Nanofluids for Sustainable Heat Transfer Enhancement: Beyond Thermal Conductivity
Abstract
1. Introduction
2. Models to Characterize the Thermophysical Properties of Nanofluids
- is the effective thermal conductivity of the nanofluid;
- is the thermal conductivity of the base fluid;
- is the volume fraction of nanoparticles;
- is the effective viscosity of the nanofluid;
- is the viscosity of the base fluid;
- is the electrophoretic mobility;
- is the zeta potential;
- is the permittivity of the fluid;
- is the viscosity of the nanofluid;
- is the settling velocity;
- is the density of the particles,
- is the density of the fluid;
- g is the acceleration due to gravity;
- R is the particle radius.
3. The Effect of Nanoparticles on Thermal Conductivity
4. The Effect of Nanoparticles on Droplet Behavior
5. Alternative Heat Transfer Mechanisms in Nanofluids
- Wettability alteration: Nanoparticle coatings can change the static and dynamic contact angle, thereby influencing liquid spreading and rewetting and shifting the Leidenfrost point;
- Surface roughness increase: Nanoparticle deposition increases micro- and nano-scale roughness, which increases the heat transfer area and creates vapor escape pathways that promote more efficient boiling;
- Thermal conductivity pathways: A nanoparticle layer may improve solid–liquid thermal coupling and reduce the interfacial thermal resistance.
6. Sustainable Cooling Systems Incorporating Nanofluids
7. Insights and Future Directions for Nanofluids
Supplementary Materials
Funding
Conflicts of Interest
References
- Choi, S.U.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, 12–17 November 1995. [Google Scholar]
- Eastman, J.; Phillpot, S.; Choi, S.; Keblinski, P. Thermal transport in nanofluids. Annu. Rev. Mater. Res. 2004, 34, 219–246. [Google Scholar] [CrossRef]
- Yu, W.; France, D.M.; Routbort, J.L.; Choi, S.U.S. Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements. Heat Transf. Eng. 2008, 29, 432–460. [Google Scholar] [CrossRef]
- Murshed, S.M.S. Thermal Properties and Features of Nanofluids. Nanomaterials 2025, 15, 334. [Google Scholar] [CrossRef]
- Eneren, P.; Aksoy, Y.T.; Vetrano, M.R. Experiments on Single-Phase Nanofluid Heat Transfer Mechanisms in Microchannel Heat Sinks: A Review. Energies 2022, 15, 2525. [Google Scholar] [CrossRef]
- Bellerova, H.; Tseng, A.A.; Pohanka, M.; Raudensky, M. Heat transfer of spray cooling using alumina/water nanofluids with full cone nozzles. Heat Mass Transf. 2012, 48, 1971–1983. [Google Scholar] [CrossRef]
- Bellerova, H.; Tseng, A.A.; Pohanka, M.; Raudensky, M. Spray cooling by solid jet nozzles using alumina/water nanofluids. Int. J. Therm. Sci. 2012, 62, 127–137. [Google Scholar] [CrossRef]
- Buschmann, M.; Azizian, R.; Kempe, T.; Juliá, J.; Martínez-Cuenca, R.; Sundén, B.; Wu, Z.; Seppälä, A.; Ala-Nissila, T. Correct interpretation of nanofluid convective heat transfer. Int. J. Therm. Sci. 2018, 129, 504–531. [Google Scholar] [CrossRef]
- Motta, G.; Sergis, A. A Meta-Analysis Review: Nanoparticles as a Gateway to Optimized Boiling Surfaces. Nanomaterials 2024, 14, 1012. [Google Scholar] [CrossRef] [PubMed]
- Issa, R.J. An Overview of the Heat Transfer Performance of Nanofluids in Spray Cooling. J. Therm. Sci. 2025, 34, 1301–1313. [Google Scholar] [CrossRef]
- Pereira, J.; Moita, A.; Moreira, A. Noble Nanofluids and Their Hybrids for Heat Transfer Enrichment: A Review and Future Prospects Coverage. Appl. Sci. 2023, 13, 9568. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Aksoy, Y.T.; Zhu, Y.; Eneren, P.; Koos, E.; Vetrano, M.R. The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review. Energies 2021, 14, 80. [Google Scholar] [CrossRef]
- Reddy, G.S.; Sumalatha, V. Nanofluids: Bridging nanotechnology and fluid dynamics for enhanced thermal performance. J. Physics: Conf. Ser. 2024, 2837, 012053. [Google Scholar] [CrossRef]
- Bansal, A.; Pyrtle, I.F. Alumina Nanofluid for Spray Cooling Enhancement. In Proceedings of the Heat Transfer Summer Conference, Vancouver, BC, Canada, 8–12 July 2007. [Google Scholar] [CrossRef]
- Xue, Q.Z. Model for effective thermal conductivity of nanofluids. Phys. Lett. A 2003, 307, 313–317. [Google Scholar] [CrossRef]
- Kumar, D.H.; Patel, H.E.; Kumar, V.R.R.; Sundararajan, T.; Pradeep, T.; Das, S.K. Model for Heat Conduction in Nanofluids. Phys. Rev. Lett. 2004, 93, 144301. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Chauhan, K.P.; Kanagaraj, S. Modeling of thermal conductivity of nanofluids by modifying Maxwell’s equation using cell model approach. J. Nanopart. Res. 2011, 13, 2791–2798. [Google Scholar] [CrossRef]
- Shaker, M.; Birgersson, E.; Mujumdar, A. Extended Maxwell model for the thermal conductivity of nanofluids that accounts for nonlocal heat transfer. Int. J. Therm. Sci. 2014, 84, 260–266. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Clarendon Press: Oxford, UK, 1873; Volume 2. [Google Scholar]
- Hamilton, R.L.; Crosser, O.K. Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1962, 1, 187–191. [Google Scholar] [CrossRef]
- Babar, H.; Ali, H.M. Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. J. Mol. Liq. 2019, 281, 598–633. [Google Scholar] [CrossRef]
- Kanthimathi, T.; Bhramara, P.; Atgur, V.; Rao, B.N.; Banapurmath, N.R.; Sajjan, A.M.; Badruddin, I.A.; Kamangar, S.; Khan, T.M.Y.; Baig, R.U.; et al. Thermophysical Properties and Heat Transfer in Mono and Hybrid Nanofluids with Different Base Fluids: An Overview. J. Therm. Anal. Calorim. 2024, 149, 1649–1666. [Google Scholar] [CrossRef]
- Khoswan, I.; Nassar, H.; Assali, M.; AbuSafa, A.; Sawalha, S.; Hilal, H.S. Why Carbon Nanotubes Improve Aqueous Nanofluid Thermal Conductivity: A Qualitative Model Critical Review. Processes 2024, 12, 834. [Google Scholar] [CrossRef]
- Yasmin, H.; Giwa, S.O.; Noor, S.; Sharifpur, M. Thermal Conductivity Enhancement of Metal Oxide Nanofluids: A Critical Review. Nanomaterials 2023, 13, 597. [Google Scholar] [CrossRef]
- Elcioglu, E.B. Thermal Conductance of Nanofluids and Effective Mechanisms: A Review. In Current Research in Thermal Conductivity; Guerrero, R.P., Ed.; IntechOpen: Rijeka, Croatia, 2025; Chapter 4. [Google Scholar] [CrossRef]
- Mahbubul, I.; Elcioglu, E.B.; Saidur, R.; Amalina, M. Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrason. Sonochem. 2017, 37, 360–367. [Google Scholar] [CrossRef]
- Mahbubul, I.; Saidur, R.; Amalina, M.; Niza, M. Influence of ultrasonication duration on rheological properties of nanofluid: An experimental study with alumina–water nanofluid. Int. Commun. Heat Mass Transf. 2016, 76, 33–40. [Google Scholar] [CrossRef]
- Mahbubul, I.; Elcioglu, E.; Amalina, M.; Saidur, R. Stability, thermophysical properties and performance assessment of alumina–water nanofluid with emphasis on ultrasonication and storage period. Powder Technol. 2019, 345, 668–675. [Google Scholar] [CrossRef]
- Skouras, E.D.; Karagiannakis, N.P.; Burganos, V.N. Thermal Conduction in Hybrid Nanofluids and Aggregates. Nanomaterials 2024, 14, 282. [Google Scholar] [CrossRef] [PubMed]
- Wen, D.; Lin, G.; Vafaei, S.; Zhang, K. Review of nanofluids for heat transfer applications. Particuology 2009, 7, 141–150. [Google Scholar] [CrossRef]
- Ravikumar, S.V.; Jha, J.M.; Haldar, K.; Pal, S.K.; Chakraborty, S. Surfactant-Based Cu–Water Nanofluid Spray for Heat Transfer Enhancement of High Temperature Steel Surface. J. Heat Transf. 2015, 137, 051504. [Google Scholar] [CrossRef]
- Saterlie, M.; Sahin, H.; Kavlicoglu, B.; Liu, Y.; Graeve, O. Particle Size Effects in the Thermal Conductivity Enhancement of Copper-Based Nanofluids. Nanoscale Res. Lett. 2011, 6, 217. [Google Scholar] [CrossRef]
- Rizkalla, A.A.; Lefebvre, A.H. The Influence of Air and Liquid Properties on Airblast Atomization. J. Fluids Eng. 1975, 97, 316–320. [Google Scholar] [CrossRef]
- Ravikumar, S.V.; Jha, J.M.; Sarkar, I.; Mohapatra, S.S.; Pal, S.K.; Chakraborty, S. Achievement of ultrafast cooling rate in a hot steel plate by air-atomized spray with different surfactant additives. Exp. Therm. Fluid Sci. 2013, 50, 79–89. [Google Scholar] [CrossRef]
- Sun, L.; Geng, J.; Dong, K.; Sun, Q. An Experimental Study on the Effect of Nanofluids on the Thermal Conductivity and Rheological Properties of a Coolant for Liquids. Energies 2024, 17, 1313. [Google Scholar] [CrossRef]
- Aksoy, Y.; Castanet, G.; Eneren, P.; García-Wong, A.; Czerwiec, T.; Caballina, O.; Vetrano, M. Experimental investigation of the influence of nanoparticles on droplet spreading dynamics and heat transfer during early stage cooling. Exp. Therm. Fluid Sci. 2023, 149, 111023. [Google Scholar] [CrossRef]
- Aksoy, Y.T.; Cornelissen, H.; Eneren, P.; Vetrano, M.R. Spray Cooling Investigation of TiO2-Water Nanofluids on a Hot Surface. Energies 2023, 16, 2938. [Google Scholar] [CrossRef]
- Hedge, R.; Rao, S.; Reddy, R. Flow visualization and study of CHF enhancement in pool boiling with Al2O3—Water nano-fluids. Therm. Sci. 2012, 16, 445–453. [Google Scholar] [CrossRef]
- Pontes, P.; Liang, Q.J.; Matos, F.M.; Moita, A.S.; Ribeiro, A.P.C.; Moreira, A.L.N. Heat Transfer and Fluid Dynamics of Nanofluid Droplets Impacting on a Smooth Heated Surface: Detailing Temporal Scale Effects by Using Time-Resolved Thermography. Heat Transf. Eng. 2021, 42, 1720–1731. [Google Scholar] [CrossRef]
- Guggilla, G.; Narayanaswamy, R.; Pattamatta, A. An experimental investigation into the spread and heat transfer dynamics of a train of two concentric impinging droplets over a heated surface. Exp. Therm. Fluid Sci. 2020, 110, 109916. [Google Scholar] [CrossRef]
- Palacios, J.; Hernandez, J.; Gomez, P.; Zanzi, C.; Lopez, J. Experimental study of splashing patterns and the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces. Exp. Therm. Fluid Sci. 2013, 44, 571–582. [Google Scholar] [CrossRef]
- Almohammadi, H.; Amirfazli, A. Droplet impact: Viscosity and wettability effects on splashing. J. Colloid Interface Sci. 2019, 553, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhou, L.; Liu, B.; Xu, Q.; Chen, L.; Li, Z. The roles of surface temperature and roughness in droplet splashing. Int. J. Heat Mass Transf. 2024, 220, 124959. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, W.W.; Nagel, S.R. Drop Splashing on a Dry Smooth Surface. Phys. Rev. Lett. 2005, 94, 184505. [Google Scholar] [CrossRef]
- Aksoy, Y.; Eneren, P.; Koos, E.; Vetrano, M. Spreading-splashing transition of nanofluid droplets on a smooth flat surface. J. Colloid Interface Sci. 2022, 606, 434–443. [Google Scholar] [CrossRef]
- Thoraval, M.J.; Schubert, J.; Karpitschka, S.; Chanana, M.; Boyer, F.; Sandoval-Naval, E.; Dijksman, J.F.; Snoeijer, J.H.; Lohse, D. Nanoscopic interactions of colloidal particles can suppress millimetre drop splashing. Soft Matter 2021, 17, 5116–5121. [Google Scholar] [CrossRef] [PubMed]
- Abbot, M.; Iqbal, M.H.; Liu, L.; Koos, E.; Roisman, I.V.; Hussong, J.; Castrejón-Pita, A.A.; Castrejón-Pita, J.R. Nanoparticles do not influence droplet break-up, spreading, or splashing. J. Colloid Interface Sci. 2025, 693, 137570. [Google Scholar] [CrossRef]
- Varghese, N.; Sykes, T.C.; Quetzeri-Santiago, M.A.; Castrejón-Pita, A.A.; Castrejón-Pita, J.R. Effect of Surfactants on the Splashing Dynamics of Drops Impacting Smooth Substrates. Langmuir 2024, 40, 8781–8790. [Google Scholar] [CrossRef] [PubMed]
- Emelyanenko, A.M.; Boinovich, L.B. Effect of dispersed particles on surface tension, wetting, and spreading of nanofluids. Curr. Opin. Colloid Interface Sci. 2023, 68, 101762. [Google Scholar] [CrossRef]
- Aksoy, Y.T.; Eneren, P.; Koos, E.; Vetrano, M.R. Spreading Dynamics of Al2O3-Water Nanofluid Droplets Impacting On a Smooth Flat Surface. In Proceedings of the 7th World Congress on Momentum, Heat and Mass Transfer (MHMT’22), Lisbon, Portugal, 7–9 April 2022. [Google Scholar] [CrossRef]
- Shen, J.; Liburdy, J.; Pence, D.; Narayanan, V. Single Droplet Impingment: Effect of Nanoparticles. In Fluids Engineering Division Summer Meeting; Fora: New York, NY, USA, 2008; Volume 2, pp. 621–628. [Google Scholar] [CrossRef]
- Quirke, J.A.; Möbius, M.E. Spreading of graphene oxide suspensions droplets on smooth surfaces. Phys. Fluids 2024, 36, 113105. [Google Scholar] [CrossRef]
- Liang, D.; Guo, R.; Sun, Z.; Zhao, H.; Qin, G.; Zhang, Y. Experimental Investigation of Dispersant on Dynamics of Impact of Al2O3 Nanofluid Droplet. Nanomaterials 2025, 15, 108. [Google Scholar] [CrossRef]
- Yadav, S.; Kumar, R.; Pathak, B. Impact dynamics of nanoparticle laden droplets on glass surfaces. Phys. Fluids 2025, 37, 033125. [Google Scholar] [CrossRef]
- Hu, M.; Zhou, J.; Li, Y.; Zhuo, X.; Jing, D. Effects of the surface wettability of nanoparticles on the impact dynamics of droplets. Chem. Eng. Sci. 2021, 246, 116977. [Google Scholar] [CrossRef]
- Aksoy, Y.T.; Liu, L.; Abboud, M.; Vetrano, M.R.; Koos, E. Role of Nanoparticles in Nanofluid Droplet Impact on Solid Surfaces. Langmuir 2023, 39, 12–19. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, Y. Effect of loaded carbon-based nanoparticles on the evaporation dynamics of sessile droplets. Int. J. Therm. Sci. 2025, 209, 109549. [Google Scholar] [CrossRef]
- Tao, Y.; Zhu, Z. Evaporation of Nanofluid Sessile Droplets Under Marangoni and Buoyancy Effects: Internal Convection and Instability. Nanomaterials 2025, 15, 306. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Li, X.; Li, Q.; Chen, X. Nanofluid Droplet Impact on Rigid and Elastic Superhydrophobic Surfaces. ACS Omega 2024, 9, 22003–22015. [Google Scholar] [CrossRef]
- Yogita.; Kumar, B.; Rana, S.; Sharma, K.; Shukla, R.K.; Bhardwaj, R.; Chatterjee, S. Self-Assembly and Deposits of Reduced Graphene Oxide and Graphene Oxide Colloids from Desiccating Aqueous Sessile Droplets. Langmuir 2025, 41, 18265–18291. [Google Scholar] [CrossRef]
- Han, Y.; Fan, G.; Han, Y.; Zhang, Y.; Huang, N.; Wen, M.; Han, L. Motion behaviors of droplets containing Au nanoparticles on a superhydrophobic laser-induced graphene surface. Phys. Fluids 2024, 36, 073616. [Google Scholar] [CrossRef]
- Wi, H.S.; Cingarapu, S.; Klabunde, K.J.; Law, B.M. Nanoparticle Adsorption at Liquid–Vapor Surfaces: Influence of Nanoparticle Thermodynamics, Wettability, and Line Tension. Langmuir 2011, 27, 9979–9984. [Google Scholar] [CrossRef]
- Liu, Q.; Leong, F.Y.; Aabdin, Z.; Anand, U.; Si Bui Quang, T.; Mirsaidov, U. Nanodroplet Depinning from Nanoparticles. ACS Nano 2015, 9, 9020–9026. [Google Scholar] [CrossRef]
- Qin, M.; Lin, Y.; Yan, Q.L. Spreading and Evaporation Dynamics of Nanofluid Droplets on Heated Hydrophobic and Soluble Solid Surfaces. Langmuir 2025, 41, 5591–5602. [Google Scholar] [CrossRef]
- Chang, T.B.; Lin, T.H.; Huang, J.W. Effects of spray operating time on spray cooling heat transfer performance and surface hydrophilicity using Al2O3-water nanofluid. J. Mech. Sci. Technol. 2018, 32, 2897–2904. [Google Scholar] [CrossRef]
- Mohebali, M.M.; Baniamerian, Z. Effect of Nanofluid Sedimentation on Heat Transfer and Critical Heat Flux in Boiling Flows. J. Therm. Anal. Calorim. 2024, 149, 8225–8244. [Google Scholar] [CrossRef]
- Das, S.; Kumar, D.; Bhaumik, S. Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface. Appl. Therm. Eng. 2016, 96, 555–567. [Google Scholar] [CrossRef]
- Singh, S.K.; Sharma, D. Pool Boiling Heat Transfer Enhancement Using Nanoparticle Coating on Copper Substrate. In Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications; Shanker, U., Hussain, C.M., Rani, M., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 2223–2245. [Google Scholar] [CrossRef]
- Bao, J.; Wang, Y.; Kosonen, R.; Xu, X.; Liu, J. Investigation on spray cooling heat transfer performance with different nanoparticles and surfactants. Heat Mass Transf. 2022, 58, 887–901. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Z.; Zhang, B.; Xia, Y.; Wang, Z.; Wang, G. Effect of Nanoparticle Type and Surfactant on Heat Transfer Enhancement in Spray Cooling. J. Therm. Sci. 2020, 29, 708–717. [Google Scholar] [CrossRef]
- Nayak, S.K.; Mishra, P.C.; Parashar, S.K.S. Enhancement of heat transfer by water–Al2O3 and water–TiO2 nanofluids jet impingement in cooling hot steel surface. J. Exp. Nanosci. 2016, 11, 1253–1273. [Google Scholar] [CrossRef]
- Zhou, N.; Tang, G.; Liu, Y.; Liu, Y.; Bao, Q.; Zou, Y.; Lv, W.; Zhao, Y.; Li, J. Experimental Investigation on Spray Cooling Heat Transfer Properties of Ethylene Glycol-Water-Based Nanofluids. J. Therm. Sci. Eng. Appl. 2024, 16, 101011. [Google Scholar] [CrossRef]
- Kim, S.; Bang, I.; Buongiorno, J.; Hu, L. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transf. 2007, 50, 4105–4116. [Google Scholar] [CrossRef]
- Aksoy, Y.T.; Cornelissen, H.; Eneren, P.; Vetrano, M.R. Effect of TiO2 nanoparticles in water and their deposition on aluminum block during spray cooling heat transfer. In Proceedings of the ILASS Europe 2023, 32nd Conference on Liquid Atomization & Spray Systems, ILASS Europe, Napoli, Italy, 4–7 September 2023. [Google Scholar]
- Aksoy, Y.T.; Enayati, F.; Eneren, P.; Vetrano, M.R. Experimental study on enhanced heat transfer via nanoparticle depositions using TiO2-water nanofluid sprays. Appl. Therm. Eng. 2025, 264, 125450. [Google Scholar] [CrossRef]
- Tan, Y.; Xie, J.; Duan, F.; Wong, T.; Toh, K.; Choo, K.; Chan, P.; Chua, Y. Multi-nozzle spray cooling for high heat flux applications in a closed loop system. Appl. Therm. Eng. 2013, 54, 372–379. [Google Scholar] [CrossRef]
- Gupta, S.K. Effects of nanoparticle deposition on the flow boiling characteristics of a MWCNT nanofluid. J. Therm. Sci. Eng. Appl. 2025, 17, 071010. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y.; Li, X.; Yin, H.; Paul, M.C.; Dobson, P.S. A novel CFD-DPM model for particle deposition and removal in microchannels with different contact angles. Sep. Purif. Technol. 2025, 370, 133220. [Google Scholar] [CrossRef]
- Mao, S.; Zhou, T.; Xue, C.; Xu, P.; Liu, C. Investigation on fine particle deposition characteristics in narrow rectangular channel based on Eulerian-Lagrangian method. Powder Technol. 2023, 420, 118381. [Google Scholar] [CrossRef]
- Rahul, N.; Kalita, S.; Sen, P.; Shil, B.; Sen, D. Enhanced Pool Boiling Heat Transfer Characteristics on Microstructured Copper Surfaces Coated with Hybrid Nanofluid. J. Therm. Anal. Calorim. 2024, 149, 6281–6293. [Google Scholar] [CrossRef]
- Berce, J.; Hadžić, A.; Može, M.; Arhar, K.; Gjerkeš, H.; Zupančič, M.; Golobič, I. Effect of Surface Wettability on Nanoparticle Deposition during Pool Boiling on Laser-Textured Copper Surfaces. Nanomaterials 2024, 14, 311. [Google Scholar] [CrossRef] [PubMed]
- AlMuhaysh, K.A.; Sergis, A.; Hardalupas, Y. Effects of pH and Nanoparticle Concentration on Al2O3–H2O Nanofluid Stability. Int. J. Thermophys. 2025, 46, 82. [Google Scholar] [CrossRef]
- Mukherjee, S.; Wciślik, S.; Chandra Mishra, P.; Chaudhuri, P. Nanofluids: Critical issues, economics and sustainability perspectives. Particuology 2024, 87, 147–172. [Google Scholar] [CrossRef]
- Chakraborty, S.; Panigrahi, P.K. Stability of nanofluid: A review. Appl. Therm. Eng. 2020, 174, 115259. [Google Scholar] [CrossRef]
- Evran, S. Mathematical analysis of nanoparticle type and volume fraction on heat transfer efficiency of nanofluids. Open Phys. 2025, 23, 20250158. [Google Scholar] [CrossRef]
- Wang, M.; Dobson, P.S.; Paul, M.C. Numerical investigation of nanofluid deposition in a microchannel cooling system. Powder Technol. 2023, 425, 118582. [Google Scholar] [CrossRef]
- Chen, S.; Qenawy, M.; Tian, J.; Wang, Z.; Wang, H.; Yu, K.; Wang, J.; Chen, B.; Xiong, J. From principles to practice: Review of recent advances and perspectives in spray flash evaporation technology towards thermal management of energy systems. Energy Convers. Manag. 2025, 326, 119499. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Kamyab, M.H.; Valadkhani, M. Application of nanofluids and fluids in photovoltaic thermal system: An updated review. Sol. Energy 2020, 199, 796–818. [Google Scholar] [CrossRef]
- Eneren, P.; Aksoy, Y.T.; Vetrano, M.R. Practical Challenges in Nanofluid Convective Heat Transfer Inside Silicon Microchannels. Energies 2023, 16, 7885. [Google Scholar] [CrossRef]
- Ajeeb, W.; Murshed, S.M.S. Pool Boiling Heat Transfer Characteristics of New and Recycled Alumina Nanofluids. Nanomaterials 2023, 13, 1040. [Google Scholar] [CrossRef] [PubMed]
- Bubbico, R.; Celata, G.P.; D’Annibale, F.; Mazzarotta, B.; Menale, C. Experimental analysis of corrosion and erosion phenomena on metal surfaces by nanofluids. Chem. Eng. Res. Des. 2015, 104, 605–614. [Google Scholar] [CrossRef]
- Kang, S.; Rahman, A.; McGinnis, S.; Vikesland, P. Toward environmentally favorable nano-sensing by production of reusable gold nanoparticles from gold nano-waste: Life cycle and nanocircular economy implications. Environ. Sci. Nano 2024, 11, 1499–1507. [Google Scholar] [CrossRef]
- Wciślik, S. How Nanofluids May Enhance Energy Efficiency and Carbon Footprint in Buildings? Sustainability 2025, 17, 7035. [Google Scholar] [CrossRef]
- Gharbi, A.H.; Laouini, S.E.; Hemmami, H.; Bouafia, A.; Gherbi, M.T.; Ben Amor, I.; Hasan, G.G.; Abdullah, M.M.S.; Trzepieciński, T.; Abdullah, J.A.A. Eco-Friendly Synthesis of Al2O3 Nanoparticles: Comprehensive Characterization Properties, Mechanics, and Photocatalytic Dye Adsorption Study. Coatings 2024, 14, 848. [Google Scholar] [CrossRef]
- Slotte, M.; Zevenhoven, R. Energy requirements and life cycle assessment of production and product integration of silver, copper and zinc nanoparticles. J. Clean. Prod. 2017, 148, 948–957. [Google Scholar] [CrossRef]
- Rosa, R.; Paradisi, E.; Lassinantti Gualtieri, M.; Mugoni, C.; Cappucci, G.M.; Ruini, C.; Neri, P.; Ferrari, A.M. Life Cycle Impact Assessment of Solution Combustion Synthesis of Titanium Dioxide Nanoparticles and Its Comparison with More Conventional Strategies. ChemSusChem 2023, 16, e202202196. [Google Scholar] [CrossRef]
- Duursma, G.; Sefiane, K.; Kennedy, A. Experimental Studies of Nanofluid Droplets in Spray Cooling. Heat Transf. Eng. 2009, 30, 1108–1120. [Google Scholar] [CrossRef]
- Mitra, S.; Saha, S.K.; Chakraborty, S.; Das, S. Study on boiling heat transfer of water-TiO2 and water-MWCNT nanofluids based laminar jet impingement on heated steel surface. Appl. Therm. Eng. 2012, 37, 353–359. [Google Scholar] [CrossRef]
- Okawa, T.; Nagano, K.; Hirano, T. Boiling heat transfer during single nanofluid drop impacts onto a hot wall. Exp. Therm. Fluid Sci. 2012, 36, 78–85. [Google Scholar] [CrossRef]
- Chang, T.B.; Syu, S.C.; Yang, Y.K. Effects of particle volume fraction on spray heat transfer performance of Al2O3-water nanofluid. Int. J. Heat Mass Transf. 2012, 55, 1014–1021. [Google Scholar] [CrossRef]
- Tseng, A.A.; Bellerova, H.; Pohanka, M.; Raudensky, M. Effects of Titania nanoparticles on heat transfer performance of spray cooling with full cone nozzle. Appl. Therm. Eng. 2014, 62, 20–27. [Google Scholar] [CrossRef]
- Chang, T.B. Formation of Nano-Adsorption Layer and Its Effects on Nanofluid Spray Heat Transfer Performance. J. Heat Transf. 2015, 137, 021901. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Leu, H.Y.; Liu, H.H. Spray cooling characteristics of nanofluids for electronic power devices. Nanoscale Res. Lett. 2015, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Jha, J.M.; Ravikumar, S.V.; Tiara, A.; Sarkar, I.; Pal, S.K.; Chakraborty, S. Ultrafast cooling of a hot moving steel plate by using alumina nanofluid based air atomized spray impingement. Appl. Therm. Eng. 2015, 75, 738–747. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Liu, H.H.; Yeh, Y.F. Nanofluids spray heat transfer enhancement. Int. J. Heat Mass Transf. 2016, 94, 104–118. [Google Scholar] [CrossRef]
- Modak, M.; Chougule, S.S.; Sahu, S.K. An Experimental Investigation on Heat Transfer Characteristics of Hot Surface by Using CuO–Water Nanofluids in Circular Jet Impingement Cooling. J. Heat Transf. 2017, 140, 012401. [Google Scholar] [CrossRef]
- Tiara, A.M.; Chakraborty, S.; Sarkar, I.; Pal, S.K.; Chakraborty, S. Effect of Alumina Nanofluid Jet on the Enhancement of Heat Transfer from a Steel Plate. Heat Mass Transf. 2017, 53, 2187–2197. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sarkar, I.; Ashok, A.; Sengupta, I.; Pal, S.K.; Chakraborty, S. Synthesis of Cu-Al LDH nanofluid and its application in spray cooling heat transfer of a hot steel plate. Powder Technol. 2018, 335, 285–300. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sarkar, I.; Ashok, A.; Sengupta, I.; Pal, S.K.; Chakraborty, S. Thermo-physical properties of Cu-Zn-Al LDH nanofluid and its application in spray cooling. Appl. Therm. Eng. 2018, 141, 339–351. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sengupta, I.; Sarkar, I.; Pal, S.K.; Chakraborty, S. Effect of surfactant on thermo-physical properties and spray cooling heat transfer performance of Cu-Zn-Al LDH nanofluid. Appl. Clay Sci. 2019, 168, 43–55. [Google Scholar] [CrossRef]
- Marseglia, G.; Sanches, M.; Ribeiro, A.; Moreira, A.; Moita, A. Thermofluid characterization of nanofluids in spray cooling. Appl. Therm. Eng. 2022, 210, 118411. [Google Scholar] [CrossRef]
- Riaz Siddiqui, F.; Tso, C.Y.; Qiu, H.; Chao, C.Y.; Chung Fu, S. Hybrid nanofluid spray cooling performance and its residue surface effects: Toward thermal management of high heat flux devices. Appl. Therm. Eng. 2022, 211, 118454. [Google Scholar] [CrossRef]
- Padiyaar, R.; S, S.J.K.; Mahdavi, M.; Sharifpur, M.; Meyer, J. Experimental and numerical investigation to evaluate the thermal performance of jet impingement surface cooling with MWCNT/Al2O3-deionized water hybrid nanofluid. Int. J. Therm. Sci. 2023, 184, 108010. [Google Scholar] [CrossRef]
- Sommers, A.D.; Yerkes, K.L. Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid. J. Nanopart. Res. 2010, 12, 1003–1014. [Google Scholar] [CrossRef]
- Aglawe, K.; Yadav, R.; Thool, S. Preparation, applications and challenges of nanofluids in electronic cooling: A systematic review. Mater. Today Proc. 2021, 43, 366–372. [Google Scholar] [CrossRef]
- Elcioglu, E.B.; Turgut, A.; Murshed, S.M.S. Socio-economic and Environmental Impacts of Nanofluids. In Fundamentals and Transport Properties of Nanofluids; Murshed, S.M.S., Ed.; The Royal Society of Chemistry: London, UK, 2022; pp. 437–451. [Google Scholar] [CrossRef]
- Shamshirgaran, S.R.; Al-Kayiem, H.H.; Sharma, K.V.; Ghasemi, M. State of the Art of Techno-Economics of Nanofluid-Laden Flat-Plate Solar Collectors for Sustainable Accomplishment. Sustainability 2020, 12, 9119. [Google Scholar] [CrossRef]
- Wciślik, S. A Simple Economic and Heat Transfer Analysis of the Nanoparticles Use. Chem. Pap. 2017, 71, 2395–2401. [Google Scholar] [CrossRef]
- Lourenço, M.J.; Alexandre, J.; Huisman, C.; Paredes, X.; Nieto de Castro, C. The Balance between Energy, Environmental Security, and Technical Performance: The Regulatory Challenge of Nanofluids. Nanomaterials 2021, 11, 1871. [Google Scholar] [CrossRef] [PubMed]
- Salari, A.; Taheri, A.; Farzanehnia, A.; Passandideh-fard, M.; Sardarabadi, M. An updated review of the performance of nanofluid-based photovoltaic thermal systems from energy, exergy, economic, and environmental (4E) approaches. J. Clean. Prod. 2021, 282, 124318. [Google Scholar] [CrossRef]
- Bouhezza, A.; Laouer, A.; Ismail, K.A.; Faraji, H.; Khuda, M.A.; Teggar, M.; Lino, F.A.; Henríquez, J.R.; Rodríguez, D. Effective techniques for performance improvement of phase change material applications: A review. J. Energy Storage 2025, 105, 114671. [Google Scholar] [CrossRef]
Author and Year | Nanofluid | Size | Concentration | Substrate | Temperature | Remarks |
---|---|---|---|---|---|---|
Shen et al. 2008 [52] | Au in tannic acid, Na3C6H5O7·2H2O, K2CO3, water | 10–30 nm | Silicon | 75–79 °C | Larger spreading rate, diameter, and early-stage dynamic contact angle observed with nanofluids. | |
Duursma et al. 2009 [98] | Al in water, ethanol, and dimethyl sulfoxide | 20–50 nm | up to 3.2 wt.% | Copper | <120 °C | Increasing the nanoparticle concentration discourages receding breakup. |
Mitra et al. 2012 [99] | TiO2, MWCNTs in water | 20–70 nm, 100–500 nm | 0.01–0.1 wt% | SS | The vapor film thickness is comparable to the nanoparticle deposition layer, suggesting that the shift in the boiling curve arises from vapor film instability induced by the surface-deposited nanoparticles. | |
Okawa et al. 2012 [100] | TiO2 in water | 21 nm | 0.2 kg/m3 | AISI304 | 400 °C | Nanoparticle-coated surfaces enhance evaporation at low wall superheat by retaining more liquid. At high temperature, early vaporization reduces liquid–solid contact, degrading late-stage heat transfer. |
Chang et al. 2012 [101] | Al2O3 in water | 35 nm | 0.001–0.05 vol.% | Copper | High-concentration of nanoparticles deposit on the surface, reducing nucleation points and hindering convective heat transfer. | |
Bellerova et al. 2012 [6] | Al2O3 in water | d50 = 80 nm | 1–40 wt.% | AISI314 SS | 200 °C | HTC decreases by 20% in spray cooling. |
Bellerova et al. 2012 [7] | Al2O3 in water | d50 = 80 nm | 1–40 wt.% | AISI314 SS | 200 °C | HTC decreases by 45% in jet cooling. |
Tseng et al. 2014 [102] | TiO2 in water | 82 nm | 1–40 wt.% | SS | 200 °C | HTC decreased with higher nanoparticle fraction due to differing impact behavior of solid particles versus fluid droplets. |
Ravikumar et al. 2015 [32] | Cu in water | 34 nm | 0.1 vol.% | AISI304 SS | 900 °C | Nanoparticle deposition enhances nucleate boiling by increasing nucleation sites. It suppresses vapor layer formation during transition boiling, boosting heat transfer. |
Chang et al. 2015 [103] | Al2O3 in water | 25–40 nm | 0.001–0.05 vol.% | Copper | A nano-adsorption layer forms on the sprayed surface, becoming thicker with higher nanoparticle concentration, increasing thermal resistance and reducing heat transfer. Heat transfer enhancement increases with heat flux due to intensified bubble generation. Although rougher surfaces generally improve heat transfer, this effect is suppressed at high concentrations by the uniform nano-layer. The porous layer enhances capillary forces and wettability, lowering the contact angle and increasing surface hydrophilicity. | |
Hsieh et al. 2015 [104] | AG, MWCNTs in water | 15 nm, 10–250 nm | 0.0025–0.0075 vol.% | Copper | 300 °C | HT enhancement mainly due to increased mixing. Ag nanofluids outperform MWCNTs in the nucleate boiling regime despite lower conductivity, likely due to better dispersion and fewer agglomerations. |
Jha et al. 2015 [105] | Al2O3-water + surfactant | 5–50 nm | 100 ppm | SS | 900 °C | Alumina nanofluids cool faster than water; SDS enhances, while Tween-20 reduces, the cooling rate. |
Nayak et al. 2016 [72] | Al2O3, TiO2-water | 20 nm | 0.01–0.07 wt.% | SS | 700 °C | At 0.01 wt.%, the heat transfer was similar to that with DI water; the enhancement was mainly due to mixing, not conductivity. Al2O3 outperformed TiO2 due to better dispersion and less agglomeration. Minimal deposition observed. |
Hsieh et al. 2016 [106] | Ag, Al, Al2O3, Fe3O4, SiO2, TiO2, MWCNTs in water | 5–50 nm | 0.04–0.1 vol.% | Copper | 400 °C | Heat transfer improves with a higher volume fraction, the smallest nanoparticle size, and lower surface tension. |
Chang et al. 2018 [66] | Al2O3 in water | 0.001–0.05 vol.% | SS | Nanoparticles deposit a porous, hydrophilic layer that increases the thermal resistance and reduces the heat transfer efficiency. | ||
Modak et al. 2017 [107] | CuO in water | 50 nm | 0.15–0.6 vol.% | AISI304 | 500 °C | Nusselt number enhanced with an increasing volume fraction: for , the enhancement was 14% () and 13.6% (); for , the enhancement reached 62% and 90%, respectively. |
Tiara et al. 2017 [108] | Al2O3 in water | 9–50 nm | 1–20 ppm | AISI304 | 900 °C | Surface roughness tests confirm increased nucleation sites due to nanoparticle deposition. A thin sorption layer formed after jet impingement enhances the heat transfer by promoting nucleate boiling. |
Chakraborty et al. 2018 [109] | Cu-Al LDH nanofluid | 40–240 ppm | AISI304 | 600–900 °C | Cu-Al Layered Double Hydroxide (LDH) (4:1, 120 ppm) gave the highest cooling rate and average heat flux, with 19% and 12.5% enhancements over water. | |
Chakraborty et al. 2018 [110] | Cu-Zn-Al LDH nanofluid | 49 nm | 40–240 ppm | AISI304 | >900 °C | Deposition enhances the heat transfer by increasing nucleation sites via surface roughness, but excessive coverage (>160 ppm) hinders droplet contact, reducing the performance. |
Chakraborty et al. 2019 [111] | Cu-Zn-Al LDH in water + surfactant | AISI304 | 600–900 °C | Both SDS and Tween 20 reduced surface tension and viscosity. SDS enhanced thermal conductivity; Tween 20 had a negative effect. | ||
Wang et al. 2020 [71] | Cu, CuO, and Al2O3 in water + surfactant | 0.1–0.5 vol.% | SS | 700 °C | A higher surfactant concentration improves wettability, prevents agglomeration, enhances the particle–surface interaction, and increases the heat flux via accelerated nucleate boiling. | |
Pontes et al. 2021 [40] | Au/Ag in water | 5–10 nm | 0.1–1 wt.% | AISI304 SS | 120 °C | Nanofluid droplets show a slightly higher heat flux and larger spreading but a lower heat flux during receding, reducing the cooling efficiency. Caused by increased surface tension and viscosity due to the local nanoparticle concentration during evaporation. |
Bao et al. 2022 [70] | Al2O3, TiO2−, ZrO2−, SiO2 in water + surfactant | 75 nm | Copper | Low nanoparticle concentrations enhance the heat transfer via Brownian motion; high concentrations cause agglomeration, higher viscosity, and a reduced spray performance. The surfactant improves the dispersion and modestly boosts the heat transfer. | ||
Marseglia et al. 2022 [112] | Al2O3, Ag in water + surfactant | 40–50 nm | 0.5–2 % (m/m) | AISI304 | 85–140 °C | A higher specific heat capacity improved the spray thermal performance, while a higher thermal conductivity unexpectedly reduced the HTC under the studied conditions. Alumina nanofluids at a low concentration showed the best performance. Increased viscosity hindered the heat transfer; the particle shape had minimal effect. |
Siddiqui et al. 2022 [113] | Cu-Al2O3 and Ag–graphene hybrid nanofluid | 0.01–1 vol.% | Copper | Hybrid nanofluid sprays show higher critical surface temperatures, likely due to the improved wettability and wickability of porous residues. | ||
Aksoy et al. 2023 [38] | TiO2 in water | 30–50 nm | 0.05–0.2 wt.% | Aluminum | 190 °C | The enhancement is due to more nucleation sites, uneven nanoparticle deposition, and partial flushing, rather than thermal conductivity changes. Higher concentrations lead to clogging. |
Aksoy et al. 2023 [37] | TiO2 in water | 30–50 nm | 0.2–1 wt.% | Sapphire | 80 °C | Nanoparticles affect the heat transfer via droplet spreading during early-stage cooling. |
Padiyaar et al. 2023 [114] | MWCNT/Al2O3 hybrid nanofluid | 7 nm (Al2O3), 10–20 nm, 10–30μm (MWCNT) | 0.025–0.15 vol.% | Copper | 105 °C | The HTC and the Nusselt number increase with the nanoparticle volume fraction, but this enhancement diminishes beyond 0.05 vol.%, with 0.10 vol.% and 0.15 vol.% showing a similar performance. |
Zhou et al. 2024 [73] | Cu, CuO, SiO2 in aqueous ethylene glycol + surfactant | 0.01–0.25 wt.% | Copper | ≈95 °C | Cu nanoparticles give the best enhancement, followed by CuO and SiO2. Higher concentrations reduce the performance due to increased coating thickness and fluid viscosity. | |
Aksoy et al. 2025 [76] | TiO2 in water | 5–50 nm | 0.05–0.2 wt.% | Aluminum | 190 °C | Nanofluid sprays enhance the cooling by forming and self-maintaining a nanoparticle coating that increases the nucleation sites. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksoy, Y.T. Nanofluids for Sustainable Heat Transfer Enhancement: Beyond Thermal Conductivity. Sustainability 2025, 17, 8006. https://doi.org/10.3390/su17178006
Aksoy YT. Nanofluids for Sustainable Heat Transfer Enhancement: Beyond Thermal Conductivity. Sustainability. 2025; 17(17):8006. https://doi.org/10.3390/su17178006
Chicago/Turabian StyleAksoy, Yunus Tansu. 2025. "Nanofluids for Sustainable Heat Transfer Enhancement: Beyond Thermal Conductivity" Sustainability 17, no. 17: 8006. https://doi.org/10.3390/su17178006
APA StyleAksoy, Y. T. (2025). Nanofluids for Sustainable Heat Transfer Enhancement: Beyond Thermal Conductivity. Sustainability, 17(17), 8006. https://doi.org/10.3390/su17178006