X., Zhou, D., & Zhang, Y. (2025). Spatial Patterns and Environmental Drivers of Leaf Litter Nutrients in Nitraria tangutorum and Nitraria sphaerocarpa in the Desert Region of Northwestern China. Sustainability, 17(18), 8405. https://doi.org/10.3390/su17188405