Interaction Effects of Green Finance and Digital Platforms on China’s Economic Growth
Abstract
1. Introduction
2. Literature Review
3. Research Design
3.1. Empirical Model
3.2. Data and Sample
4. Empirical Results and Analysis
4.1. Descriptive Statistics
4.2. Empirical Findings
4.3. Estimation Results and Robustness Analysis
5. Discussion
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | Indicators | Measurement | Data Source |
---|---|---|---|
Economic Growth (EG) |
| China Statistical Yearbook | |
Green Finance (GF) |
| Issuance volume | China Banking and Insurance Regulatory Commission |
| Total balance of green loans | ||
Digital Platforms (DPs) |
| Total transaction value | China Banking and Insurance Regulatory Commission |
| Online retail sales | ||
Money Supply (MS) | China Statistical Yearbook | ||
Fisal Expenditure (FE) | National Bureau of Statistics | ||
Inflation Rate (IR) | China Statistical Yearbook | ||
Fixed Asset Investment (FAI) | National Bureau of Statistics | ||
Industrial Structure (IS) | National Bureau of Statistics |
References
- Han, J.; Gao, H.Y. Green Finance, Social Inclusion, and Sustainable Economic Growth in OECD Member Countries. Humanit. Soc. Sci. Commun. 2024, 11, 140. [Google Scholar] [CrossRef]
- Sun, Y.; He, M. Does Digital Transformation Promote Green Innovation? A Micro-Level Perspective on the Solow Paradox. Front. Environ. Sci. 2023, 11, 1134447. [Google Scholar] [CrossRef]
- Hao, F. Biden’s Approval, Record Inflation, Economic Recovery, COVID-19 Mortality, and Vaccination Rate among Americans—A Longitudinal Study of State-Level Data from April 2021 to January 2022. Prev. Med. Rep. 2023, 36, 102454. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, C.; Yan, G.; Irfan, M.; Chang, C.P. Identifying the Nexus among Environmental Performance, Digital Finance, and Green Innovation: New Evidence from Prefecture-Level Cities in China. J. Environ. Manag. 2023, 335, 117554. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, K.; Liu, K. Exploring the Mechanism of the Impact of Green Finance and Digital Economy on China’s Green Total Factor Productivity. Int. J. Environ. Res. Public Health 2022, 19, 16303. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tu, Y. Nexus among Financial Innovation, Natural Resources and Economic Recovery: A Fresh Empirical Insight from China. Resour. Policy 2023, 84, 103646. [Google Scholar] [CrossRef]
- Liu, Z.; Li, R.; Cai, R.; Lan, J. A Nexus of Income Inequality and Natural Resource Utilization Efficiency: Effect on the Road to Green Economic Recovery. Resour. Policy 2023, 85, 103625. [Google Scholar] [CrossRef]
- Liu, G.; Liang, K. The Role of Technological Innovation in Enhancing Resource Sustainability to Achieve Green Recovery. Resour. Policy 2024, 89, 104659. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y. The Significance of Emission Trading System from the Perspective of Environmental Regulation—Based on the Analysis of China’s Environmental Pollution Control Data. In Proceedings of the IOP Conference Series: Earth and Environmental Science; UK, Institute of Physics Publishing: Bristol, UK, 2019; Volume 295. [Google Scholar] [CrossRef]
- Bei, J.; Wang, C. Renewable Energy Resources and Sustainable Development Goals: Evidence Based on Green Finance, Clean Energy and Environmentally Friendly Investment. Resour. Policy 2023, 80, 103194. [Google Scholar] [CrossRef]
- Zuo, Z.; Cao, R.; Teymurova, V. Unlocking Natural Resource Potential: A Balanced Strategies for a Fair and Sustainable Economic Recovery. Resour. Policy 2024, 89, 104518. [Google Scholar] [CrossRef]
- Nerbel, J.F.; Kreutzer, M. Digital Platform Ecosystems in Flux: From Proprietary Digital Platforms to Wide-Spanning Ecosystems. Electron. Mark. 2023, 33, 6. [Google Scholar] [CrossRef]
- Hodson, M.; Lockhart, A.; McMeekin, A. How Have Digital Mobility Platforms Responded to COVID-19 and Why Does This Matter for ‘the Urban’? Urban Stud. 2023, 61, 923–942. [Google Scholar] [CrossRef]
- Chen, K.; Zhao, S.; Jiang, G.; He, Y.; Li, H. The Green Innovation Effect of the Digital Economy. Int. Rev. Econ. Financ. 2025, 99, 103970. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, L. Research on Green Finance in Support of Green Economic Development. In Proceedings of the ICEMBDA, Tianjin, China, 27–29 October 2023. [Google Scholar]
- Zielonka, R.; Metzler, M.; Mulvenon, J.; Siegel, S.; Yang, C.Z. Technology Innovation and Digital Revolution: Adoption and Diffusion of Digital Network Platforms, 1995–2001, with Implications for Future Development. Ph.D. Thesis, University of Washington, Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Ratten, V. Digital Platforms and Transformational Entrepreneurship during the COVID-19 Crisis. Int. J. Inf. Manag. 2023, 72, 102534. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yuan, L.; Khalfaoui, R.; Radulescu, M.; Mallek, S.; Zhao, X. Making Technological Innovation Greener: Does Firm Digital Transformation Work? Technol. Forecast. Soc. Change 2023, 197, 122928. [Google Scholar] [CrossRef]
- Tan, X.; Cheng, S.; Liu, Y. Green Digital Finance and Technology Diffusion. Humanit. Soc. Sci. Commun. 2024, 11, 389. [Google Scholar] [CrossRef]
- Xiao, Y.; Lin, M.; Wang, L. Impact of Green Digital Finance on Sustainable Development: Evidence from China’s Pilot Zones. Financ. Innov. 2024, 10, 10. [Google Scholar] [CrossRef]
- Wu, B.; Ma, W.; Zhao, Q. Digital Economy and Urban Green Transformation. Int. Rev. Financ. Anal. 2025, 104, 104286. [Google Scholar] [CrossRef]
- Sangiorgi, I.; Schopohl, L. Explaining Green Bond Issuance Using Survey Evidence: Beyond the Greenium. Br. Account. Rev. 2023, 55, 101071. [Google Scholar] [CrossRef]
- Roy, P.K. Enriching the Green Economy through Sustainable Investments: An ESG-Based Credit Rating Model for Green Financing. J. Clean. Prod. 2023, 420, 138315. [Google Scholar] [CrossRef]
- Levine, R. Chapter 12 Finance and Growth: Theory and Evidence. Handb. Econ. Growth 2005, 1, 865–934. [Google Scholar] [CrossRef]
- King, R.G.; Levine, R. Finance and Growth: Schumpeter Might Be Right. Q. J. Econ. 1993, 108, 717–737. [Google Scholar] [CrossRef]
- Yin, X.; Xu, Z. An Empirical Analysis of the Coupling and Coordinative Development of China’s Green Finance and Economic Growth. Resour. Policy 2022, 75, 102476. [Google Scholar] [CrossRef]
- Fan, W.; Wu, H.; Liu, Y. Does Digital Finance Induce Improved Financing for Green Technological Innovation in China? Discret. Dyn. Nat. Soc. 2022, 2022, 6138422. [Google Scholar] [CrossRef]
- Zhou, R. Sustainable Economic Development, Digital Payment, and Consumer Demand: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 8819. [Google Scholar] [CrossRef]
- Razzaq, A.; Yang, X. Digital Finance and Green Growth in China: Appraising Inclusive Digital Finance Using Web Crawler Technology and Big Data. Technol. Forecast. Soc. Change 2023, 188, 122262. [Google Scholar] [CrossRef]
- Chueca Vergara, C.; Ferruz Agudo, L. Fintech and Sustainability: Do They Affect Each Other? Sustainability 2021, 13, 7012. [Google Scholar] [CrossRef]
- Zhong, S.; Peng, L.; Li, J.; Li, G.; Ma, C. Digital Finance and the Two-Dimensional Logic of Industrial Green Transformation: Evidence from Green Transformation of Efficiency and Structure. J. Clean. Prod. 2023, 406, 137078. [Google Scholar] [CrossRef]
- Wan, B.; Tian, L. Health-Education-Disaster Green Low-Carbon Endogenous Economic Growth Model and Its New Accompanying Effects. J. Clean. Prod. 2022, 359, 131923. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, M.; Yang, C. Can National Big Data Comprehensive Experimental Zones Boost the Development of Regional Green Finance? Evidence from China. Emerg. Mark. Financ. Trade 2023, 60, 541–556. [Google Scholar] [CrossRef]
- Reza-Gharehbagh, R.; Arisian, S.; Hafezalkotob, A.; Makui, A. Sustainable supply chain finance through digital platforms: A pathway to green entrepreneurship. Ann. Oper. Res. 2023, 331, 285–319. [Google Scholar] [CrossRef]
- Hu, J.; Li, J.; Li, X.; Liu, Y.; Wang, W.; Zheng, L. Will Green Finance Contribute to a Green Recovery? Evidence From Green Financial Pilot Zone in China. Front. Public Health 2021, 9, 794195. [Google Scholar] [CrossRef]
- Tan, X.; Dong, H.; Liu, Y.; Su, X.; Li, Z. Green Bonds and Corporate Performance: A Potential Way to Achieve Green Recovery. Renew Energy 2022, 200, 59–68. [Google Scholar] [CrossRef]
- Yang, C.; Masron, T.A. Impact of Digital Finance on Energy Efficiency in the Context of Green Sustainable Development. Sustainability 2022, 14, 11250. [Google Scholar] [CrossRef]
- Wiles, R.C. Book Reviews. Rev. Soc. Econ. 1970, 28, 123–124. [Google Scholar] [CrossRef]
- Balázsi, L.; Baltagi, B.H.; Mátyás, L.; Pus, D. Random Effects Models. In The Econometrics of Multi-Dimensional Panels; Advanced Studies in Theoretical and Applied Econometrics 50; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Kelejian, H.; Piras, G. Panel Data Models. In Spatial Econometrics; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Panel Data Models. In Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: Berlin/Heidelberg, Germany, 2014; pp. 37–93. [Google Scholar] [CrossRef]
- Kang, S.W. A Gibbs Sampling Algorithm for a Changing Regression Model with Pooled Binary Response Data8. Commun. Commun. Stat. Theory Methods 2007, 36, 349–373. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Liu, L. Random Effects, Fixed Effects and Hausman’s Test for the Generalized Mixed Regressive Spatial Autoregressive Panel Data Model. Econom. Rev. 2016, 35, 638–658. [Google Scholar] [CrossRef]
- Halme, A.L.E.; McAlpine, K.; Martini, A. Fixed-Effect Versus Random-Effects Models for Meta-Analyses: Random-Effects Models. Eur. Assoc. Urology. Publ. 2023, 9, 693–694. [Google Scholar] [CrossRef] [PubMed]
- Madsen, J.B. Book Review: Basic Econometrics, Damodar N. Gujarati, McGraw-Hill, New York, 1995, ISBN 0-07-025214-9 (Paperback), pp. 838. Price US$74.95, £23.50 (Paperback). J. Appl. Econom. 1998, 13, 209–212. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Correlated Random Effects Models with Unbalanced Panels. J. Econom. 2019, 211, 137–150. [Google Scholar] [CrossRef]
- Greene, W.H. Econometric Analysis, 5th ed.; Prentice Hall International, New York University: New York, NY, USA, 2003; ISBN 0130661899. [Google Scholar]
- Balazsi, L.; Matyas, L.; Wansbeek, T. Fixed Effects Models. In The Econometrics of Multi-Dimensional Panels; Advanced Studies in Theoretical and Applied Econometrics 50; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Haberfeld, Y. Status Variables in Fixed-Effect Models. Econ. Lett. 1994, 45, 299–303. [Google Scholar] [CrossRef]
- Kim, Y.; Sohn, S.Y. Random Effects Model for Credit Rating Transitions. Eur. J. Oper. Res. 2008, 184, 561–573. [Google Scholar] [CrossRef]
- Verbon, H.A.A. Testing for heteroscedasticity in a model of seemingly unrelated regression equations with variance components (SUREVC). Econ. Lett. 1980, 5, 149–153. [Google Scholar] [CrossRef]
- Cota, B.; Erjavec, N.; Mačkić, V. External Competitiveness and the Role of Fiscal Policy: Does Fiscal Austerity Matter? Croat. Oper. Res. Rev. 2019, 10, 55–64. [Google Scholar] [CrossRef]
- Sener, S.; Karakas, A.T. The Effect of Economic Growth on Energy Efficiency: Evidence from High, Upper-Middle and Lower-Middle Income Countries. Procedia Comput. Sci. 2019, 158, 523–532. [Google Scholar] [CrossRef]
- Úbeda, F.; Javier Forcadell, F.; Suárez, N. Do Formal and Informal Institutions Shape the Influence of Sustainable Banking on Financial Development? Financ. Res. Lett. 2022, 46, 102391. [Google Scholar] [CrossRef]
- Dezhbakhsh, H.; Thursby, J.G. Testing for Autocorrelation in the Presence of Lagged Dependent Variables. A Specification Error Approach. J. Econom. 1994, 60, 251–272. [Google Scholar] [CrossRef]
- Hausman, J.A. Specification Tests in Econometrics. Econometrica 1978, 46, 1251–1271. Available online: https://www.jstor.org/stable/1913827 (accessed on 22 May 2025). [CrossRef]
- Hausman, J.; Pesaran, H. The J-Test as a Hausman Specification Test. Econ. Lett. 1983, 12, 277–281. [Google Scholar] [CrossRef]
- Lachman, D.; Shaw, E.S. Financial Deepening in Economic Development. Econ. J. 1974, 84, 227–228. [Google Scholar] [CrossRef]
- Mckinnon, R.I. Money and Capital in Economic Development; Brookings Institution Press: Washington, DC, USA, 1973; Available online: http://www.jstor.org/stable/10.7864/jj.17497055.1 (accessed on 22 May 2025).
- Donohue, I.; Coscieme, L.; Gellner, G.; Yang, Q.; Jackson, A.L.; Kubiszewski, I.; Costanza, R.; McCann, K.S. Accelerated Economic Recovery in Countries Powered by Renewables. Ecol. Econ. 2023, 212, 107916. [Google Scholar] [CrossRef]
- Oyelami, L.O.; Adebiyi, S.O.; Adekunle, B.S. Electronic Payment Adoption and Consumers’ Spending Growth: Empirical Evidence from Nigeria. Future Bus. J. 2020, 6, 14. [Google Scholar] [CrossRef]
- Breusch, A.T.S.; Pagan, A.R. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 1979, 47, 1287–1294. [Google Scholar] [CrossRef]
- Hoechle, D. Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence. Stata J. 2007, 7, 281–312. [Google Scholar] [CrossRef]
- Lee, T.-H.; Tse, Y. Cointegration tests with conditional heteroskedasticity. J. Econom. 1996, 73, 401–410. [Google Scholar] [CrossRef]
- Isnurhadi, I.; Adam, M.; Sulastri, S.; Andriana, I.; Muizzuddin, M. Bank Capital, Efficiency and Risk: Evidence from Islamic Banks. J. Asian Financ. Econ. Bus. 2021, 8, 841–850. [Google Scholar] [CrossRef]
- Carrasco, M.; Nokho, C. Hansen-Jagannathan Distance with Many Assets; Université de Montréal: Montreal, QC, Canada, 2024. [Google Scholar]
- Farley, J.; Burke, M.; Flomenhoft, G.; Kelly, B.; Forrest Murray, D.; Posner, S.; Putnam, M.; Scanlan, A.; Witham, A. Monetary and Fiscal Policies for a Finite Planet. Sustainability 2013, 5, 2802–2826. [Google Scholar] [CrossRef]
- Bilkova, D. The Czech Republic’s Economy since the 1990s and Its Development Forecasts: Selected Macroeconomic Indicators. Eng. Econ. 2023, 34, 370–383. [Google Scholar] [CrossRef]
- Liu, L.; Moon, H.R.; Schorfheide, F. Forecasting with Dynamic Panel Data Models. Econometrica 2020, 88, 171–201. [Google Scholar] [CrossRef]
- Wu, W.T.; Chen, X.Q.; Zvarych, R.; Huang, W.L. The Stackelberg Duel between Central Bank Digital Currencies and Private Payment Titans in China. Technol. Forecast. Soc. Change 2024, 200, 123169. [Google Scholar] [CrossRef]
- Bai, B. Fiscal Stimulus and Natural Resource Efficiency: A Comprehensive Approach to a Green Economic Recovery. Resour. Policy 2023, 86, 104092. [Google Scholar] [CrossRef]
Variable | Mean | Std. Dev. | Min | Max | Observations |
---|---|---|---|---|---|
GDP | 2.299568 | 0.0890134 | 2.036031 | 2.469624 | 330 |
Green Finance | 2.700385 | 0.044583 | 2.561816 | 2.802886 | 330 |
Digital Platforms | 2.733101 | 0.163718 | 2.184168 | 3.063224 | 330 |
Green Finance ×Digital Platforms | 7.386637 | 0.5472032 | 5.654221 | 8.585865 | 330 |
Money Supply | 2.359542 | 0.088133 | 2.111903 | 2.550851 | 330 |
Fiscal Expenditure | 2.269543 | 0.086544 | 2.049869 | 2.410506 | 330 |
Inflation Rate | 0.473482 | 0.656685 | −2.30259 | 1.360977 | 330 |
Fixed Asset Investment | 1.657923 | 0.036115 | 1.576605 | 1.731033 | 330 |
Industrial Structure | 1.505491 | 0.012828 | 1.462365 | 1.527158 | 330 |
Statistic | GDP | e | u |
---|---|---|---|
Var | 0.7435062 | 0.0125553 | 0.0170141 |
SD = sqrt (Var) | 0.8622681 | 0.1120503 | 0.130438 |
Test: Var(u) = 0 | |||
chibar2 (01) | 338.68 | ||
Prob > chibar2 | 0.0000 |
Variables | (b) | (B) | (b-B) | sqrt(diag(V_b-V_B)) |
---|---|---|---|---|
Fixed | Random | Difference | Std. Err. | |
Green Finance | 0.5213279 | 0.7944762 | −0.2731483 | 0.030652 |
Digital Platforms | 0.0777863 | 0.1365664 | −0.0587801 | 0.0111197 |
Green Finance × Digital Platforms | 0.0352328 | 0.0441126 | −0.0088797 | 0.0020449 |
Money Supply | 0.0991447 | 0.2165683 | −0.1174236 | 0.0026525 |
Fiscal Expenditure | 0.2333382 | 0.3926496 | −0.1593114 | 0.0174439 |
Inflation Rate | −0.0000416 | −0.0008785 | −0.0009201 | 0.0013496 |
Fixed Asset Investment | 0.1007129 | −0.075717 | 0.17643 | 0.0140519 |
Industrial Structure | 1.245468 | 0.8195222 | 0.4259459 | 0.123088 |
chi (6) | 76.92 | |||
Prob > chi2 | 0.0000 |
Diagnostic Checks | Serial Correlation | |||||
---|---|---|---|---|---|---|
Multicollinearity | Heteroskedasticity | |||||
Variable | VIF | 1/VIF | Test | Value | Test | Value |
Green Finance | 2.21 | 0.45263 | chi2 (30) | 2035.13 | F (1, 29) | 1.592 |
Digital Platforms | 5.92 | 0.168914 | Prob > chi2 | 0.0000 | Prob > F | 0.2171 |
Green Finance × Digital Platforms | 7.68 | 0.130258 | ||||
Money Supply | 6.50 | 0.153744 | ||||
Fiscal Expenditure | 2.24 | 0.445813 | ||||
Inflation Rate | 1.59 | 0.627431 | ||||
Fixed Asset Investment | 1.53 | 0.6519 | ||||
Industrial Structure | 1.17 | 0.85305 | ||||
Mean VIF | 3.61 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Pooled OLS | RE Model | FE Model | FE Robust Model | |
Green Finance | 0.00256 | 0.0380 *** | 0.0254 ** | 0.0254 |
(0.188) | (0.133) | (0.127) | (0.224) | |
Digital Platforms | 0.00833 | 0.0181 * | 0.0211 ** | 0.0211 |
(0.142) | (0.0994) | (0.0935) | (0.0133) | |
Green Finance × Digital Platforms | 0.00604 | 0.0184 ** | 0.0204 *** | 0.0204 * |
(0.0121) | (0.00840) | (0.00785) | (0.0118) | |
Money Supply | 0.224 *** | 0.0901 *** | 0.0397 | 0.0397 ** |
(0.0315) | (0.0267) | (0.0268) | (0.0191) | |
Fiscal Expenditure | 0.430 *** | 0.699 *** | 0.545 *** | 0.545 *** |
(0.0580) | (0.0728) | (0.0845) | (0.145) | |
Inflation Rate | 0.00166 | −0.00220 | −0.00676 | −0.00676 |
(0.0132) | (0.00911) | (0.00863) | (0.00473) | |
Fixed Asset Investment | 0.372 *** | 0.243 *** | 0.175 *** | 0.175 *** |
(0.0236) | (0.0336) | (0.0364) | (0.0528) | |
Industrial Structure | 0.750 *** | 1.647 *** | 1.964 *** | 1.964 *** |
(0.232) | (0.358) | (0.457) | (0.671) | |
Constant | −1.045 | −2.789 | −3.063 | −3.063 |
(2.454) | (2.242) | (2.500) | (3.655) | |
Observations | 330 | 330 | 330 | 330 |
R-squared | 0.956 | 0.825 | 0.825 | |
Number of Province | 30 | 30 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Malim, N.A.K.; Xie, X.; Du, X. Interaction Effects of Green Finance and Digital Platforms on China’s Economic Growth. Sustainability 2025, 17, 8171. https://doi.org/10.3390/su17188171
Li H, Malim NAK, Xie X, Du X. Interaction Effects of Green Finance and Digital Platforms on China’s Economic Growth. Sustainability. 2025; 17(18):8171. https://doi.org/10.3390/su17188171
Chicago/Turabian StyleLi, He, Nurhafiza Abdul Kader Malim, Xiaojun Xie, and Xuyang Du. 2025. "Interaction Effects of Green Finance and Digital Platforms on China’s Economic Growth" Sustainability 17, no. 18: 8171. https://doi.org/10.3390/su17188171
APA StyleLi, H., Malim, N. A. K., Xie, X., & Du, X. (2025). Interaction Effects of Green Finance and Digital Platforms on China’s Economic Growth. Sustainability, 17(18), 8171. https://doi.org/10.3390/su17188171