Sustainable Biostimulation in Chili Cultivation: Effects of PGPMs and Marine Algal Extracts on the Physiological Performance of Serrano Pepper Crop
Abstract
1. Introduction
2. Materials and Methods
2.1. Crop Management
2.2. Experimental Design and Application of Biofertilizers
2.3. Plant Sampling
2.4. Determination of Physiological and Agronomic Parameters
2.4.1. Chlorophyll Index (SPAD Values)
2.4.2. Photosynthetic Pigments
2.4.3. Nitrate Reductase Enzyme Activity
2.4.4. Foliar Area and Biomass
2.4.5. Yield
2.5. Pearson Correlation Heatmap
2.6. Radar Chart: Multivariate Comparison by Priming Treatment
2.7. Statistical Analysis
3. Results
3.1. Chlorophyll Index (SPAD Values)
3.2. Photosynthetic Pigments
3.3. Nitrate Reductase Enzyme Activity
3.4. Foliar Area and Biomass
3.5. Yield
3.6. Correlation Analysis and Heatmap
3.7. Radar Chart: Multivariate Comparison by Biostimulant Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahad, M.A.; Sayed, M.S.; Osama, I.A. Monitoring pesticide residues in pepper (Capsicum annuum L.) from Al-Qassim region, Saudi Arabia: Occurrence, quality, and risk evaluations. Heliyon 2024, 10, e36805. [Google Scholar] [CrossRef] [PubMed]
- SIAP (Servicio de Información Agroalimentaria y Pesquera). Available online: https://www.gob.mx/siap/acciones-y-programas/panorama-agroalimentario-258035 (accessed on 14 March 2025).
- Velimirovic, A.; Jovovic, Z.; Przulj, N. From neolithic to late modern period: Brief history of wheat. Genetika 2021, 53, 407–417. [Google Scholar] [CrossRef]
- Xie, E.; Zhao, Y.; Li, H.; Shi, X.; Lu, F.; Zhang, X.; Peng, Y. Spatio-temporal changes of cropland soil pH in a rapidly industrializing region in the Yangtze River Delta of China, 1980–2015. Agric. Ecosyst. Environ. 2019, 272, 95–104. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Glick, B.R.; Babalola, O.O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 2017, 33, 197. [Google Scholar] [CrossRef]
- Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003, 255, 571–586. [Google Scholar] [CrossRef]
- Cao, M.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Ma, Y. Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation. Environ. Res. 2023, 15, 217. [Google Scholar] [CrossRef]
- Riaz, U.; Murtaza, G.; Anum, W.; Samreen, T.; Sarfraz, M.; Nazir, M.Z. Plant Growth-Promoting Rhizobacteria (PGPR) as biofertilizers and biopesticides. In Microbiota and Biofertilizers, 1st ed.; Hakeem, K.R., Dar, G.H., Mehmood, M.A., Bhat, R.A., Eds.; Springer International Publishing: Cham, Germany, 2021; pp. 181–196. [Google Scholar] [CrossRef]
- Sarmiento-López, L.G.; López-Meyer, M.; Maldonado-Mendoza, I.E.; Quiroz-Figueroa, F.R.; Sepúlveda-Jiménez, G.; Rodríguez-Monroy, M. Production of Indole-3-Acetic Acid by Bacillus circulans E9 in a low-cost medium in a bioreactor. J. Biosci. Bioeng. 2022, 134, 21–28. [Google Scholar] [CrossRef]
- Egamberdieva, D. Plant growth promoting properties of bacteria isolated from wheat and pea grown in loamy sand soil. Turk. J. Biol. 2008, 32, 9–15. [Google Scholar]
- Mahalakshmi, M.; Reetha, D. Assessment of plant growth promoting activities of bacterial isolates from rhizosphere of tomato (Lycopersicon esculantum L.). Recent Res. Sci. Technol. 2009, 1, 26–29. [Google Scholar]
- Mejía-Bautista, M.A.; Cristóbal-Alejo, J.; Pacheco-Aguilar, J.R.; Reyes-Ramírez, A. Bacillus spp. en el crecimiento y rendimiento de Capsicum chinense Jacq. Rev. Mex. Cienc. Agríc. 2022, 13, 115–126. [Google Scholar] [CrossRef]
- Różycki, H.; Dahm, H.; Strzelczyk, E.; Li, C.Y. Diazotrophic bacteria in root-free soil and in the root zone of pine (Pinus sylvestris L.) and oak (Quercus robur L.). Appl. Soil Ecol. 1999, 12, 239–250, ISSN: 0929-1393. [Google Scholar] [CrossRef]
- Chagas, L.F.B.; Castro, H.G.; Colonia, B.S.O.; Carvalho-Filho, M.R.; Miller, L.O.; Chagas-Junior, A.F. Efficiency of the inoculation of Trichoderma asperellum UFT-201 in cowpea production components under growth conditions in field. Rev. Ciênc. Agrár. 2016, 39, 413–421. [Google Scholar] [CrossRef]
- Jaroszuk-Ściseł, J.; Tyśkiewicz, R.; Nowak, A.; Ozimek, E.; Majewska, M.; Hanaka, A.; Tyśkiewicz, K.; Pawlik, A.; Janusz, G. Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3 A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. Int. J. Mol. Sci. 2019, 20, 4923. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.V.; Rajam, K.S.; Rani, M.E. Plant growth promotion efficacy of indole. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2692–2701. [Google Scholar] [CrossRef]
- Díaz, G.; Rodríguez, G.; Montana, L.; Miranda, T.; Basso, C.; Arcia, M. Efecto de la aplicación de bioestimulantes y Trichoderma sobre el crecimiento en plántulas de maracuyá (Passiflora edulis Sims) en vivero. Bioagro 2020, 32, 195–204. [Google Scholar]
- Halifu, S.; Deng, X.; Song, X.; Song, R. Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients and fungal community of Pinus sylvestris var. Mongolica annual seedlings. Forests 2019, 10, 758. [Google Scholar] [CrossRef]
- Promwee, A.; Intana, W. Trichoderma asperellum (NST-009): A potential native antagonistic fungus to control Cercospora leaf spot and promote the growth of ‘Green Oak’ lettuce (Lactuca sativa L.) cultivated in the commercial NFT hydroponic system. Plant Prot. Sci. 2022, 58, 139–149. [Google Scholar] [CrossRef]
- Wang, B.; Tan, S.; Wu, M.; Feng, Y.; Yan, W.; Yun, Q.; Ji, X.; Lin, R.; Zhao, Z. Effects of two Bacillus velezensis strains isolated from different sources on the growth of Capsicum annuum. Front. Microbiol. 2024, 15, 1504660. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R.; Duan, Y.; Jiang, W.; Chen, X.; Shen, X.; Yin, C.; Mao, Z. The endophytic strain Trichoderma asperellum 6 S-2: An efficient biocontrol agent against apple replant disease in China and a potential plant-growth promoting fungus. J. Fungi 2021, 7, 1050. [Google Scholar] [CrossRef]
- Barone, G.D.; Cernava, T.; Ullmann, J.; Liu, J.; Lio, E.; Germann, A.T.; Nakielski, A.; Russo, D.A.; Chavkin, T.; Knufmann, K.; et al. Recent developments in the production and utilization of photosynthetic microorganisms for food applications. Heliyon 2023, 9, e14708. [Google Scholar] [CrossRef]
- Gitau, M.M.; Farkas, A.; Ördög, V.; Maróti, G. Evaluation of the biostimulant effects of two chlorophyta microalgae on tomato (Solanum lycopersicum). J. Clean. Prod. 2022, 364, 132689. [Google Scholar] [CrossRef]
- Andrzejak, R.; Janowska, B.; Renska, B.; Kosiada, T. Effect of Trichoderma spp. and fertilization on the flowering of Begonia × tuberhybrida Voss. ‘Picotee Sunburst’. Agronomy 2022, 11, 1278. [Google Scholar] [CrossRef]
- Martinez, Y.; Ribera, J.; Schwarze, F.W.; De France, K. Biotechnological development of Trichoderma-based formulations for biological control. Appl. Microbiol. Biotechnol. 2023, 107, 5595–5612. [Google Scholar] [CrossRef]
- Bai, Y.; D’Aoust, F.; Smith, D.L.; Driscoll, B.T. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can. J. Microbiol. 2002, 48, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Martyniuk, S.; Oron, J. Use of potato extract broth for culturing root-nodule bacteria. Pol. J. Microbiol. 2011, 60, 323. [Google Scholar] [CrossRef]
- Dong, W.; Liu, H.; Ning, Z.; Bian, Z.; Zeng, L.; Xie, D. Inoculation with Bacillus cereus DW019 Modulates growth, yield and rhizospheric microbial community of cherry tomato. Agronomy 2023, 13, 1458. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Sánchez, E.; Rivero, R.M.; Ruiz, J.M.; Romero, L. Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants (Phaseolus vulgaris L. cv. Strike) under high NH4NO3 application rates. Sci. Hortic. 2004, 99, 237–248. [Google Scholar] [CrossRef]
- Dudáš, A. Graphical representation of data prediction potential: Correlation graphs and correlation chains. Vis. Comput. 2024, 40, 6969–6982. [Google Scholar] [CrossRef]
- Yadav, S.; Goyal, V.; Baliyan, V.; Mehrotra, S. Alleviating drought stress in Brassica juncea (L.) Coss. by foliar application of biostimulants—Orthosilicic acid and seaweed extract. Appl. Biochem. Biotechnol. 2022, 194, 693–721. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, L.; Wang, J.; Guo, L.; Huang, J. Synergistic Effect between Trichoderma virens and Bacillus velezensis on the control of tomato bacterial wilt disease. Horticulturae 2021, 7, 439. [Google Scholar] [CrossRef]
- Jiang, C.; Johkan, M.; Hohjo, M.; Tsukagoshi, S.; Maruo, T. A correlation analysis on chlorophyll content and SPAD value in tomato leaves. Hortic. Res. 2017, 71, 37–42. [Google Scholar] [CrossRef]
- Ahemad, M.; Kibret, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef]
- Dobbelaere, S.; Vanderleyden, J.; Yaacov, Y.; Okon, L. Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 2003, 22, 107–149. [Google Scholar] [CrossRef]
- Mendoza-Tafolla, R.O.; Juarez-Lopez, P.; Ontiveros-Capurata, R.E.; Sandoval-Villa, M.; Iran, A.T.; Alejo-Santiago, G. Estimating nitrogen and chlorophyll status of romaine lettuce using SPAD and at LEAF readings. No. Bot. Hortí Agrobot. Cluj-Napoca 2019, 47, 751–756. [Google Scholar] [CrossRef]
- Singh, S.; Tripathi, A.; Chanotiya, C.S.; Barnawal, D.; Singh, P.; Patel, V.K.; Kalra, A. Cold stress alleviation using individual and combined inoculation of ACC deaminase producing microbes in Ocimum sanctum. Environ. Sustain. 2020, 3, 289–301. [Google Scholar] [CrossRef]
- Moya, P.; Barrera, V.; Cipollone, J.; Bedoya, C.; Kohan, L.; Toledo, A.; Sisterna, M. New isolates of Trichoderma spp. as biocontrol and plant growth–promoting agents in the pathosystem Pyrenophora teres barley in Argentina. Biol. Control. 2020, 141, 104152. [Google Scholar] [CrossRef]
- Abd El-Daim, I.A.; Bejai, S.; Meijer, J. Bacillus velezensis 5113 Induced metabolic and molecular reprogramming during abiotic stress tolerance in wheat. Sci. Rep. 2019, 9, 16282. [Google Scholar] [CrossRef]
- Samaniego-Gámez, B.Y.; Garruña, R.; Tun-Suárez, J.M.; Kantun-Can, J.; Reyes-Ramírez, A.; Cervantes-Díaz, L. Bacillus spp. inoculation improves photosystem II efficiency and enhances photosynthesis in pepper plants. Chil. J. Agric. Res. 2016, 76, 409–416. [Google Scholar] [CrossRef]
- Jardin, P.D. The Science of Plant Biostimulants—A Bibliographic Analysis, Adhoc Study Report; European Commission: Brussels, Belgium, 2012; pp. 1–38. [Google Scholar]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Mukherjee, A.; Patel, J.S. Seaweed extract: Biostimulator of plant defense and plant productivity. Int. J. Environ. Sci. Tech. 2020, 17, 553–558. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Vernieri, P.; Borghesi, E.; Ferrante, A.; Magnani, G. Application of biostimulants in floating system for improving rocket quality. J. Food Agric. Environ. 2005, 3, 86–88. [Google Scholar]
- Goñi, O.; Łangowski, Ł.; Feeney, E.; Quille, P.; O’Connell, S. Reducing nitrogen input in barley crops while maintaining yields using an engineered biostimulant derived from Ascophyllum nodosum to enhance nitrogen use efficiency. Front. Plant Sci. 2021, 12, 664682. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Yin, H.; Wang, W.; Zhao, X.; Du, Y. Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.). Plant Physiol. Biochem. 2013, 71, 49–56. [Google Scholar] [CrossRef]
- EBIC (European Biostimulants Industry Council). Recent Insights into the Mode of Action of Seaweed-Based Plant Biostimulants; EBIC (European Biostimulants Industry Council): Antwerp, Belgium, 2023; pp. 1–10. [Google Scholar]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2015; pp. 169–888. [Google Scholar]
- López-Bucio, J.; Pelagio-Flores, R.; Herrera-Estrella, A. Trichoderma as biostimulant: Exploiting the multilevel properties of a plant beneficial fungus. Sci. Hortic. 2015, 196, 109–123. [Google Scholar] [CrossRef]
- Dordas, C.; Sioulas, C. Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Ind. Crops Prod. 2008, 27, 75–85. [Google Scholar] [CrossRef]
- Hossain, G.M.A.; Ghazali, A.H.; Islam, T.; Mia, M.A.B. Enhanced nutrient accumulation in non-leguminous crop plants by the application of endophytic bacteria Bacillus species. In Bacilli in Agrobiotechnology. Bacilli in Climate Resilient Agriculture and Bioprospecting, 1st ed.; Islam, M.T., Rahman, M., Pandey, P., Eds.; Springer: Cham, Switzerland, 2022; pp. 349–364. [Google Scholar] [CrossRef]
- Cánovas, F.M.; Cañas, R.A.; de la Torre, F.N.; Pascual, M.B.; Castro-Rodríguez, V.; Avila, C. Nitrogen metabolism and biomass production in forest trees. Front. Plant Sci. 2018, 9, 1449. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Jha, D.K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef]
- Singh, S.; Shyu, D.J.H. Perspective on utilization of Bacillus species as plant probiotics for different crops in adverse conditions. AIMS Microbiol. 2024, 10, 220–238. [Google Scholar] [CrossRef]
- Kuan, K.B.; Othman, R.; Rahim, K.A. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE 2016, 11, e0152478. [Google Scholar] [CrossRef]
- Yousuf, J.; Thajudeen, J.; Rahiman, M.; Krishnankutty, S.; Alikunj, A.P.; Adbulla, M.H.A. Nitrogen fixing potential of various heterotrophic Bacillus strains from tropical estuary and adjacent coastal regions. J. Basic Microbiol. 2017, 57, 922–932. [Google Scholar] [CrossRef]
- Balotf, A.; Niazi, A.; Kavoosi, G.; Ramezani, A. Differential expression of nitrate reductase in response to potassium and sodium nitrate: Real-time PCR analysis. Aust. J. Crop Sci. 2012, 6, 130–134. [Google Scholar]
- Zahra, S.T.; Mohsin, T.; Abdullah, M.; Azeem, F.; Ashraf, M.A. Dominance of Bacillus species in the wheat (Triticum aestivum L.) rhizosphere and their plant growth promoting potential under salt stress conditions. Peer J. 2023, 11, e14621. [Google Scholar] [CrossRef]
- Afzal, I.; Shinwari, Z.K.; Iqrar, I. Selective isolation and characterization of agriculturally beneficial endophytic bacteria from wild hemp using canola. Pak. J. Bot. 2015, 47, 1999–2008. [Google Scholar]
- Spaepen, S.; Vanderleyden, J. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 2011, 3, a001438. [Google Scholar] [CrossRef] [PubMed]
- Luna-Martínez, L.; Martínez-Peniche, R.; Hernández-Iturriaga, M.; Arvizu-Medrano, S.; Pacheco-Aguilar, J. Caracterización de rizobacterias aisladas de tomate y su efecto en el crecimiento de tomate y pepino. Rev. Fitotec. Mex. 2013, 36, 63–69. [Google Scholar]
- Ogugua, U.V.; Ntushelo, K.; Makungu, M.C.; Kanu, S.A. Effect of Bacillus subtilis BD2333 on seedlings growth of sweet pepper (Capsicum annuum), Swiss chard (Beta vulgaris) and lettuce (Lactuca sativa). Acta Hortic. 2018, 1204, 201–210. [Google Scholar] [CrossRef]
- Amaresan, N.; Jayakumar, V.; Kumar, K.; Thajuddin, N. Isolation and characterization of plant growth promoting endophytic bacteria and their effect on tomato (Lycopersicon esculentum) and chili (Capsicum annuum) seedling growth. Ann. Microbiol. 2012, 62, 805–810. [Google Scholar] [CrossRef]
- Amaresan, N.; Jayakumar, V.; Thajuddin, N. Isolation and characterization of endophytic bacteria associated with chilli (Capsicum annuum) grown in coastal agricultural ecosystem. Indian J. Biotechnol. 2014, 13, 247–255. [Google Scholar]
- Marchese, S.I.; Canchero, J.O.; Puig, N.; Curá, J.A.; Miralles, D.J. Yield increases through Azospirillum spp. and Enterobacter spp. inoculations in wheat. Cereal Res. Commun. 2024, 52, 1105–1117. [Google Scholar] [CrossRef]
- Budiyati, I.; Eliyanti, E.; Irianto, I. Increasing the growth and yield of red chili with PGPR and NPK fertilizer in ultisol dry land. Russ. J. Agric. Soc.-Econ. Sci. 2023, 4, 162–169. [Google Scholar] [CrossRef]
- Gou, J.-Y.; Suo, S.-Z.; Shao, K.-Z.; Zhao, Q.; Yao, D.; Li, H.-P.; Zhang, J.-L. Biofertilizers with beneficial rhizobacteria improved plant growth and yield in chili (Capsicum annuum L.). World J. Microbiol. Biotechnol. 2020, 36, 86. [Google Scholar] [CrossRef] [PubMed]
- Kepngop Kouokap, L.R.; Eke, P.; Dinango, V.N.; Yimta, D.Y.; Tamghe, P.G.G.; Kansci, G.; Wakam, L.N. Trichoderma bio-inoculant promotes the growth and yield of pepper (Capsicum annuum L.): An open field trial. Plant 2023, 11, 41–49. [Google Scholar] [CrossRef]
- Sánchez-Cruz, R.; Mehta, R.; Atriztán-Hernández, K.; Martínez-Villamil, O.; del Rayo Sánchez-Carbente, M.; Sánchez-Reyes, A.; Lira-Ruan, V.; González-Chávez, C.A.; Tabche-Barrera, M.L.; Bárcenas-Rodríguez, R.C.; et al. Effects on Capsicum annuum plants colonized with Trichoderma atroviride P. Karst strains genetically modified in Taswo1, a gene coding for a protein with expansin-like activity. Plants 2021, 10, 1919. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, J.; Chen, K.; Wang, Y.; Ai, Y.; Zhang, C.; Zhou, S. Effect of Indole-3-Acetic Acid supplementation on the physiology of Lolium perenne L. and Microbial activity in cadmium-contaminated soil. Environ. Sci. Pollut. Res. 2022, 29, 52483–52492. [Google Scholar] [CrossRef]
- Shin, J.-H.; Park, B.-S.; Kim, H.-Y.; Lee, K.-H.; Kim, K.-S. Antagonistic and plant growth-promoting effects of Bacillus ve-lezensis BS1 isolated from rhizosphere soil in a pepper field. Plant Pathol. J. 2021, 37, 307–314. [Google Scholar] [CrossRef]
- Zou, X.; Ning, J.; Zhao, X.; Lv, H.; Qin, N.; Yin, H.; Ren, L. Bacillus velezensis LY7 promotes pepper growth and induces resistance to Colletotrichum scovillei. Biol. Control. 2024, 192, 105480. [Google Scholar] [CrossRef]
- Liu, Q.; Meng, X.; Li, T.; Raza, W.; Liu, D.; Shen, Q. The growth promotion of peppers (Capsicum annuum L.) by Trichoderma guizhouense NJAU4742-based biological organic fertilizer: Possible role of increasing nutrient availabilities. Microorganisms 2020, 8, 1296. [Google Scholar] [CrossRef]
Parameter | Nutrient | Value | Interpretation | Reference Range |
---|---|---|---|---|
Organic matter (%) | 3.7 | Normal | 2–5 | |
pH | 8.9 | Alkaline | — | |
Bulk density (g cm−3) | 1.51 | — | — | |
Sand (%) | 49 | — | — | |
Silt (%) | 9 | — | — | |
Clay (%) | 42 | — | — | |
NO3 | 9.20 | Medium | 8–25 | |
P | 27.8 | Normal | 23–30 | |
K | 985 | High | 800–1200 | |
Available nutrients (g kg−1) | Fe | 1.20 | Low | 2.5–4.5 |
Zn | 0.23 | Low | 0.5–1 | |
Cu | 0.21 | Low | 0.3–1 | |
Mn | 1.58 | Medium | 1–2.5 | |
Ca2+ | 0.85 | Low | 4–10 | |
Mg2+ | 0.35 | Medium | 2–5 | |
Na+ | 9.11 | Normal | <10 | |
Soluble salts (meq L−1) | K+ | 0.12 | Medium | 1.5–3 |
CO3 2− | 0.36 | High | 0 | |
HCO3− | 1.3 | Normal | 0.5–3 | |
Cl− | 7.8 | Normal | <10 | |
SO42− | 0.19 | Low | 3–6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa, D.F.G.; Pérez-Álvarez, S.; Sánchez Chávez, E.; Uranga-Valencia, L.P.; Ochoa-Chaparro, E.H.; Escobedo-Bonilla, C.M.; Contreras-Martínez, R.; Leyva-Hernández, H.A. Sustainable Biostimulation in Chili Cultivation: Effects of PGPMs and Marine Algal Extracts on the Physiological Performance of Serrano Pepper Crop. Sustainability 2025, 17, 8090. https://doi.org/10.3390/su17178090
Espinosa DFG, Pérez-Álvarez S, Sánchez Chávez E, Uranga-Valencia LP, Ochoa-Chaparro EH, Escobedo-Bonilla CM, Contreras-Martínez R, Leyva-Hernández HA. Sustainable Biostimulation in Chili Cultivation: Effects of PGPMs and Marine Algal Extracts on the Physiological Performance of Serrano Pepper Crop. Sustainability. 2025; 17(17):8090. https://doi.org/10.3390/su17178090
Chicago/Turabian StyleEspinosa, Diana Fernanda García, Sandra Pérez-Álvarez, Esteban Sánchez Chávez, Luisa Patricia Uranga-Valencia, Erick Humberto Ochoa-Chaparro, César Marcial Escobedo-Bonilla, Rodolfo Contreras-Martínez, and Héctor A. Leyva-Hernández. 2025. "Sustainable Biostimulation in Chili Cultivation: Effects of PGPMs and Marine Algal Extracts on the Physiological Performance of Serrano Pepper Crop" Sustainability 17, no. 17: 8090. https://doi.org/10.3390/su17178090
APA StyleEspinosa, D. F. G., Pérez-Álvarez, S., Sánchez Chávez, E., Uranga-Valencia, L. P., Ochoa-Chaparro, E. H., Escobedo-Bonilla, C. M., Contreras-Martínez, R., & Leyva-Hernández, H. A. (2025). Sustainable Biostimulation in Chili Cultivation: Effects of PGPMs and Marine Algal Extracts on the Physiological Performance of Serrano Pepper Crop. Sustainability, 17(17), 8090. https://doi.org/10.3390/su17178090