Transient-Aware Multi-Objective Optimization of Water Distribution Systems for Cost and Fire Flow Reliability
Abstract
1. Introduction
2. Materials and Methods
2.1. Analytical Assessment of Fire Flow Failure Probability
2.2. Optimization Methodology
3. Results
3.1. Case 1: Dual Pipeline System
3.2. Case 2: Branched Network
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mala-Jetmarova, H.; Sultanova, N.; Savic, D. Lost in optimisation of water distribution systems? A literature review of system design. Water 2018, 10, 307. [Google Scholar] [CrossRef]
- Savic, D.; Mala-Jetmarova, H.; Sultanova, N. History of Optimization in Water Distribution System Analysis. In Proceedings of the WDSA and CCWI 2018 Joint Conference, Kingston, ON, Canada, 23 August 2018. [Google Scholar]
- Besner, M.; Prévost, M.; Regli, S. Assessing the public health risk of microbial intrusion events in distribution systems: Conceptual model, available data and challenges. Water Res. 2011, 45, 961–979. [Google Scholar] [CrossRef] [PubMed]
- Rathnayaka, S.; Shannon, B.; Rajeev, P.; Kodikara, J. Monitoring of pressure transients in water supply networks. Water Resour. Manag. 2016, 30, 471–485. [Google Scholar] [CrossRef]
- Leishear, R. Water hammer causes water main breaks. J. Press. Vessel Technol. 2020, 142, 021402. [Google Scholar] [CrossRef]
- Karney, B. Hydraulic Transients and Negative Pressure—Consequences and Risk. Hydrolink 2020, 2, 38–40. Available online: https://hdl.handle.net/20.500.11970/109482 (accessed on 10 July 2025).
- Lingireddy, S.; Ormsbee, L.; Kamojjala, S.; Hall, A. How slow is slow? Managing fire hydrant operation for protecting water infrastructure. AWWA Water Sci. 2022, 4, e1290. [Google Scholar] [CrossRef]
- Gheisi, A. Water Distribution System Reliability Under Pipe Failure Conditions: Advanced Multiple States/Aspects Analyses. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2016. [Google Scholar]
- Shin, S.; Lee, S.; Judi, D.; Parvania, M.; Goharian, E.; McPherson, T.; Burian, S. A systematic review of quantitative resilience measure for water infrastructure systems. Water 2018, 10, 164. [Google Scholar] [CrossRef]
- Paez, D. Developing a Framework for the Reliability Analysis of Water Distribution Systems. Ph.D. Thesis, Queen’s University, Kingston, ON, Canada, 2019. [Google Scholar]
- Laptos, K.; Wang, M.; Broadbent, C. Committee Report: Using Transient Hydraulic Models to Design Surge Control Devices. J. Am. Water Works Assoc. 2022, 114, 34–47. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, F.; Duan, H.; Zhang, Q. Multi-objective optimal design of water distribution networks accounting for transient impacts. Water Res. Manag. 2020, 34, 1517–1534. [Google Scholar] [CrossRef]
- Laine, D.; Karney, B. Transient Analysis and Optimization in Pipeline—A Numerical Exploration. In Proceedings of the 3rd International Conference on Water Pipeline Systems, Hague, The Netherlands, 13 May 1997. [Google Scholar]
- Lingireddy, S.; Funk, J.E.; Wang, H. Genetic algorithms in optimizing transient suppression devices. In Proceedings of the ASCE 2000 Joint Conference on Water Resources Engineering and Water Resources Planning and Management, Minneapolis, MN, USA, 30 July–2 August 2000. [Google Scholar]
- El-Ghandour, H.A.; Elansary, A.S. Optimal selection of pressure relief valve parameters for surge pressure control in water distribution systems. Urban Water J. 2019, 16, 269–276. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S. Optimization of pressure relief valve for pipeline system under transient induced cavitation condition. Urban Water J. 2019, 16, 718–726. [Google Scholar] [CrossRef]
- Jung, B. Water distribution system optimization accounting for worst-case transient loadings. J. Environ. Inform. Lett. 2022, 7, 20–29. [Google Scholar] [CrossRef]
- Fire Underwriters Survey. Water Supply for Public Fire Protection; CGI Risk Management Services: Markham, ON, Canada, 1999. [Google Scholar]
- AWWA. Distribution System Requirements for Fire Protection: Manual of Water Supply Practices M31, 3rd ed.; American Water Works Assn: Denver, CO, USA, 1999; ISBN 978-0898679359. [Google Scholar]
- Jung, B.; Filion, Y.R.; Adams, B.J.; Karney, B.W. Multi-objective design optimization of branched pipeline systems with analytical assessment of fire flow failure probability. Water Res. Manag. 2013, 27, 3663–3678. [Google Scholar] [CrossRef]
- Wylie, E.B.; Streeter, V.L. Fluid Transients in Systems; Prentice Hall: Englewood Cliffs, NJ, USA, 1993; ISBN 978-0133221732. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Rossman, L.A. User’s Manual for EPANET; US Environmental Protection Agency, Drinking Water Research Division: Cincinnati, OH, USA, 1993.
- Gibson, J.; Karney, B.W.; Guo, Y. Water quality and fire protection trade-offs in water distribution networks. J. AWWA 2019, 111, 44–52. [Google Scholar] [CrossRef]
Type | Solution | Pipe Diameter (mm) | Number of Pumps | Cost (105 $) | Average Fire Flow Failure Probability | |||||
---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | |||||
No transient | A1 | 150 | 150 | 150 | 150 | 100 | 100 | 2 | 3.24 | 0.724 |
A2 | 150 | 150 | 150 | 150 | 100 | 100 | 4 | 3.34 | 0.504 | |
A3 | 200 | 150 | 150 | 150 | 100 | 100 | 3 | 3.49 | 0.372 | |
A4 | 200 | 150 | 150 | 150 | 150 | 100 | 3 | 3.69 | 0.254 | |
A5 | 200 | 150 | 150 | 150 | 150 | 150 | 5 | 3.99 | 0.114 | |
A6 | 200 | 200 | 200 | 200 | 150 | 150 | 4 | 4.54 | 0.037 | |
A7 | 250 | 200 | 200 | 200 | 200 | 200 | 5 | 5.18 | 0 | |
Transient (20 s) | B1 | 200 | 150 | 150 | 150 | 150 | 150 | 2 | 3.84 | 0.377 |
B2 | 200 | 150 | 150 | 150 | 150 | 150 | 4 | 3.94 | 0.135 | |
B3 | 200 | 200 | 200 | 200 | 150 | 150 | 4 | 4.54 | 0.037 | |
B4 | 250 | 200 | 200 | 200 | 200 | 200 | 5 | 5.18 | 0.000 | |
Transient (10 s) | C1 | 250 | 200 | 200 | 200 | 150 | 150 | 2 | 4.63 | 0.123 |
C2 | 250 | 200 | 200 | 200 | 150 | 150 | 3 | 4.68 | 0.040 | |
C3 | 250 | 200 | 200 | 200 | 200 | 200 | 5 | 5.18 | 0 | |
Transient (5 s) | D1 | 250 | 200 | 200 | 200 | 200 | 200 | 2 | 5.03 | 0.023 |
D2 | 250 | 200 | 200 | 200 | 200 | 200 | 5 | 5.18 | 0 |
Pipe Number | Pipe Group | Length, m | Node Number | Elevation, m | Demand, L/s |
---|---|---|---|---|---|
P1 | PG1 | 731.5 | N1 | 15.2 | 0.0 |
P2 | PG1 | 243.8 | N2 | 30.5 | 1.4 |
P3 | PG1 | 365.7 | N3 | 30.5 | 1.0 |
P4 | PG1 | 822.9 | N4 | 38.1 | 0.3 |
P5 | PG2 | 121.9 | N5 | 48.8 | 0.3 |
P6 | PG2 | 213.4 | N6 | 54.9 | 0.9 |
P7 | PG2 | 579.1 | N7 | 56.4 | 2.2 |
P8 | PG2 | 182.9 | N8 | 64.0 | 1.0 |
P9 | PG2 | 121.9 | N9 | 64.0 | 0.1 |
P10 | PG3 | 91.4 | N10 | 61.0 | 0.1 |
P11 | PG3 | 76.2 | N11 | 57.9 | 0.1 |
P12 | PG3 | 182.9 | N12 | 57.9 | 0.7 |
P13 | PG3 | 91.4 | N13 | 70.1 | 0.5 |
P14 | PG3 | 182.9 | N14 | 70.1 | 0.4 |
P15 | PG3 | 121.9 | N15 | 57.9 | 1.1 |
P16 | PG3 | 121.9 | N16 | 39.6 | 0.5 |
P17 | PG4 | 213.4 | N17 | 33.5 | 0.4 |
P18 | PG4 | 91.4 | N18 | 33.5 | 0.0 |
P19 | PG5 | 365.7 | N19 | 33.5 | 0.1 |
P20 | PG5 | 304.8 | N20 | 33.5 | 0.6 |
P21 | PG6 | 457.2 | N21 | 39.6 | 0.3 |
P22 | PG6 | 426.7 | N22 | 45.7 | 2.5 |
P23 | PG7 | 335.3 | N23 | 45.7 | 2.7 |
P24 | PG7 | 396.2 | N24 | 51.8 | 1.7 |
P25 | PG7 | 304.8 | N25 | 61.0 | 1.1 |
P26 | PG7 | 121.9 | N26 | 54.9 | 0.1 |
P27 | PG8 | 152.4 | N27 | 57.9 | 0.1 |
P28 | PG8 | 304.8 | N28 | 33.5 | 0.0 |
N29 | 39.6 | 0.2 |
Type | Solution | Pipe Diameter (mm) | Number of Pumps | Cost (105 $) | Average Fire Flow Failure Probability | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PG1 | PG2 | PG3 | PG4 | PG5 | PG6 | PG7 | PG8 | |||||
No transient | A1 | 250 | 150 | 150 | 50 | 50 | 100 | 100 | 50 | 3 | 4.59 | 0.576 |
A2 | 250 | 150 | 150 | 100 | 50 | 100 | 100 | 50 | 4 | 4.69 | 0.491 | |
A3 | 250 | 200 | 150 | 50 | 50 | 100 | 100 | 50 | 3 | 4.83 | 0.398 | |
A4 | 250 | 200 | 150 | 100 | 50 | 100 | 100 | 50 | 4 | 4.94 | 0.331 | |
A5 | 250 | 200 | 150 | 100 | 50 | 100 | 150 | 100 | 4 | 5.26 | 0.183 | |
A6 | 250 | 200 | 150 | 150 | 100 | 100 | 150 | 100 | 4 | 5.44 | 0.117 | |
A7 | 250 | 200 | 150 | 150 | 150 | 150 | 150 | 100 | 4 | 5.75 | 0.033 | |
A8 | 250 | 250 | 200 | 150 | 150 | 200 | 200 | 150 | 6 | 6.76 | 0 | |
Transient (20 s) | B1 | 250 | 250 | 150 | 150 | 150 | 150 | 150 | 150 | 2 | 5.98 | 0.253 |
B2 | 250 | 250 | 150 | 150 | 150 | 150 | 150 | 150 | 3 | 6.03 | 0.014 | |
B3 | 250 | 250 | 200 | 150 | 150 | 200 | 200 | 150 | 6 | 6.76 | 0 | |
Transient (10 s) | C1 | 250 | 250 | 150 | 150 | 150 | 150 | 200 | 150 | 4 | 6.31 | 0.002 |
C2 | 250 | 250 | 200 | 150 | 150 | 200 | 200 | 150 | 6 | 6.76 | 0 | |
Transient (5 s) | D1 | 250 | 250 | 150 | 150 | 150 | 150 | 200 | 150 | 4 | 6.31 | 0.002 |
D2 | 250 | 250 | 200 | 150 | 150 | 200 | 200 | 150 | 6 | 6.76 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, B.; Ko, D.; Kim, S. Transient-Aware Multi-Objective Optimization of Water Distribution Systems for Cost and Fire Flow Reliability. Sustainability 2025, 17, 8274. https://doi.org/10.3390/su17188274
Jung B, Ko D, Kim S. Transient-Aware Multi-Objective Optimization of Water Distribution Systems for Cost and Fire Flow Reliability. Sustainability. 2025; 17(18):8274. https://doi.org/10.3390/su17188274
Chicago/Turabian StyleJung, Bongseog, Dongwon Ko, and Sanghyun Kim. 2025. "Transient-Aware Multi-Objective Optimization of Water Distribution Systems for Cost and Fire Flow Reliability" Sustainability 17, no. 18: 8274. https://doi.org/10.3390/su17188274
APA StyleJung, B., Ko, D., & Kim, S. (2025). Transient-Aware Multi-Objective Optimization of Water Distribution Systems for Cost and Fire Flow Reliability. Sustainability, 17(18), 8274. https://doi.org/10.3390/su17188274