Sustainability Under Deforestation and Climate Variability in Tropical Savannas: Water Yield in the Urucuia River Basin, Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Pre-Processing
2.3. Annual Water Yield Model (InVEST)
2.4. Water Yield Validation
2.5. Testing for Trends
3. Results and Discussion
3.1. Model Performance Assessment
3.2. Sensitivity to Climate Inputs
3.3. Effects of Land Use and Land Cover Change
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Brooks, T.; Feltran-Barbieri, R.; Iribarrem, A.; Crouzeilles, R.; Loyola, R.; Latawiec, A.E.; Oliveira Filho, F.J.B.; De Scaramuzza, C.A.M.; Scarano, F.R.; et al. Moment of Truth for the Cerrado Hotspot. Nat. Ecol. Evol. 2017, 1, 0099. Available online: https://www.nature.com/articles/s41559-017-0099 (accessed on 15 July 2025). [CrossRef]
- Sano, E.E.; Rosa, R.; Brito, J.L.S.; Ferreira, L.G. Mapeamento de Cobertura Vegetal do Bioma Cerrado: Estratégias e Resultados. 2007. Available online: https://www.sidalc.net/search/Record/dig-infoteca-e-doc-570887 (accessed on 15 July 2025).
- MAPBIOMAS. RAD2024: Relatório Anual do Desmatamento no Brasil 2023. São Paulo, Brasil, 2024. 154p. Available online: https://alerta.mapbiomas.org/relatorio/ (accessed on 14 July 2025).
- de Carvalho, F.M.V.; Ferreira, L.G.; Lobo, F.C.; Diniz-Filho, J.A.F.; Bini, L.M. Padrões de Autocorrelação Espacial de Índices de Vegetação MODIS No Bioma Cerrado. Rev. Árvore 2008, 32, 279–290. [Google Scholar] [CrossRef]
- Carvalho, F.M.V.; De Marco, P.; Ferreira, L.G. The Cerrado Into-Pieces: Habitat Fragmentation as a Function of Landscape Use in the Savannas of Central Brazil. Biol. Conserv. 2009, 142, 1392–1403. [Google Scholar] [CrossRef]
- De Castro, E.A.; Kauffman, J.B. Ecosystem structure in the Brazilian Cerrado: A vegetation gradient of aboveground biomass, root mass and consumption by fire. J. Trop. Ecol. 1998, 14, 263–283. [Google Scholar] [CrossRef]
- Klink, C.A.; Sato, M.N.; Cordeiro, G.G.; Ramos, M.I.M. The role of vegetation on the dynamics of water and fire in the Cerrado ecosystems: Implications for management and conservation. Plants 2020, 9, 1803. [Google Scholar] [CrossRef] [PubMed]
- Da Rocha, H.R.; Manzi, A.O.; Cabral, O.M.; Miller, S.D.; Goulden, M.L.; Saleska, S.R.; R.-Coupe, N.; Wofsy, S.C.; Borma, L.S.; Artaxo, P.; et al. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res. Biogeosci. 2009, 114, 1–8. [Google Scholar] [CrossRef]
- Oliveira, R.S.; Bezerra, L.; Davidson, E.A.; Pinto, F.; Klink, C.A.; Nepstad, D.C.; Moreira, A. Deep root function in soil water dynamics in cerrado savannas of central Brazil. Funct. Ecol. 2005, 19, 574–581. [Google Scholar] [CrossRef]
- Anache, J.A.; Wendland, E.; Rosalem, L.M.; Youlton, C.; Oliveira, P.T. Hydrological trade-offs due to different land covers and land uses in the Brazilian Cerrado. Hydrol. Earth Syst. Sci. 2019, 23, 1263–1279. [Google Scholar] [CrossRef]
- Parente, L.; Nogueira, S.; Baumann, L.; Almeida, C.; Maurano, L.; Affonso, A.G.; Ferreira, L. Quality Assessment of the PRODES Cerrado Deforestation Data. Remote Sens. Appl. 2021, 21, 100444. [Google Scholar] [CrossRef]
- Pires, M.O. ‘Cerrado’, Old and New Agricultural Frontiers. Braz. Political Sci. Rev. 2020, 14, e004. [Google Scholar] [CrossRef]
- Trigueiro, W.R.; Nabout, J.C.; Tessarolo, G. Uncovering the Spatial Variability of Recent Deforestation Drivers in the Brazilian Cerrado. J. Environ. Manag. 2020, 275, 111243. [Google Scholar] [CrossRef]
- da Conceição Bispo, P.; Picoli, M.C.A.; Marimon, B.S.; Marimon Junior, B.H.; Peres, C.A.; Menor, I.O.; Silva, D.E.; de Figueiredo Machado, F.; Alencar, A.A.C.; de Almeida, C.A.; et al. Overlooking Vegetation Loss Outside Forests Imperils the Brazilian Cerrado and Other Non-Forest Biomes. Nat. Ecol. Evol. 2023, 8, 12–13. [Google Scholar] [CrossRef]
- Santos, S.A.; Cherem, L.F.S. Estrutura Espacial e Temporal Das Unidades de Conservação No Cerrado: Heterogeneidade Combinada em prol da Conservação. Soc. Nat. 2022, 35, e65504. [Google Scholar] [CrossRef]
- Fenicia, F.; McDonnell, J.J. Modeling Streamflow Variability at the Regional Scale: (1) Perceptual Model Development through Signature Analysis. J. Hydrol. 2022, 605, 127287. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, M. Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study. Water Resour. Res. 2010, 46, 1–15. [Google Scholar] [CrossRef]
- Li, Q.; Wei, X.; Zhang, M.; Liu, W.; Giles-Hansen, K.; Wang, Y. The cumulative effects of forest disturbance and climate variability on streamflow components in a large forest-dominated watershed. J. Hydrol. 2018, 557, 448–459. [Google Scholar] [CrossRef]
- Aryal, Y.; Zhu, J. Effect of watershed disturbance on seasonal hydrological drought: An improved double mass curve (IDMC) technique. J. Hydrol. 2020, 585, 124746. [Google Scholar] [CrossRef]
- Campos, J.d.O.; Chaves, H.M.L. Tendências e Variabilidades Nas Séries Históricas de Precipitação Mensal e Anual No Bioma Cerrado No Período 1977–2010. Rev. Bras. Meteorol. 2020, 35, 157–169. [Google Scholar] [CrossRef]
- Hofmann, G.S.; Cardoso, M.F.; Alves, R.J.V.; Weber, E.J.; Barbosa, A.A.; de Toledo, P.M.; Pontual, F.B.; Salles, L.d.O.; Hasenack, H.; Cordeiro, J.L.P.; et al. The Brazilian Cerrado Is Becoming Hotter and Drier. Glob. Change Biol. 2021, 27, 4060–4073. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, P.P.; Oliveira, P.T.S.; Bressiani, D.; Meira Neto, A.A.; Rodrigues, D.B.B. Effects of Climate and Land Cover Changes on Water Availability in a Brazilian Cerrado Basin. J. Hydrol. Reg. Stud. 2021, 37, 100931. [Google Scholar] [CrossRef]
- Salmona, Y.B.; Matricardi, E.A.T.; Skole, D.L.; Silva, J.F.A.; Coelho Filho, O.d.A.; Pedlowski, M.A.; Sampaio, J.M.; Castrillón, L.C.R.; Brandão, R.A.; da Silva, A.L.; et al. A Worrying Future for River Flows in the Brazilian Cerrado Provoked by Land Use and Climate Changes. Sustainability 2023, 15, 4251. [Google Scholar] [CrossRef]
- BRASIL. Lei N° 9.433, de 8 de Janeiro de 1997. Institui a Política Nacional de Recursos Hídricos, Cria o Sistema Nacional de Gerenciamento de Recursos Hídricos, Regulamenta o Inciso XIX Do Art. 21 Da Constituição Federal, e Altera o Art. 1o Da Lei No 8.001, de 13 de Março de 1990, Que Modificou a Lei No 7.990, de 28 de Dezembro de 1989. Available online: https://www.planalto.gov.br/ccivil_03/leis/l9433.htm (accessed on 14 July 2025).
- Bendito, B.P.C.; Chaves, H.M.L.; Scariot, A. Erosion and Sedimentation Processes in a Semi-Arid Basin of the Brazilian Savanna under Different Land Use, Climate Change, and Conservation Scenarios. Water 2023, 15, 563. [Google Scholar] [CrossRef]
- Sharp, R.; Chaplin-Kramer, R.; Wood, S.; Guerry, A.; Tallis, H.; Ricketts, T.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST User’s Guide; The Natural Capital Project, Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA; The Nature Conservancy: Arlington, VA, USA; World Wildlife Fund: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Yu, Y.; Sun, X.; Wang, J.; Zhang, J. Using InVEST to Evaluate Water Yield Services in Shangri-La, Northwestern Yunnan, China. PeerJ 2022, 10, e12804. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Soromessa, T.; Elias, E.; Noszczyk, T.; Feyisa, G.L. Evaluation of Water Provision Ecosystem Services Associated with Land Use/Cover and Climate Variability in the Winike Watershed, Omo Gibe Basin of Ethiopia. Environ. Manag. 2022, 69, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical Validation of the InVEST Water Yield Ecosystem Service Model at a National Scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [Google Scholar] [CrossRef]
- Espírito-Santo, M.M.; Leite, M.E.; Silva, J.O.; Barbosa, R.S.; Rocha, A.M.; Anaya, F.C.; Dupin, M.G.V. Understanding Patterns of Land-Cover Change in the Brazilian Cerrado from 2000 to 2015. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150435. [Google Scholar] [CrossRef]
- de Oliveira Filho, E.R. Revitalização por barraginha na Bacia Hidrográfica do Rio Urucuia. HUMBOLDT 1, No. 1. 2020. Available online: https://www.e-publicacoes.uerj.br/humboldt/article/view/52457 (accessed on 14 July 2025).
- ANA—National Water and Sanitation Agency. Projeto de Gerenciamento Integrado. Plano Decenal de Recursos Hidricos da Bacia Hidrográfica do Rio São Francisco–Pbhsf. 2004. Available online: https://cdn.agenciapeixevivo.org.br/media/2020/01/Sintese_Resumo_Exec.-PLAN-DECENAL.pdf (accessed on 14 July 2025).
- IGAM—Minas Gerais Water Management Institute. Plano Diretor de Recursos Hídricos da Bacia Hidrográfica do Rio Urucuia—SF8: Relatório Final Volume I B Diagnóstico da Bacia Hidrográfica SF8. 2014. Available online: http://repositorioigam.meioambiente.mg.gov.br/handle/123456789/679 (accessed on 14 July 2025).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Mata, C.L.; de Carvalho Júnior, O.A.; De Carvalho, A.P.F.; Gomes, R.A.T.; Martins, É.d.S.; Guimarães, R.F. Avaliação Multitemporal Da Susceptibilidade Erosiva Na Bacia Do Rio Urucuia (Mg) Por Meio Da Equação Universal de Perda de Solos. Rev. Bras. Geomorfol. 2007, 8, 2. [Google Scholar] [CrossRef]
- IBGE—Brazilian Institute of Geography and Statistic. Censo Agrícola—2017. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/21814-2017-censo-agropecuario.html (accessed on 14 July 2025).
- ANA—National Water and Sanitation Agency. HIDROWEB v3.3.8361.0 Platform. 2025. Available online: https://www.snirh.gov.br/hidroweb/apresentacao (accessed on 14 July 2025).
- Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily gridded meteorological variables in Brazil (1980–2013). Int. J. Climatol. 2016, 36, 2644–2659. [Google Scholar] [CrossRef]
- Projeto MapBiomas—Coleção 7.0 da Série Anual de Mapas de Cobertura e Uso da Terra do Brasil. Available online: https://brasil.mapbiomas.org/map/colecao-7/ (accessed on 12 May 2025).
- Allen, R.G. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements. FAO Irrig. Draingae 1998, 56, 60–64. [Google Scholar]
- Schenk, H.J.; Jackson, R.B. Rooting Depths, Lateral Root Spreads and below-Ground/above-Ground Allometries of Plants in Water-Limited Ecosystems. J. Ecol. 2002, 90, 480–494. [Google Scholar] [CrossRef]
- Saad, S.I. Modelagem e Valoração Dos Serviços Ambientais Hidrológicos Na Recuperação Da Vegetação No Ribeirão Dsa Posses, Extrema, MG. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brasil, 2015. [Google Scholar]
- He, J.; Zhao, Y.; Wen, C. Spatiotemporal Variation and Driving Factors of Water Supply Services in the Three Gorges Reservoir Area of China Based on Supply-Demand Balance. Water 2022, 14, 2271. [Google Scholar] [CrossRef]
- Ning, T.; Li, Z.; Liu, W. Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework. Hydrol. Earth Syst. Sci. 2017, 21, 1515–1526. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, Storms and Soil Pores: Incorporating Key Ecohydrological Processes into Budyko’s Hydrological Model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann–Kendall test. Water Resour. Res. 2002, 38, 4-1-4-7. [Google Scholar] [CrossRef]
- Feng, M.; Liu, P.; Guo, S.; Gui, Z.; Zhang, X.; Zhang, W.; Xiong, L. Identifying changing patterns of reservoir operating rules under various inflow alteration scenarios. Adv. Water Resour. 2017, 104, 23–36. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.M.A.; Nobre, C.A.; Ribeiro Neto, G.G.; Magalhães, A.R.; Torres, R.R.; Sampaio, G.; Alexandre, F.; Alves, L.M.; Cuartas, L.A.; et al. Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C. Nat. Hazards 2020, 103, 2589–2611. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, N.; Harper, R.; Li, Q.; Liu, K.; Wei, X.; Ning, D.; Hou, Y.; Liu, S. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime. J. Hydrol. 2017, 546, 44–59. [Google Scholar] [CrossRef]





| LULC | Root Depth (mm) | Kc |
|---|---|---|
| Forest | 8000 | 0.8 |
| Savanna | 6000 | 0.7 |
| Native grassland | 1500 | 0.5 |
| Wetland | 1000 | 1 |
| Rocky outcrops | 100 | 0.2 |
| Silviculture | 7000 | 1 |
| Pasture | 1000 | 0.45 |
| Agriculture | 2000 | 0.8 |
| Mosaico | 2000 | 0.6 |
| Urban area | 100 | 0.4 |
| Water | 1 | 1 |
| Other non-vegetated areas | 1 | 0.2 |
| Input | Source | File Format |
|---|---|---|
| Precipitation | ANA | Raster |
| Reference evapotranspiration | NASA/POWER | Raster |
| RRD | ISRIC | Raster |
| PAWC | ISRIC | Raster |
| Land use and land cover | MAPBIOMAS | Raster |
| River basin shape | ANA | Shapefile |
| Kc (crop coefficient) | Literature review | CSV |
| Root depth | Literature review | CSV |
| Z (N/5) | ANA | One value per year |
| Performance | R2 | PBIAS | CE |
|---|---|---|---|
| Very good | 0.7 < R2 ≤ 1 | PBIAS < ± 10 | 0.75 < NS ≤ 1 |
| Good | 0.6 < R2 ≤ 0.7 | ± 10 ≤ PBIAS < ± 15 | 0.65 < NS ≤ 0.75 |
| Moderate | 0.5 < R2 ≤ 0.6 | ± 15 ≤ PBIAS < ± 25 | 0.5 < NS ≤ 0.65 |
| Unsatisfactory | R2 ≤ 0.5 | PBIAS ≥ ± 25 | NS ≤ 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrêa, T.R.; Matricardi, E.A.T.; Filoso, S.; Santos, J.A.d.; Scariot, A.O.; Torres, C.M.M.E.; Martorano, L.G.; Pereira, E.M. Sustainability Under Deforestation and Climate Variability in Tropical Savannas: Water Yield in the Urucuia River Basin, Brazil. Sustainability 2025, 17, 8169. https://doi.org/10.3390/su17188169
Corrêa TR, Matricardi EAT, Filoso S, Santos JAd, Scariot AO, Torres CMME, Martorano LG, Pereira EM. Sustainability Under Deforestation and Climate Variability in Tropical Savannas: Water Yield in the Urucuia River Basin, Brazil. Sustainability. 2025; 17(18):8169. https://doi.org/10.3390/su17188169
Chicago/Turabian StyleCorrêa, Thomas Rieth, Eraldo Aparecido Trondoli Matricardi, Solange Filoso, Juscelina Arcanjo dos Santos, Aldicir Osni Scariot, Carlos Moreira Miquelino Eleto Torres, Lucietta Guerreiro Martorano, and Eder Miguel Pereira. 2025. "Sustainability Under Deforestation and Climate Variability in Tropical Savannas: Water Yield in the Urucuia River Basin, Brazil" Sustainability 17, no. 18: 8169. https://doi.org/10.3390/su17188169
APA StyleCorrêa, T. R., Matricardi, E. A. T., Filoso, S., Santos, J. A. d., Scariot, A. O., Torres, C. M. M. E., Martorano, L. G., & Pereira, E. M. (2025). Sustainability Under Deforestation and Climate Variability in Tropical Savannas: Water Yield in the Urucuia River Basin, Brazil. Sustainability, 17(18), 8169. https://doi.org/10.3390/su17188169

