Research on the Dissipative Evolution of the Regional Digital Innovation Ecosystem from the Perspective of Symbiosis Theory
Abstract
1. Introduction
2. Theoretical Framework
2.1. Theoretical Model Construction of RDIES Systems from the Perspective of Symbiosis Theory
2.2. Dissipative Structure Theory
3. Research Design and Model Construction
3.1. Dissipative Structure Characteristics of RDIES Systems
3.2. Overall Design Based on the Brusselator Model
- (1)
- The Brusselator Model
- (2)
- Translation of the RDIES System Based on the Brusselator Model
3.3. Model Construction, Indicator Selection, and Data Sources
4. Empirical Analysis
4.1. Determination of System Dissipative Structure
4.2. Comprehensive Assessment of System Dissipative Evolution
5. Discussion
5.1. Research Implications
5.2. Limitations and Future Research Directions
6. Conclusions and Recommendations
6.1. Conclusions
6.2. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Lin, Z.; Wu, Y.; Hu, Y. Measurement, Regional Disparities, and Spatial Convergence in the Symbiotic Level of China’s Digital Innovation Ecosystem. Systems 2025, 13, 254. [Google Scholar] [CrossRef]
- Gong, C.; Ribiere, V. Developing a Unified Definition of Digital Transformation. Technovation 2021, 102, 102217. [Google Scholar] [CrossRef]
- Saeedikiya, M.; Salunke, S.; Kowalkiewicz, M. The Nexus of Digital Transformation and Innovation: A Multilevel Framework and Research Agenda. J. Innov. Knowl. 2025, 10, 100640. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.Y. Research on Health Evaluation and Early Warning of Regional Digital Innovation Ecosystem. Soft Sci. 2023, 37, 24–30. [Google Scholar] [CrossRef]
- Ma, Y.; Fang, Y.; Liu, J. Research on Distribution Dynamics, Regional Differences, and Convergence of Development for Digital Innovation Ecosystem. Ann. Reg. Sci. 2024, 73, 1839–1863. [Google Scholar] [CrossRef]
- Zhang, M.; Cheng, R.; Fei, J.; Khanal, R. Enhancing Digital Innovation Ecosystem Resilience through the Interplay of Organizational, Technological, and Environmental Factors: A Study of 31 Provinces in China Using NCA and fsQCA. Sustainability 2024, 16, 1946. [Google Scholar] [CrossRef]
- Du, D.; Jian, X. Enhancing the Resilience of Regional Digital Innovation Ecosystems: A Pathway Analysis from the Lens of Resource Orchestration Theory. Ann. Reg. Sci. 2024, 73, 1811–1838. [Google Scholar] [CrossRef]
- Li, L.; Zeng, Y.; Xia, D. How Does the Digital Innovation Ecosystem Enable Green Regional Development? A Dynamic QCA Study in China. Systems 2024, 12, 551. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, K.H.; Mu, R.P. The Digital Innovation Ecosystems: Theory Building and a Research Agenda. Sci. Res. Manag. 2021, 42, 1–11. [Google Scholar] [CrossRef]
- Wang, P. Connecting the Parts with the Whole: Toward an Information Ecology Theory of Digital Innovation Ecosystems. MIS Q. 2021, 45, 397–422. [Google Scholar] [CrossRef]
- Beltagui, A.; Rosli, A.; Candi, M. Exaptation in a Digital Innovation Ecosystem: The Disruptive Impacts of 3D Printing. Res. Policy 2020, 49, 103833. [Google Scholar] [CrossRef]
- Ji, H.; Zou, H.; Liu, B. Research on Dynamic Optimization and Coordination Strategy of Value Co-Creation in Digital Innovation Ecosystems. Sustainability 2023, 15, 7616. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, H.; Lyu, X. Analysis of Decision-Making for Value Co-Creation in Digital Innovation Systems: An Evolutionary Game Model of Complex Networks. Manag. Decis. Econ. 2023, 44, 2869–2884. [Google Scholar] [CrossRef]
- Chen, D.; Fu, M.; Wang, L. Study on the Symbiosis Evolution Mechanism of the Digital Innovation Ecosystem: Considering Government Regulation. Kybernetes 2025, 54, 3023–3039. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, Y.; Dong, L. Numerical Simulation and Governance Framework for Multi Stakeholder Symbiotic Evolution in Digital Innovation Ecosystems. Sci. Rep. 2025, 15, 23638. [Google Scholar] [CrossRef]
- Chen, H.; Cai, S. Research on Evaluation and Influencing Factors of Regional Digital Innovation Ecosystem Resilience—Empirical Research Based on Panel Data of 30 Provinces and Cities in China. Sustainability 2023, 15, 10477. [Google Scholar] [CrossRef]
- Hu, R.J.; Zhang, Y.; Zhang, G.Y.; Li, Q.; Yang, S.W. Dynamic Evaluation and Driving Mechanism of the Health of Regional Digital Innovation Ecosystem. Sci. Technol. Manag. Res. 2023, 43, 71–78. [Google Scholar]
- Liu, X.X. Evaluation of the Degree of Symbiosis in China’s Digital Innovation Ecosystem: Dynamic Evolution and Influencing Factors. J. Tech. Econ. Manag. 2024, 3, 49–54. [Google Scholar]
- Meng, Y.; Zhang, Y.; Hou, Z.; Zhang, X.; Liu, F. Niche Fitness of Digital Innovation Ecosystems: Evaluation, Dynamic Evolution and Spatial Effects. Eur. J. Innov. Manag. 2025. [Google Scholar] [CrossRef]
- Rong, Y.; Qiu, R.; Wang, L.; Yu, L.; Huang, Y. An Integrated Assessment Framework for the Evaluation of Niche Suitability of Digital Innovation Ecosystem with Interval-Valued Fermatean Fuzzy Information. Eng. Appl. Artif. Intell. 2024, 138, 109326. [Google Scholar] [CrossRef]
- Huang, R.; Mao, S. Enhancing the Energy Level of Regional Digital Innovation Ecosystems: A Configuration Perspective. PLoS ONE 2024, 19, e0309229. [Google Scholar] [CrossRef]
- Brea, E. A Framework for Mapping Actor Roles and Their Innovation Potential in Digital Ecosystems. Technovation 2023, 125, 102783. [Google Scholar] [CrossRef]
- Yang, L.; Shang, C.; Yang, J.C. Dissipative Evolution of Regional Innovation Ecosystem from the Perspective of Symbiosis Theory. Sci. Technol. Prog. Policy 2023, 40, 71–81. [Google Scholar]
- Yi, H.Y.; Zeng, Z.M. Research on the Dissipative Evolution of Innovation Ecosystem in High-Tech Industry: Experience Analysis of Provincial Regions in China with Brusselator Model. West Forum 2021, 31, 81–95. [Google Scholar]
- Li, J.X.; Chu, J.W. Steady-State Evolution and Knowledge Generation Capability Analysis of Digital Intelligence Knowledge Eco-system: Based on Dissipative Structure Theory. Inf. Doc. Serv. 2024, 45, 53–63. [Google Scholar]
- Li, S.; Jiang, F. An Empirical Analysis of Social Public Resources Digital Sharing System: Dissipative Structure Theory. PLoS ONE 2022, 17, e0271300. [Google Scholar] [CrossRef]
- Wen, X.Q. Study on Layers and Operating Mechanisms of Innovation System from the Perspective of Symbiosis Theory. Sci. Technol. Manag. Res. 2016, 36, 11. [Google Scholar]
- Tian, Q.F.; Shen, W.K.; Li, Y. The Evolution and Impediments to Regional Digital Innovation Ecosystem from a Symbiotic Perspective. Sci. Technol. Prog. Policy 2024, 41, 1–12. [Google Scholar]
- Wang, W.N.; Wu, X.T.; Mei, L. Innovation Ecosystem: A systematic review from the contextual perspective. Sci. Res. Manag. 2019, 40, 25–36. [Google Scholar] [CrossRef]
- Deng, J.; Chi, H.; Zhang, T. Effects of Entrepreneurial Activities on Rural Revitalization: Based on Dissipative Structure Theory. Agriculture 2024, 14, 1474. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Y.; Kou, Y.; Yang, X. Study on Dissipative Structure of Mega Railway Infrastructure Project Management System. Eng. Constr. Archit. Manag. 2024, 31, 3599–3621. [Google Scholar] [CrossRef]
- Deng, F.; Liu, C.; Liang, X. Measurement of Regional Agricultural Sustainable Development System Based on Dissipative Structure Theory: A Case Study in Sichuan Province, China. Sustainability 2017, 9, 2047. [Google Scholar] [CrossRef]
- Shvartsev, S.L. Self-Organizing Abiogenic Dissipative Structures in the Geologic History of the Earth. Earth Sci. Front. 2009, 16, 257–275. [Google Scholar] [CrossRef]
- Prigogine, I.; Lefever, R. Symmetry Breaking Instabilities in Dissipative Systems. II. J. Chem. Phys. 1968, 48, 1695–1700. [Google Scholar] [CrossRef]
- Lefever, R. The Rehabilitation of Irreversible Processes and Dissipative Structures’ 50th Anniversary. Philos. Trans. A Math. Phys. Eng. Sci. 2018, 376, 20170365. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Tang, Z.Y. Study on dissipative structure of regional innovation ecosystem. Stud. Sci. Sci. 2021, 39, 170–179. [Google Scholar] [CrossRef]
- Xue, S.; Zhu, J.; Wang, L.; Wang, S.; Xu, X. Research on Dissipative Structure of China’s Green Building Industry System Based on Brusselator Model. Environ. Impact Assess. Rev. 2023, 103, 107284. [Google Scholar] [CrossRef]
- Deng, X.; Zheng, S.; Xu, P.; Zhang, X. Study on Dissipative Structure of China’s Building Energy Service Industry System Based on Brusselator Model. J. Clean. Prod. 2017, 150, 112–122. [Google Scholar] [CrossRef]
- Schneider, F.W. Periodic Perturbations of Chemical Oscillators: Experiments. Annu. Rev. Phys. Chem. 1985, 36, 347–378. [Google Scholar] [CrossRef]
- Ren, P.Y.; Zhang, L.; Song, Y. Management entropy and management dissipative structure theory based on complexity science and their roles in enterprise organization and decision-making. J. Manag. World 2001, 6, 142–147. [Google Scholar] [CrossRef]
- Li, X.D.; Rao, M.X. Research on the development path of the regional digital innovation ecosystem: Configuration analysis based on fsQCA. J. Ind. Eng./Eng. Manag. 2023, 37, 20–31. [Google Scholar] [CrossRef]
- Zhang, X.L.; Wu, T.T. Research on the Spatial Differentiation Pattern of Digital Economic Development in Provincial Regions of China. World Surv. Res 2019, 10, 34–40. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, J.E.; Ma, L. Spatiotemporal coupling and influencing factors of new infrastructure and coordinated economic development. Sci. Geogr. Sin. 2024, 44, 562–572. [Google Scholar]
- Han, X.F.; Gou, Y.N.; Xiao, Y.F.; Li, B.X. The Power of Institutional Innovation in the Construction of Digital Ecological Civilization: A Perspective of Policy Synergy Empowerment. China Ind. Econ. 2024, 11, 62–80. [Google Scholar] [CrossRef]
- Yang, W.; Lao, X.Y.; Zhou, Q.; Zhang, L. The governance niche configurations for the resilience of regional digital innovation ecosystem. Stud. Sci. Sci. 2022, 40, 534–544. [Google Scholar] [CrossRef]
- Endres, H.; Huesig, S.; Pesch, R. Digital Innovation Management for Entrepreneurial Ecosystems: Services and Functionalities as Drivers of Innovation Management Software Adoption. Rev. Manag. Sci. 2022, 16, 135–156. [Google Scholar] [CrossRef]
- Liu, G.W.; Shao, Y.F. Structure, Characteristics and Evolutionary Mechanism of the Digital Innovation Ecosystem: The Theoretical Perspective of Autopoietic System. Sci. Technol. Prog. Policy 2025, 1–9. Available online: https://kns.cnki.net/kcms/detail/42.1224.G3.20250508.1525.002.html (accessed on 9 July 2025).
- Shu, H.; Tang, F. The multidimensional configuration path for enhancing resilience of regional digital innovation ecosystem. Sci. Technol. Prog. Policy 2025, 42, 85–96. [Google Scholar]
Number | Condition | Result |
---|---|---|
1 | When , , are the negative real roots. | The system is stable, is a stable equilibrium point. |
2 | When , , are positive real roots. | The system deviates from the steady state, is an unstable equilibrium point. |
3 | When , , are complex conjugate roots with negative real parts. | The system converges, is a stable focus. |
4 | When , , are complex conjugate roots with positive real parts. | The system oscillates, is an unstable focus. |
5 | When , the system has purely imaginary roots. | The system is in a critical state. |
Mutation Type | Indicator Count | Potential Function | Normalization Formula |
---|---|---|---|
Fold catastrophe | 1 | ||
Cusp catastrophe | 2 | ||
Swallowtail catastrophe | 3 | ||
Butterfly catastrophe | 4 |
Target Layer | Rule Layer | Index Layer |
---|---|---|
A Digital innovation investment | Digital innovation population X1 | Number of higher education institutions X11 |
Number of industrial enterprises with R&D activities X12 | ||
Number of research and development institutions in industrial enterprises X13 | ||
Digital innovation resource investment X2 | Number of employees in the information transmission, software, and information technology services sector X21 | |
Fixed asset investment in the information transmission, software, and information technology services sector X22 | ||
Internal expenditure on research and development in the digital industry X23 | ||
Average byte size per web page X24 | ||
Digital innovation platform construction X3 | Number of internet broadband access ports X31 | |
Mobile phone exchange capacity X32 | ||
Length of long-distance optical cable lines X33 | ||
Number of enterprises specializing in IoT, cloud computing, blockchain, and data centers X34 | ||
B Digital innovation environment | Economic environment Y1 | GDP per capita Y11 |
Digital financial inclusion index Y12 | ||
Per capita consumption expenditure of residents Y13 | ||
Policy environment Y2 | Proportion of science and technology expenditure in the general public budget spending Y21 | |
Local financial expenditure for education Y22 | ||
Proportion of digital word frequency in government bulletins Y23 | ||
Market environment Y3 | Technology market turnover Y31 | |
Number of technology market contracts Y32 | ||
Per capita retail sales of consumer goods Y33 |
Region | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | Average |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | −0.570 | −0.525 | −0.525 | −0.503 | −0.450 | −0.412 | −0.329 | −0.331 | −0.269 | −0.256 | −0.209 | −0.398 |
Tianjin | −0.798 | −0.780 | −0.768 | −0.762 | −0.752 | −0.737 | −0.723 | −0.735 | −0.713 | −0.723 | −0.691 | −0.744 |
Hebei | −0.936 | −0.932 | −0.924 | −0.902 | −0.896 | −0.885 | −0.879 | −0.867 | −0.845 | −0.842 | −0.812 | −0.884 |
Shanxi | −0.930 | −0.927 | −0.932 | −0.925 | −0.891 | −0.887 | −0.885 | −0.878 | −0.848 | −0.864 | −0.840 | −0.891 |
Inner Mongolia | −0.925 | −0.916 | −0.905 | −0.894 | −0.894 | −0.889 | −0.897 | −0.891 | −0.874 | −0.862 | −0.845 | −0.890 |
Liaoning | −0.869 | −0.860 | −0.859 | −0.852 | −0.844 | −0.827 | −0.834 | −0.826 | −0.800 | −0.804 | −0.767 | −0.831 |
Jilin | −0.927 | −0.922 | −0.897 | −0.885 | −0.877 | −0.867 | −0.876 | −0.875 | −0.869 | −0.889 | −0.854 | −0.885 |
Heilongjiang | −0.939 | −0.931 | −0.920 | −0.904 | −0.892 | −0.885 | −0.902 | −0.897 | −0.874 | −0.861 | −0.869 | −0.898 |
Shanghai | −0.709 | −0.701 | −0.704 | −0.673 | −0.651 | −0.617 | −0.569 | −0.578 | −0.500 | −0.489 | −0.395 | −0.599 |
Jiangsu | −0.834 | −0.860 | −0.837 | −0.852 | −0.820 | −0.818 | −0.816 | −0.805 | −0.717 | −0.758 | −0.706 | −0.802 |
Zhejiang | −0.838 | −0.836 | −0.831 | −0.811 | −0.813 | −0.797 | −0.754 | −0.785 | −0.739 | −0.771 | −0.620 | −0.781 |
Anhui | −0.909 | −0.897 | −0.869 | −0.824 | −0.817 | −0.796 | −0.746 | −0.751 | −0.677 | −0.641 | −0.609 | −0.776 |
Fujian | −0.893 | −0.886 | −0.872 | −0.855 | −0.845 | −0.820 | −0.788 | −0.775 | −0.751 | −0.747 | −0.736 | −0.815 |
Jiangxi | −0.945 | −0.931 | −0.910 | −0.896 | −0.876 | −0.878 | −0.845 | −0.836 | −0.795 | −0.800 | −0.730 | −0.858 |
Shandong | −0.868 | −0.859 | −0.842 | −0.829 | −0.814 | −0.770 | −0.749 | −0.659 | −0.692 | −0.695 | −0.659 | −0.767 |
Henan | −0.926 | −0.916 | −0.909 | −0.900 | −0.886 | −0.871 | −0.845 | −0.837 | −0.786 | −0.775 | −0.750 | −0.855 |
Hubei | −0.881 | −0.830 | −0.807 | −0.779 | −0.755 | −0.741 | −0.694 | −0.695 | −0.632 | −0.569 | −0.465 | −0.713 |
Hunan | −0.919 | −0.920 | −0.910 | −0.898 | −0.883 | −0.857 | −0.835 | −0.805 | −0.774 | −0.689 | −0.625 | −0.829 |
Guangdong | −0.831 | −0.856 | −0.832 | −0.841 | −0.899 | −0.913 | −0.894 | −0.991 | −1.079 | −1.140 | −1.162 | −0.949 |
Guangxi | −0.944 | −0.931 | −0.921 | −0.916 | −0.903 | −0.904 | −0.879 | −0.881 | −0.849 | −0.861 | −0.858 | −0.895 |
Hainan | −0.950 | −0.943 | −0.930 | −0.917 | −0.910 | −0.908 | −0.882 | −0.877 | −0.846 | −0.833 | −0.811 | −0.891 |
Chongqing | −0.916 | −0.902 | −0.894 | −0.874 | −0.873 | −0.838 | −0.820 | −0.806 | −0.773 | −0.759 | −0.721 | −0.834 |
Sichuan | −0.920 | −0.909 | −0.894 | −0.888 | −0.878 | −0.852 | −0.824 | −0.816 | −0.784 | −0.800 | −0.762 | −0.848 |
Guizhou | −0.963 | −0.953 | −0.926 | −0.890 | −0.867 | −0.860 | −0.850 | −0.853 | −0.835 | −0.835 | −0.819 | −0.878 |
Yunnan | −0.955 | −0.950 | −0.937 | −0.915 | −0.912 | −0.907 | −0.865 | −0.865 | −0.853 | −0.862 | −0.840 | −0.896 |
Shaanxi | −0.890 | −0.863 | −0.856 | −0.845 | −0.800 | −0.777 | −0.732 | −0.731 | −0.655 | −0.628 | −0.583 | −0.760 |
Gansu | −0.960 | −0.954 | −0.931 | −0.928 | −0.916 | −0.915 | −0.904 | −0.894 | −0.863 | −0.866 | −0.844 | −0.907 |
Qinghai | −0.971 | −0.958 | −0.945 | −0.939 | −0.933 | −0.915 | −0.915 | −0.910 | −0.893 | −0.915 | −0.900 | −0.927 |
Ningxia | −0.955 | −0.941 | −0.919 | −0.922 | −0.903 | −0.888 | −0.874 | −0.875 | −0.861 | −0.869 | −0.849 | −0.896 |
Xinjiang | −0.945 | −0.938 | −0.931 | −0.928 | −0.916 | −0.914 | −0.904 | −0.902 | −0.884 | −0.870 | −0.853 | −0.908 |
National average | −0.894 | −0.884 | −0.871 | −0.858 | −0.846 | −0.831 | −0.810 | −0.808 | −0.778 | −0.776 | −0.739 | −0.827 |
Objective Level | Variable Level | Indexes | Weight |
---|---|---|---|
A Digital innovation investment (Swallowtail catastrophe) (Complementary type) | X1 (Swallowtail catastrophe) (Complementary type) 0.3559 | X11 | 0.0292 |
X12 | 0.1402 | ||
X13 | 0.1865 | ||
X2 (Butterfly catastrophe) (Non-complementary type) 0.3691 | X21 | 0.1071 | |
X22 | 0.0595 | ||
X23 | 0.1745 | ||
X24 | 0.0280 | ||
X3 (Butterfly catastrophe) (Complementary type) 0.2750 | X31 | 0.0525 | |
X32 | 0.0474 | ||
X33 | 0.0556 | ||
X34 | 0.1195 | ||
B Digital innovation environment (Swallowtail catastrophe) (Complementary type) | Y1 (Swallowtail catastrophe) (Complementary type) 0.1952 | Y11 | 0.0797 |
Y12 | 0.0465 | ||
Y13 | 0.0690 | ||
Y2 (Swallowtail catastrophe) (Non-complementary type) 0.2562 | Y21 | 0.1180 | |
Y22 | 0.0768 | ||
Y23 | 0.0614 | ||
Y3 (Swallowtail catastrophe) (Complementary type) 0.5486 | Y31 | 0.2674 | |
Y32 | 0.2067 | ||
Y33 | 0.0744 |
Region | Evaluation Value of the Regional Digital Innovation Investment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
Beijing | 0.670 | 0.680 | 0.688 | 0.694 | 0.695 | 0.694 | 0.694 | 0.704 | 0.713 | 0.732 | 0.747 |
Tianjin | 0.633 | 0.637 | 0.646 | 0.648 | 0.652 | 0.655 | 0.651 | 0.661 | 0.668 | 0.674 | 0.675 |
Hebei | 0.647 | 0.653 | 0.664 | 0.670 | 0.679 | 0.680 | 0.686 | 0.706 | 0.701 | 0.715 | 0.716 |
Shanghai | 0.675 | 0.680 | 0.684 | 0.687 | 0.688 | 0.689 | 0.700 | 0.722 | 0.747 | 0.741 | 0.756 |
Jiangsu | 0.785 | 0.800 | 0.804 | 0.815 | 0.825 | 0.838 | 0.855 | 0.871 | 0.883 | 0.899 | 0.900 |
Zhejiang | 0.737 | 0.748 | 0.766 | 0.776 | 0.787 | 0.796 | 0.807 | 0.827 | 0.841 | 0.855 | 0.861 |
Fujian | 0.689 | 0.715 | 0.708 | 0.717 | 0.730 | 0.743 | 0.749 | 0.760 | 0.776 | 0.787 | 0.791 |
Shandong | 0.719 | 0.733 | 0.739 | 0.748 | 0.756 | 0.755 | 0.751 | 0.766 | 0.785 | 0.806 | 0.812 |
Guangdong | 0.826 | 0.834 | 0.857 | 0.880 | 0.903 | 0.914 | 0.925 | 0.936 | 0.946 | 0.947 | 0.948 |
Hainan | 0.565 | 0.575 | 0.573 | 0.576 | 0.579 | 0.586 | 0.588 | 0.597 | 0.605 | 0.604 | 0.609 |
Shanxi | 0.619 | 0.613 | 0.622 | 0.631 | 0.638 | 0.643 | 0.647 | 0.658 | 0.658 | 0.662 | 0.661 |
Anhui | 0.669 | 0.684 | 0.694 | 0.706 | 0.719 | 0.729 | 0.738 | 0.754 | 0.771 | 0.782 | 0.790 |
Jiangxi | 0.634 | 0.632 | 0.649 | 0.661 | 0.681 | 0.696 | 0.711 | 0.730 | 0.742 | 0.752 | 0.751 |
Henan | 0.656 | 0.663 | 0.678 | 0.691 | 0.698 | 0.700 | 0.709 | 0.722 | 0.739 | 0.752 | 0.748 |
Hubei | 0.680 | 0.690 | 0.700 | 0.707 | 0.716 | 0.726 | 0.738 | 0.749 | 0.770 | 0.789 | 0.791 |
Hunan | 0.668 | 0.672 | 0.687 | 0.689 | 0.703 | 0.713 | 0.718 | 0.733 | 0.751 | 0.763 | 0.773 |
Inner Mongolia | 0.606 | 0.602 | 0.612 | 0.619 | 0.625 | 0.626 | 0.624 | 0.629 | 0.638 | 0.646 | 0.652 |
Guangxi | 0.619 | 0.618 | 0.625 | 0.631 | 0.638 | 0.641 | 0.645 | 0.657 | 0.670 | 0.677 | 0.672 |
Chongqing | 0.621 | 0.633 | 0.645 | 0.657 | 0.667 | 0.675 | 0.684 | 0.702 | 0.711 | 0.717 | 0.715 |
Sichuan | 0.672 | 0.676 | 0.695 | 0.708 | 0.723 | 0.732 | 0.731 | 0.744 | 0.761 | 0.772 | 0.775 |
Guizhou | 0.607 | 0.617 | 0.618 | 0.627 | 0.634 | 0.638 | 0.643 | 0.651 | 0.652 | 0.666 | 0.666 |
Yunnan | 0.616 | 0.622 | 0.626 | 0.631 | 0.636 | 0.642 | 0.649 | 0.656 | 0.669 | 0.680 | 0.693 |
Shaanxi | 0.633 | 0.637 | 0.653 | 0.660 | 0.667 | 0.673 | 0.679 | 0.693 | 0.704 | 0.706 | 0.712 |
Gansu | 0.599 | 0.604 | 0.609 | 0.612 | 0.619 | 0.622 | 0.626 | 0.629 | 0.633 | 0.635 | 0.640 |
Qinghai | 0.547 | 0.557 | 0.559 | 0.563 | 0.562 | 0.566 | 0.566 | 0.568 | 0.572 | 0.576 | 0.576 |
Ningxia | 0.559 | 0.567 | 0.566 | 0.573 | 0.580 | 0.586 | 0.592 | 0.595 | 0.606 | 0.612 | 0.611 |
Xinjiang | 0.602 | 0.610 | 0.611 | 0.615 | 0.616 | 0.620 | 0.621 | 0.627 | 0.630 | 0.633 | 0.636 |
Liaoning | 0.648 | 0.654 | 0.657 | 0.654 | 0.661 | 0.666 | 0.670 | 0.677 | 0.685 | 0.691 | 0.689 |
Jilin | 0.605 | 0.612 | 0.609 | 0.615 | 0.618 | 0.621 | 0.621 | 0.624 | 0.629 | 0.631 | 0.629 |
Heilongjiang | 0.617 | 0.621 | 0.623 | 0.628 | 0.631 | 0.630 | 0.633 | 0.637 | 0.637 | 0.639 | 0.638 |
Region | Evaluation Value of the Regional Digital Innovation Environment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |
Beijing | 0.867 | 0.877 | 0.887 | 0.898 | 0.900 | 0.906 | 0.932 | 0.933 | 0.942 | 0.945 | 0.955 |
Tianjin | 0.794 | 0.805 | 0.810 | 0.815 | 0.813 | 0.817 | 0.817 | 0.811 | 0.824 | 0.827 | 0.836 |
Hebei | 0.698 | 0.703 | 0.692 | 0.727 | 0.727 | 0.728 | 0.738 | 0.755 | 0.779 | 0.779 | 0.801 |
Shanghai | 0.825 | 0.835 | 0.842 | 0.850 | 0.858 | 0.868 | 0.888 | 0.885 | 0.904 | 0.914 | 0.929 |
Jiangsu | 0.805 | 0.807 | 0.849 | 0.857 | 0.860 | 0.876 | 0.888 | 0.897 | 0.922 | 0.933 | 0.941 |
Zhejiang | 0.781 | 0.795 | 0.825 | 0.837 | 0.847 | 0.857 | 0.876 | 0.886 | 0.904 | 0.905 | 0.940 |
Fujian | 0.764 | 0.768 | 0.773 | 0.779 | 0.794 | 0.805 | 0.826 | 0.835 | 0.848 | 0.848 | 0.850 |
Shandong | 0.778 | 0.786 | 0.794 | 0.801 | 0.817 | 0.826 | 0.845 | 0.868 | 0.887 | 0.875 | 0.890 |
Guangdong | 0.817 | 0.820 | 0.843 | 0.857 | 0.870 | 0.874 | 0.896 | 0.907 | 0.920 | 0.913 | 0.919 |
Hainan | 0.670 | 0.679 | 0.691 | 0.702 | 0.694 | 0.692 | 0.732 | 0.736 | 0.749 | 0.752 | 0.766 |
Shanxi | 0.715 | 0.720 | 0.700 | 0.700 | 0.728 | 0.728 | 0.725 | 0.737 | 0.770 | 0.735 | 0.757 |
Anhui | 0.737 | 0.747 | 0.775 | 0.786 | 0.803 | 0.815 | 0.833 | 0.838 | 0.864 | 0.879 | 0.889 |
Jiangxi | 0.688 | 0.707 | 0.723 | 0.737 | 0.762 | 0.765 | 0.789 | 0.803 | 0.823 | 0.834 | 0.855 |
Henan | 0.704 | 0.710 | 0.716 | 0.728 | 0.755 | 0.762 | 0.787 | 0.804 | 0.839 | 0.853 | 0.857 |
Hubei | 0.763 | 0.797 | 0.813 | 0.828 | 0.838 | 0.847 | 0.864 | 0.863 | 0.881 | 0.897 | 0.917 |
Hunan | 0.709 | 0.718 | 0.723 | 0.728 | 0.752 | 0.768 | 0.797 | 0.822 | 0.843 | 0.874 | 0.891 |
Inner Mongolia | 0.695 | 0.701 | 0.707 | 0.700 | 0.705 | 0.667 | 0.674 | 0.692 | 0.711 | 0.713 | 0.749 |
Guangxi | 0.692 | 0.712 | 0.701 | 0.698 | 0.717 | 0.719 | 0.727 | 0.727 | 0.766 | 0.768 | 0.763 |
Chongqing | 0.722 | 0.725 | 0.730 | 0.742 | 0.749 | 0.760 | 0.777 | 0.783 | 0.809 | 0.816 | 0.825 |
Sichuan | 0.712 | 0.727 | 0.742 | 0.748 | 0.757 | 0.778 | 0.798 | 0.809 | 0.841 | 0.827 | 0.836 |
Guizhou | 0.619 | 0.660 | 0.689 | 0.706 | 0.736 | 0.739 | 0.765 | 0.766 | 0.775 | 0.773 | 0.772 |
Yunnan | 0.656 | 0.669 | 0.686 | 0.687 | 0.700 | 0.699 | 0.714 | 0.723 | 0.739 | 0.738 | 0.753 |
Shaanxi | 0.727 | 0.749 | 0.764 | 0.774 | 0.797 | 0.801 | 0.805 | 0.794 | 0.843 | 0.846 | 0.863 |
Gansu | 0.645 | 0.664 | 0.691 | 0.687 | 0.691 | 0.679 | 0.695 | 0.711 | 0.732 | 0.750 | 0.767 |
Qinghai | 0.627 | 0.658 | 0.669 | 0.673 | 0.686 | 0.681 | 0.657 | 0.664 | 0.695 | 0.642 | 0.671 |
Ningxia | 0.642 | 0.658 | 0.677 | 0.685 | 0.697 | 0.699 | 0.719 | 0.723 | 0.731 | 0.736 | 0.743 |
Xinjiang | 0.683 | 0.688 | 0.688 | 0.693 | 0.688 | 0.682 | 0.685 | 0.684 | 0.705 | 0.698 | 0.721 |
Liaoning | 0.755 | 0.787 | 0.778 | 0.772 | 0.771 | 0.783 | 0.775 | 0.777 | 0.795 | 0.785 | 0.798 |
Jilin | 0.719 | 0.725 | 0.733 | 0.741 | 0.758 | 0.751 | 0.730 | 0.736 | 0.731 | 0.673 | 0.726 |
Heilongjiang | 0.703 | 0.713 | 0.716 | 0.721 | 0.727 | 0.715 | 0.706 | 0.718 | 0.736 | 0.732 | 0.729 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, X.; Tong, L. Research on the Dissipative Evolution of the Regional Digital Innovation Ecosystem from the Perspective of Symbiosis Theory. Sustainability 2025, 17, 8121. https://doi.org/10.3390/su17188121
An X, Tong L. Research on the Dissipative Evolution of the Regional Digital Innovation Ecosystem from the Perspective of Symbiosis Theory. Sustainability. 2025; 17(18):8121. https://doi.org/10.3390/su17188121
Chicago/Turabian StyleAn, Xuejiao, and Lei Tong. 2025. "Research on the Dissipative Evolution of the Regional Digital Innovation Ecosystem from the Perspective of Symbiosis Theory" Sustainability 17, no. 18: 8121. https://doi.org/10.3390/su17188121
APA StyleAn, X., & Tong, L. (2025). Research on the Dissipative Evolution of the Regional Digital Innovation Ecosystem from the Perspective of Symbiosis Theory. Sustainability, 17(18), 8121. https://doi.org/10.3390/su17188121