Assessing the Contribution of Farm Forestry Farmer Field Schools to Climate Resilience in a Mixed Crop–Livestock System in Dryland Kenya
Abstract
1. Introduction
2. Framing Climate Resilience in Kenya’s Drylands
3. Farm Forestry FFSs Within a Mixed Crop–Livestock System
3.1. Role of Trees in Mixed Farming Systems
3.2. Farm Forestry FFSs and Climate Resilience
4. Method and Data
- (i)
- Structural and functional elements of a mixed crop–livestock system:
- -
- Asset holding: land, livestock, facilities, and equipment;
- -
- Knowledge and skills in agricultural and forestry practices;
- -
- Awareness of climate, environment, market, and institution (e.g., bank, insurance);
- -
- Production and income.
- (ii)
- Participants’ learning capacity:
- -
- Motivation to acquire new knowledge or skills and engage in experimentation;
- -
- Motivation to participate in group activities;
- -
- Motivation to invest.
5. Results
5.1. Characteristics of a Mixed Crop–Livestock System
5.2. Impact of Climate Disturbances on a Mixed Crop–Livestock System
5.3. Effect of Farm Forestry FFSs on a Mixed Crop–Livestock System
5.4. Experimenting and Learning as a Normal Practice
5.5. Perceptual and Behavioral Change on the Decision-Making in a Household
5.6. Effect on Access to Water
6. Discussion
6.1. Mixed Crop–Livestock System Through Farm Forestry FFSs
6.2. Learning Capacity for an Expanded Mixed Crop–Livestock System and Beyond
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhavnani, R.; Schlager, N.; Donnay, K.; Reul, M.; Schenker, L.; Stauffer, M.; Patel, T. Household behavior and vulnerability to acute malnutrition in Kenya. Humanit. Soc. Sci. Commun. 2023, 10, 63. [Google Scholar] [CrossRef]
- Opiyo, S.B.; Letema, S.; Opinde, G. Characterizing rural households’ livelihood vulnerability to climate change and extremes in Migori River Watershed, Kenya. Clim. Dev. 2023, 16, 471–489. [Google Scholar] [CrossRef]
- World Bank. Climate Risk Profile: Kenya; World Bank: Washington DC, USA, 2021; Available online: https://afri-res.uneca.org/sites/default/files/2023-07/15724-wb_kenya_country_profile-web.pdf (accessed on 22 June 2025).
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
- FAO. Bringing Climate Change Adaptation into Farmer Field Schools—A Global Guidance Note for Facilitators; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar]
- van den Berg, H.; Phillips, S.; Dicke, M.; Fredrix, M. Impacts of Farmer Field Schools in the Human, Social, Natural and Financial Domains: A Qualitative Review; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Aalto, I.J.; Maeda, E.E.; Heiskanen, J.; Aalto, E.K.; Pellikka, P.K.E. Strong influence of trees outside forest in regulating the microclimate of intensively modified Afromontane landscapes. Biogeosciences Discuss. 2021, 2021, 1–34. [Google Scholar] [CrossRef]
- Kessler, K.; Phillips, S.; Diaz Diaz, J.V. Annotated Reference List of Training Documents on Farmer Field Schools on Forestry and Agroforestry—A Toolbox for Master Trainers and Facilitators; FAO: Rome, Italy, 2025. [Google Scholar]
- Cradock-Henry, N.A. Conceptualizing climate resilience in diverse rural contexts: A review. Sustainability 2021, 13, 1946. [Google Scholar]
- Enfors-Kautsky, E.; Järnberg, L.; Quinlan, A.; Ryan, P. Wayfinder: A Resilience Guide for Navigating Towards Sustainable Futures; Stockholm Resilience Centre: Stockholm, Sweden, 2021. [Google Scholar]
- Choudhury, M.; van Huellen, S.; Kastner, T. Climate resilience through agroecological practices: A systematic review. Clim. Dev. 2021, 13, 872–886. [Google Scholar]
- Li, Y.; Westlund, H.; Liu, Y. Why some rural areas decline while some others not: An overview of rural evolution in the world. J. Rural Stud. 2019, 68, 135–143. [Google Scholar] [CrossRef]
- Manyena, S.B.; O’Brien, G.; O’Keefe, P.; Rose, J. Disaster resilience: A bounce back or bounce forward ability? Local Environ. 2019, 16, 417–424. [Google Scholar]
- Smith, L.; Frankenberger, T. Livelihood Resilience: Conceptual Framework and Measurement; TANGO International: Tucson, AZ, USA, 2018. [Google Scholar]
- Herrero, M.; Thornton, P.K.; Gerber, P.; Reid, R.S. Livestock, livelihoods and the environment: Understanding the trade-offs. Curr. Opin. Environ. Sustain. 2010, 2, 111–120. [Google Scholar] [CrossRef]
- Fisher, M.; Abate, T.; Lunduka, R.W.; Asnake, W.; Alemayehu, Y.; Madulu, R.B. Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption in eastern and southern Africa. Clim. Change 2015, 133, 283–299. [Google Scholar] [CrossRef]
- Fisher, M.; Carr, E.R. The influence of gendered roles and responsibilities on the adoption of technologies that mitigate drought risk: The case of drought-tolerant maize seed in eastern Uganda. Glob. Environ. Change 2015, 35, 82–92. [Google Scholar] [CrossRef]
- Calow, R.C.; MacDonald, A.M.; Nicol, A.L.; Robins, N.S. Ground water security and drought in Africa: Linking availability, access, and demand. Groundwater 2010, 48, 246–256. [Google Scholar] [CrossRef]
- Mezirow, J. Transformative Learning: Theory to Practice. New Dir. Adult Contin. Educ. 1997, 74, 5–12. [Google Scholar] [CrossRef]
- Waarts, Y.; Ge, L.; Ton, G.; Jansen, H. Impact of Farmer Field Schools on Income, Yield and Adoption of Sustainable Practices: A Meta-Analysis; Wageningen Social & Economic Research, Report 2016-058; Atlas: Wageningen, The Netherlands, 2016. [Google Scholar]
- IDB. A Framework and Principles for Climate Resilience Metrics in Financing Operations; Inter-American Development Bank: Washington, DC, USA, 2019; Available online: http://www.iadb.org (accessed on 22 June 2025).
- Sisay, M.; Mekonnen, K. Tree and shrub species integration in the crop-livestock farming system. Afr. Crop Sci. J. 2013, 21, 647–656. [Google Scholar]
- Franzel, S.; Carsan, S.; Lukuyu, B.; Sinja, J.; Wambugu, C. Fodder trees for improving livestock productivity and smallholder livelihoods in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 98–103. [Google Scholar] [CrossRef]
- Kuyah, S.; Whitney, C.W.; Jonsson, M.; Muthuri, C.; Öborn, I.; Sinclair, F. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa: A meta-analysis. Agron. Sustain. Dev. 2019, 39, 47. [Google Scholar] [CrossRef]
- Cyamweshi, A.R.; Mukuralinda, A.; Musana, B. Agroforestry for resilience in East African drylands: Evidence and insights. Agroecol. Sustain. Food Syst. 2023, 47, 22–40. [Google Scholar]
- Re, V.; Manzione, R.L.; Abiye, T.A.; Mukherji, A.; MacDonald, A. (Eds.) Groundwater for Sustainable Livelihoods and Equitable Growth, 1st ed.; CRC Press: London, UK, 2022. [Google Scholar] [CrossRef]
- Sato, I.; Kubo, H.; Ateka, J.M.; Mbeche, R.; Mochizuki, A. Promoting livelihood diversification among rural farming households in Kenya: What role does farm forestry Farmer Field School play? Agric. Food Econ. 2025, 13, 19. [Google Scholar] [CrossRef]
- Embu County Government. Embu County Integrated Development Plan 2023–2027; Embu County Government: Embu, Kenya, 2023. [Google Scholar]
- IGAD Climate Prediction and Applications Centre. Historical Climate Baseline Statistics for Taita Taveta, Kenya; IGAD Climate Prediction and Applications Centre: Ngong, Kenya, 2019. [Google Scholar]
- Taita Taveta County Government. Taita Taveta County Integrated Development Plan 2023–2027; Taita Taveta County Government: Wundanyi, Kenya, 2023. [Google Scholar]
- JICA. Final Report: Capacity Development Project for Sustainable Forest Management in Kenya (CADEP-SFM); Japan International Cooperation Agency: Tokyo, Japan, 2021; Available online: https://www.jica.go.jp/project/english/kenya/035/ (accessed on 22 June 2025).
- Barrett, C.B.; Reardon, T.; Webb, P. Nonfarm income diversification and household livelihood strategies in rural Africa: Concepts, dynamics, and policy implications. Food Policy 2001, 26, 315–331. [Google Scholar] [CrossRef]
- Loison, S.A. Rural Livelihood Diversification in Sub-Saharan Africa: A Literature Review. J. Dev. Stud. 2015, 51, 1125–1138. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- Stuart, E.A. Matching methods for causal inference: A review and a look forward. Stat. Sci. 2010, 25, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D. From association to causation: Some remarks on the history of statistics. J. Société Française Stat. 1999, 140, 5–32. [Google Scholar] [CrossRef]
- JKUAT. Study on Farm Forestry Practices and Crop-Livestock Integration in Embu and Taita Taveta Counties; Jomo Kenyatta University of Agriculture and Technology: Nairobi, Kenya, 2019. [Google Scholar]
- Jones, P.G.; Thornton, P.K. Croppers to livestock keepers: Livelihood transitions to 2050 in Africa due to climate change. Environ. Sci. Policy 2009, 12, 427–437. [Google Scholar] [CrossRef]
- Mutua, M.T. Annual and seasonal rainfall variability for the Kenyan Highlands from 1900–2012. J. Climatol. Weather Forecast. 2020, 8, 260. [Google Scholar] [CrossRef]
- Odongo, R.A.; Schrieks, T.; Streefkerk, I.; de Moel, H.; Busker, T.; Haer, T.; MacLeod, D.; Michaelides, K.; Singer, M.; Assen, M.; et al. Drought impacts and community adaptation: Perspectives on the 2020–2023 drought in East Africa. Int. J. Disaster Risk Reduct. 2025, 119, 105309. [Google Scholar] [CrossRef]
- The EastAfrican. Second Wave of Desert Locusts Upsurge Hits the East African Region. The EastAfrican. 21 November 2020. Available online: https://www.theeastafrican.co.ke/tea/news/east-africa/second-wave-of-desert-locusts-east-africa-3219354 (accessed on 22 June 2025).
- FAO. East Africa: The Worst Desert Locust Outbreak in Decades Threatens Food Security Across East Africa; GIEWS Special Alert No. 347; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; Available online: https://www.fao.org/3/ca8660en/ca8660en.pdf (accessed on 22 June 2025).
- Ingutia, E.; Sumelius, J. Women empowerment and agricultural decision-making: Evidence from Western Kenya. Afr. J. Agric. Resour. Econ. 2021, 16, 209–224. [Google Scholar]
- Choudhury, A.; Castellanos, P. Empowering women through farmer field schools. In Routledge Handbook of Gender and Agriculture; Sachs, C., Mercier, L., Beauchemin, V., Braun, H.J., Eds.; Routledge: London, UK, 2020; pp. 251–262. [Google Scholar]
- Pienaah, C.K.A.; Antabe, R.; Arku, G.; Luginaah, I. Farmer field schools, climate action plans and climate change resilience among smallholder farmers in Northern Ghana. Clim. Change 2024, 177, 90. [Google Scholar] [CrossRef]
- Bonventure, O.M.; Wacker, E.; Shauri, H. Impact of agricultural land use changes on food access in Mwatate Sub-County, Taita Taveta County, Kenya. Front. Sustain. Food Syst. 2025, 9, 1546943. [Google Scholar] [CrossRef]
- Magaju, C.; Ann Winowiecki, L.; Crossland, M.; Frija, A.; Ouerghemmi, H.; Hagazi, N.; Sola, P.; Ochenje, I.; Kiura, E.; Kuria, A.; et al. Assessing context-specific factors to increase tree survival for scaling ecosystem restoration efforts in East Africa. Land 2020, 9, 494. [Google Scholar] [CrossRef]
- Ireri, L. The Trend and the Pattern of Seasonal Rainfall in the Period (1993–2018) in Embu East Sub County, Kenya. East Afr. J. Environ. Nat. Resour. 2020, 2, 10–18. [Google Scholar] [CrossRef]
- Tanti, P.C.; Jena, P.R.; Aryal, J.P. Role of institutional factors in climate-smart technology adoption in agriculture: Evidence from an Eastern Indian state. Environ. Chall. 2022, 7, 100498. [Google Scholar] [CrossRef]
- Groffman, P.M.; Baron, J.S.; Blett, T.; Gold, A.J.; Goodman, I.; Gunderson, L.H.; Levinson, B.M.; Palmer, M.A.; Paerl, H.W.; Peterson, G.; et al. Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems 2006, 9, 1–13. [Google Scholar] [CrossRef]
- Walker, B.; Meyers, J.A. Thresholds in ecological and social–ecological systems: A developing database. Ecol. Soc. 2004. Available online: http://www.ecologyandsociety.org/vol9/iss2/art3/ (accessed on 22 June 2025).
- Quandt, A.; Neufeldt, H.; McCabe, J.T. The role of agroforestry in building livelihood resilience to floods and drought in semiarid Kenya. Ecol. Soc. 2017. [Google Scholar] [CrossRef]
- Kubo, H. Strengthening Climate Resilience Through Farmer Field School Practices in Oromia, Ethiopia; Knowledge Report No. 6; JICA Ogata Sadako Research Institute for Peace and Development: Tokyo, Japan, 2023. [Google Scholar]
- Braun, A.; Duveskog, D. The Farmer Field School Approach: History, Global Assessment and Success Stories; Background Paper; International Fund for Agricultural Development (IFAD): Rome, Italy, 2008; Available online: https://www.g-fras.org/en/nwg-case-studies/item/889-the-farmer-field-school-approach-history-global-assessment-and-success-stories.html (accessed on 22 June 2025).
- van den Berg, H.; Jiggins, J. Investing in farmers—The impacts of Farmer Field Schools in relation to Integrated Pest Management. World Dev. 2007, 35, 663–686. [Google Scholar] [CrossRef]
- Gebru, G.W.; Ichoku, H.E.; Phil-Eze, P.O. Determinants of smallholder farmers’ adoption of adaptation strategies to climate change in Eastern Tigray National Regional State of Ethiopia. Heliyon 2020, 6, e04356. [Google Scholar] [CrossRef] [PubMed]
- Zakari, S.; Ibro, G.; Moussa, B.; Abdoulaye, T. Adaptation strategies to climate change and impacts on household income and food security: Evidence from Sahelian region of Niger. Sustainability 2022, 14, 2847. [Google Scholar] [CrossRef]
- Friis-Hansen, E.; Duveskog, D. The empowerment route to well-being: An analysis of Farmer Field Schools in East Africa. World Dev. 2012, 40, 414–427. [Google Scholar] [CrossRef]
- Davis, K.; Nkonya, E.; Kato, E.; Mekonnen, D.A.; Odendo, M.; Miiro, R.; Nkuba, J. Impact of Farmer Field Schools on agricultural productivity and poverty in East Africa. World Dev. 2012, 40, 402–413. [Google Scholar] [CrossRef]
- Osumba, J.J.; Recha, J.W.; Oroma, G.W. Transforming agricultural extension service delivery through innovative bottom–up climate-resilient agribusiness farmer field schools. Sustainability 2021, 13, 3938. [Google Scholar] [CrossRef]
County | Embu | Taita Taveta |
---|---|---|
Land area | 2818 km2 | 17,084 km2 |
Average altitude | 1221 m | 695 m |
Annual average mean temperature | 21 °C | 23 °C |
Average annual precipitation | 640–1495 mm | 450–500 mm |
Covariate | Description | Min | Max | Mean |
---|---|---|---|---|
Gender | Gender of the household head (female = 0, male = 1) | 0 | 1 | 0.72 |
Age | Age of the household head (year) | 20 | 88 | 53.2 |
Edu | Education level of the household head (informal = 1, primary = 2, secondary = 3, tertiary = 4, university = 5) | 1 | 5 | 2.39 |
Parcel | Number of parcels used by the household for agriculture, forestry, or livestock production (count) | 1 | 5 | 1.33 |
Land | Total land area of parcels used by the household for agriculture, forestry, or livestock production (acre) | 0.1 | 25 | 3.69 |
FFS Households | Non-FFS Households | Total | ||||
---|---|---|---|---|---|---|
County | Embu | Taita Taveta | Embu | Taita Taveta | Embu | Taita Taveta |
Before matching | 109 | 44 | 151 | 40 | 260 | 84 |
153 | 191 | 344 | ||||
After matching | 91 | 32 | 91 | 32 | 182 | 64 |
123 | 123 | 246 | ||||
Unmatched | 18 | 12 | 60 | 8 | 78 | 20 |
30 | 68 | 98 |
Animal Holdings | FFS | Percentage of Holdings | Average Number of Animals | ||||||
---|---|---|---|---|---|---|---|---|---|
Embu | Taita Taveta | Embu | Taita Taveta | ||||||
Cattle | FFS | 65% | *** | 47% | 1.4 | *** | 0.8 | ||
Non-FFS | 37% | 34% | 0.7 | 0.7 | |||||
Goat | FFS | 82% | 78% | 4.6 | 3.6 | ||||
Non-FFS | 76% | 78% | 3.5 | 4.8 | |||||
No cattle, no goat | FFS | 11% | * | 16% | |||||
Non-FFS | 22% | 19% |
Embu | Taita Taveta | |||||
---|---|---|---|---|---|---|
FFS | (3) | Non | FFS | (3) | Non | |
Engaged in tree growing | 99% | ** | 91% | 94% | 97% | |
Number of grown trees | 64.9 | 72.9 | 42.0 | 29.1 | ||
Survival rate of planted trees (1) | 69% | 66% | 57% | 65% | ||
Primary purpose of tree growing | ||||||
Self-consumption | 59% | 63% | 38% | 53% | ||
For sales | 20% | * | 10% | 13% | * | 0% |
Supplementary purpose | ||||||
For fodder | 54% | 43% | 47% | 34% | ||
For conservation | 77% | 80% | 97% | 94% | ||
Growing trees on/around farms | 82% | 79% | 69% | 69% | ||
Engaged in nursery management | 78% | *** | 46% | 81% | ** | 50% |
Monitoring local wood price (2) | 3.43 | ** | 2.85 | 2.94 | 2.81 | |
Attention to tree-soil relations (2) | 4.68 | * | 4.48 | 4.75 | 4.69 |
Embu | Taita Taveta | |||||
---|---|---|---|---|---|---|
FFS | Non | FFS | Non | |||
Households with wood sales income | 29% | 24% | 19% | 9% | ||
Average per year (KES) | 3298 | 2217 | 2436 | 1031 | ||
Overall income (KES) | 100,219 | 147,219 | 165,219 | 125,906 | ||
Average % of wood sales income | 3.3% | 1.5% | 1.5% | 0.8% |
Embu | Taita Taveta | |||||
---|---|---|---|---|---|---|
FFS | (3) | Non | FFS | (3) | Non | |
Early adoption of new practices (1) | 3.98 | *** | 3.47 | 4.13 | 3.81 | |
Involvement in group activities | 100% | *** | 67% | 94% | * | 78% |
Average number of groups (2) | 1.84 | *** | 0.99 | 1.75 | *** | 1.16 |
On agriculture | 83% | *** | 11% | 88% | *** | 50% |
On tree growing/nursery | 11% | *** | 0% | 9% | ** | 0% |
Women’s group | 32% | * | 19% | 28% | 19% |
Embu | Taita Taveta | |||||
---|---|---|---|---|---|---|
FFS | (3) | Non | FFS | (3) | Non | |
Joint decision-making on (2) | ||||||
Crop for self-consumption | 67% (90) | * | 53% (91) | 58% (31) | 55% (31) | |
Cash crop farming | 72% (58) | * | 57% (54) | 73% (15) | 75% (12) | |
Tree nursery management | 68% (71) | 67% (42) | 58% (26) | 75% (16) | ||
Tree growing | 69% (85) | ** | 50% (68) | 56% (32) | 59% (27) | |
Livestock rearing | 71% (82) | * | 53% (77) | 61% (26) | 61% (28) |
Embu | Taita Taveta | |||||
---|---|---|---|---|---|---|
FFS (1) | Non | FFS (1) | Non | |||
Recognition of water issues in tree growing (2) | 3.76 | 3.96 | 4.09 | 3.75 | ||
Possession of roof catchment system | 18% | 13% | 3% | 0% | ||
Access to borehole water | 3% | 8% | 34% (3) | 34% (3) |
Embu | Taita Taveta | |||||
---|---|---|---|---|---|---|
Access to borehole | (3) | No | Access to borehole | (3) | No | |
The number of households | 6 | 254 | 20 | 64 | ||
Drought (KES) (2) | 28,900 | 23,896 | 26,385 | · | 45,414 | |
Crop disease and pest (KES) (2) | 6167 | 6581 | 4700 | 3250 | ||
Death of livestock (KES) (2) | 22,167 | 6685 | 35,950 | 44,477 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubo, H.; Sato, I.; Ateka, J.; Mbeche, R. Assessing the Contribution of Farm Forestry Farmer Field Schools to Climate Resilience in a Mixed Crop–Livestock System in Dryland Kenya. Sustainability 2025, 17, 8157. https://doi.org/10.3390/su17188157
Kubo H, Sato I, Ateka J, Mbeche R. Assessing the Contribution of Farm Forestry Farmer Field Schools to Climate Resilience in a Mixed Crop–Livestock System in Dryland Kenya. Sustainability. 2025; 17(18):8157. https://doi.org/10.3390/su17188157
Chicago/Turabian StyleKubo, Hideyuki, Ichiro Sato, Josiah Ateka, and Robert Mbeche. 2025. "Assessing the Contribution of Farm Forestry Farmer Field Schools to Climate Resilience in a Mixed Crop–Livestock System in Dryland Kenya" Sustainability 17, no. 18: 8157. https://doi.org/10.3390/su17188157
APA StyleKubo, H., Sato, I., Ateka, J., & Mbeche, R. (2025). Assessing the Contribution of Farm Forestry Farmer Field Schools to Climate Resilience in a Mixed Crop–Livestock System in Dryland Kenya. Sustainability, 17(18), 8157. https://doi.org/10.3390/su17188157