A Hybrid Fuzzy AHP–MULTIMOORA Approach for Solar Energy Development on Rural Brownfield Sites in Serbia
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Study Area
- Agricultural holdings are not used or are used extensively;
- Cultivated land is increasingly occupied by natural vegetation.
3.2. Materials
3.3. Methods
3.3.1. Fuzzy AHP
- —the main goal;
- –{C1, C2, …, Cn}—the set of criteria;
- –{A1, A2, …, Am}—the set of alternatives.
- —lower bound;
- —most likely value;
- —upper bound.
Scalar Value (AHP) | Fuzzy Value (Fuzzy AHP) | Inverse Fuzzy Number | Definition |
---|---|---|---|
1 | 1, 1, 1 | 1, 1, 1 | Equal importance |
3 | 2, 3, 4 | 0.25, 0.33, 0.5 | Weak dominance |
5 | 4, 5, 6 | 0.17, 0.2, 0.25 | Strong dominance |
7 | 6, 7, 8 | 0.125, 0.14, 0.17 | Very strong dominance |
9 | 9, 9, 9 | 0.11, 0.11, 0.11 | Absolute dominance |
2 | 1, 2, 3 | 0.33, 0.5, 1 | Intermediate value |
4 | 3, 4, 5 | 0.2, 0.25, 0.33 | Intermediate value |
6 | 5, 6, 7 | 0.14, 0.17, 0.2 | Intermediate value |
8 | 7, 8, 9 | 0.11, 0.125, 0.14 | Intermediate value |
- —Consistency Ratio Index;
- —Consistency Index;
- —Random Index, which depends on the number of criteria n (see the values of this indicator in Table 4).
- —the largest eigenvalue of the pairwise comparison matrix;
- —the number of criteria.
3.3.2. Fuzzy MULTIMOORA
- —normalized weight of criterion j;
- —original fuzzy weight obtained using the fuzzy AHP method;
- —total number of criteria;
- —sum of all fuzzy weights.
- —the final value for alternative i in the fuzzy ratio system (FRS);
- —the normalized fuzzy weight of criterion j;
- —the normalized fuzzy value of alternative i for criterion j;
- —the set of benefit criteria (where higher values are preferred);
- —the set of cost criteria (where lower values are preferred).
- —reference value for criterion j;
- —value of alternative iii for criterion j;
- —set of criteria to be maximized (benefit criteria);
- —set of criteria to be minimized (cost criteria).
- —the maximum distance of alternative i from the reference point;
- —the distance between two fuzzy numbers;
- —weight of criterion j;
- —reference value for criterion j;
- —value of alternative i for criterion j.
- —result for alternative i;
- —value of alternative iii for criterion j;
- —set of benefit criteria (where a higher value is more desirable);
- —set of cost criteria (where a lower value is more desirable).
3.4. Evaluation Procedure and Expert Participation
4. Results
4.1. Results of the Fuzzy AHP Method Application
4.2. Results of the Fuzzy MULTIMOORA Method Application
5. Discussion
5.1. Sensitivity Analysis
- 1.
- Triangular fuzzy limits (L–M–U)
- 2.
- Single-factor variation analysis
5.2. Implications and Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, S.M.; Appolloni, A.; Cavallaro, F.; D’Adamo, I.; Di Vaio, A.; Ferella, F.; Gastaldi, M.; Ikram, M.; Kumar, N.M.; Martin, M.A.; et al. Development Goals towards Sustainability. Sustainability 2023, 15, 9443. [Google Scholar] [CrossRef]
- Daniels, P.; Bradshaw, M.; Shaw, D.; Sidaway, J. (Eds.) An Introduction to Human Geography, 3rd ed.; Pearson Education Limited: London, UK, 2008. [Google Scholar]
- Joksimović, M.; Golić, R. Indicators of Regional Inequality in Serbia. Collect. Pap. Fac. Geogr. Univ. Belgrade 2017, 65, 227–252. [Google Scholar] [CrossRef]
- Perić, A.; Miljuš, M. The Regeneration of Military Brownfields in Serbia: Moving towards Deliberative Planning Practice? Land Use Policy 2021, 102, 105222. [Google Scholar] [CrossRef]
- Klusáček, P.; Charvátová, K.; Navrátil, J.; Krejčí, T.; Martinát, S. Regeneration of Post-Agricultural Brownfield Needs in Rural Community: Is There Any Transferable Experience? Int. J. Environ. Res. Public Health 2022, 19, 240. [Google Scholar] [CrossRef]
- Sardinha, I.D.; Craveiro, D.; Milheiras, S.A. A Sustainability Framework for Redevelopment of Rural Brownfields: Stakeholder Participation at São Domingos Mine, Portugal. J. Clean. Prod. 2013, 57, 200–208. [Google Scholar] [CrossRef]
- Stojkov, B. Ka recikliranju građevinskog zemljišta u Srbiji. Glas. Srp. Geogr. Društva 2007, 87, 175–186. [Google Scholar] [CrossRef]
- Živanović, V.; Joksimović, M.; Golić, R.; Malinić, V.; Krstić, F.; Sedlak, M.; Kovjanić, A. Depopulated and Abandoned Areas in Serbia in the 21st Century—From a Local to a National Problem. Sustainability 2022, 14, 10765. [Google Scholar] [CrossRef]
- Ašonja, A.; Vuković, V. The Potentials of Solar Energy in the Republic of Serbia: Current Situation, Possibilities and Barriers. Appl. Eng. Lett. 2018, 3, 90–97. [Google Scholar] [CrossRef]
- Ministry of Mining and Energy of the Republic of Serbia. Energy Sector Development Strategy of the Republic of Serbia for the Period to 2025 with Projections to 2030; Ministry of Mining and Energy: Belgrade, Serbia, 2016. Available online: https://arhiva.mre.gov.rs/doc/efikasnost-izvori/23.06.02016%20ENERGY%20SECTOR%20DEVELOPMENT%20STRATEGY%20OF%20THE%20REPUBLIC%20OF%20SERBIA.pdf (accessed on 24 August 2025).
- Doljak, D. The Geospatial Evaluation for Planning Photovoltaic Power Plants in Serbia. Ph.D. Thesis, Faculty of Geography, University of Belgrade, Belgrade, Serbia, 2020. [Google Scholar]
- Momčilović Petronijević, A.; Nikolić, O.; Stanimirović, M.; Joksimović, M.; Nikolić, V. Development of the Revitalization Model of Depopulated Villages on the Example of the Municipality of Crna Trava—Part I. In Proceedings of the International Conference Synergy of Architecture & Civil Engineering—SINARG 2023, Niš, Serbia, 14–15 September 2023; Trajković, S., Milošević, V., Eds.; Faculty of Civil Engineering and Architecture–University of Niš, Serbian Academy of Sciences and Arts–Branch in Niš: Niš, Serbia, 2023; Volume 1, pp. 147–154. [Google Scholar]
- Momčilović Petronijević, A.; Nikolić, O.; Stanimirović, M.; Joksimović, M.; Nikolić, V. Development of the Revitalization Model of Depopulated Villages on the Example of the Municipality of Crna Trava—Part II. In Proceedings of the International Conference Synergy of Architecture & Civil Engineering—SINARG 2023, Niš, Serbia, 14–15 September 2023; Trajković, S., Milošević, V., Eds.; Faculty of Civil Engineering and Architecture–University of Niš, Serbian Academy of Sciences and Arts–Branch in Niš: Niš, Serbia, 2023; Volume 1, pp. 155–163. [Google Scholar]
- Nikolić, O.; Momčilović Petronijević, A.; Stanimirović, M.; Joksimović, M.; Nikolić, V. The Building Heritage of Depopulated Rural Settlements in the Municipality of Crna Trava as a Parameter of the Revitalization Model. In Planning, Design, Construction and Building Renewal INDIS 2023, International Scientific Conference Collection of Papers; Department of Civil Engineering and Geodesy, Faculty of Technical Sciences, University of Novi Sad: Novi Sad, Serbia, 2023. [Google Scholar]
- Joksimović, M. Ruralni Braunfild–Šansa za Depopulacione Regije u Srbiji? In Zbornik Radova Desetog Naučno-Stručnog Skupa sa Međunarodnim Učešćem: Lokalna Samouprava u Planiranju i Uređenju Prostora i Naselja; Asocijacija Prostornih Planera Srbije: Pirot, Serbia, 2024; pp. 53–61. [Google Scholar]
- Republic of Serbia, Ministry of Mining and Energy. Integrated National Energy and Climate Plan (INECP); Ministry of Mining and Energy: Belgrade, Serbia, 2023. Available online: https://www.mre.gov.rs/extfile/sector/sr/871/8/04%20-%20Integrated%20National%20Energy%20and%20Climate%20Plan%20of%20the%20Republic%20of%20Serbia%20for%20the%20period%20up%20to%202030%20with%20a%20vision%20to%202050.pdf (accessed on 24 August 2025).
- Josef, N.; Stanislav, M.; Tomáš, K.; Kamil, P.; Petr, K.; Jaroslav, S.; Robert, O. The fate of socialist agricultural premises: To agricultural ‘brownfields’ and back again? Morav. Geogr. Rep. 2019, 27, 207–216. [Google Scholar] [CrossRef]
- Râmniceanu, I.; Ackrill, R. EU rural development policy in the new member states: Promoting multifunctionality? J. Rural Stud. 2007, 23, 416–429. [Google Scholar] [CrossRef]
- Lange, D.; McNeil, S. Clean it and they will come? Defining successful brownfield development. J. Urban Plan. Dev. 2004, 130, 101–108. [Google Scholar] [CrossRef]
- Turečková, K.; Nevima, J.; Škrabal, J.; Martinát, S. Uncovering patterns of location of brownfields to facilitate their regeneration: Some remarks from the Czech Republic. Sustainability 2018, 10, 1984. [Google Scholar] [CrossRef]
- Klusáček, P.; Dvořák, P.; Trojan, J. Revitalising Rural Spaces: Lessons Learnt from Brownfield Regeneration in a Shrinking Region. Land 2024, 13, 7. [Google Scholar] [CrossRef]
- Adelaja, S.; Shaw, J.; Beyea, W.; McKeown, J.D.C. Renewable energy potential on brownfield sites: A case study of Michigan. Energy Policy 2010, 38, 7021–7030. [Google Scholar] [CrossRef]
- Mert, Y. Contribution to sustainable development: Re-development of post-mining brownfields. J. Clean. Prod. 2019, 240, 118212. [Google Scholar] [CrossRef]
- Martinović, M.; Ratkaj, I. Sustainable rural development in Serbia: Towards a quantitative typology of rural areas. Carpathian J. Earth Environ. Sci. 2015, 10, 37–48. [Google Scholar]
- Manojlović, S.; Sibinović, M.; Srejić, T.; Hadud, A.; Sabri, I. Agriculture land use change and demographic change in response to decline suspended sediment in Južna Morava River basin (Serbia). Sustainability 2021, 13, 3130. [Google Scholar] [CrossRef]
- Milošević, M.V.; Milivojević, M.; Ćalić, J. Spontaneously abandoned settlements in Serbia: Part 2. J. Geogr. Inst. “Jovan Cvijić” SASA 2011, 61, 25–35. [Google Scholar] [CrossRef]
- Babović, S.; Lović-Obradović, S.; Prigunova, I. Depopulation of villages in southeastern Serbia as hindrance to economic development. J. Geogr. Inst. “Jovan Cvijić” SASA 2016, 66, 61–74. [Google Scholar] [CrossRef]
- Nikitović, V. U Susret Regionalnoj Depopulaciji u Srbiji; Institut Društvenih Nauka: Beograd, Serbia, 2019. [Google Scholar]
- Gatarić, D.; Đerčan, B.; Živković, M.B.; Ostojić, M.; Manojlović, S.; Sibinović, M.; Lutovac, M. Can depopulation stop deforestation? The impact of demographic movement on forest cover changes in the settlements of the South Banat District (Serbia). Front. Environ. Sci. 2022, 10, 897201. [Google Scholar] [CrossRef]
- Golić, R.; Joksimović, M. Napuštena sela Srbije: Studija slučaja sela Vukojevac (opština Kuršumlija). In Zbornik Radova Devetog Naučno-Stručnog Skupa sa Međunarodnim Učešćem “Lokalna Samouprava u Planiranju i Uređenju Prostora i Naselja”; Asocijacija Prostornih Planera Srbije: Belgrade, Serbia, 2022; pp. 241–248. [Google Scholar]
- Šabić, D.; Gajić, M.; Joksimović, M.; Golić, R.; Josifov, N. Uticaj ekonomske strukture stanovništva na neravnomeran teritorijalni razvoj gradova i opština u Rasinskom okrugu. In Druga Naučna Konferencija “Urbana Bezbednost i Urbani Razvoj”; Stanarević, S., Đukić, A., Eds.; Univerzitet u Beogradu–Fakultet Bezbednosti and Arhitektonski Fakultet: Beograd, Serbia, 2022; pp. 384–392. [Google Scholar]
- Gajić, M.; Joksimović, M.; Malinić, V.; Krstić, F.; Sedlak, M. Savremeni migracioni procesi–problem ruralne obnove naselja Zaječarskog okruga. In Druga Naučna Konferencija “Urbana Bezbednost i Urbani Razvoj”; Stanarević, S., Đukić, A., Eds.; Univerzitet u Beogradu–Fakultet Bezbednosti and Arhitektonski Fakultet: Beograd, Serbia, 2022; pp. 367–375. [Google Scholar]
- Malinić, V.; Sedlak, M.; Krstić, F.; Joksimović, M.; Golić, R.; Gajić, M.; Vujadinović, S.; Šabić, D. Land Cover Changes in the Rural Border Region of Serbia Affected by Demographic Dynamics. Land 2025, 14, 1663. [Google Scholar] [CrossRef]
- Joksimović, M. Natural resource management in depopulated regions of Serbia—Birth of rural brownfields or final abandonment. Land 2025, 14, 403. [Google Scholar] [CrossRef]
- Perić, A. Brownfield regeneration vs. greenfield investments: A case study of Ečka industrial zone in Zrenjanin, Serbia. Tech. Technol. Educ. Manag. 2011, 6, 541–551. [Google Scholar]
- Potić, I.; Golić, R.; Joksimović, T. Analysis of insolation potential of Knjaževac Municipality (Serbia) using multi-criteria approach. Renew. Sustain. Energy Rev. 2016, 56, 235–245. [Google Scholar] [CrossRef]
- Doljak, D.; Stanojević, G. Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia. Energy 2017, 127, 291–300. [Google Scholar] [CrossRef]
- Durlević, U.; Čegar, N.; Vujović, F. Geospatial modeling of suitable sites for solar power plants based on GIS and BWM: A case study of the city of Kraljevo, Serbia. In The International Workshop on Best-Worst Method; Springer Nature: Cham, Switzerland, 2024; pp. 129–142. [Google Scholar]
- Georgiou, A.; Skarlatos, D. Optimal site selection for sitting a solar park using multi-criteria decision analysis and geographical information systems. Geosci. Instrum. Methods Data Syst. 2016, 5, 321–332. [Google Scholar] [CrossRef]
- Uyan, M. Optimal site selection for solar power plants using multi-criteria evaluation: A case study from the Ayranci region in Karaman, Turkey. Clean Technol. Environ. Policy 2017, 19, 2231–2244. [Google Scholar] [CrossRef]
- de Luis-Ruiz, J.M.; Salas-Menocal, B.R.; Pereda-García, R.; Pérez-Álvarez, R.; Sedano-Cibrián, J.; Ruiz-Fernández, C. Optimal location of solar photovoltaic plants using geographic information systems and multi-criteria analysis. Sustainability 2024, 16, 2895. [Google Scholar] [CrossRef]
- Akinci, H.; Özalp, A.Y. Optimal site selection for solar photovoltaic power plants using geographical information systems and fuzzy logic approach: A case study in Artvin, Turkey. Arab. J. Geosci. 2022, 15, 857. [Google Scholar] [CrossRef]
- Khan, A.; Ali, Y.; Pamucar, D. Solar PV power plant site selection using a GIS-based non-linear multi-criteria optimization technique. Environ. Sci. Pollut. Res. 2023, 30, 57378–57397. [Google Scholar] [CrossRef]
- Eldamaty, T.; Ahmed, A.G.; Helal, M.M. GIS-Based Multi Criteria Analysis for Solar Power Plant Site Selection Support in Mecca. Eng. Technol. Appl. Sci. Res. 2023, 13, 10963–10968. [Google Scholar] [CrossRef]
- Chiarani, E.; Antunes, A.F.B.; Drago, D.; Oening, A.P.; Paschoalotto, L.A.C. Optimal Site Selection using Geographical Information System (GIS) Based Multicriteria Decision Analysis (MCDA): A case study to Concentrated Solar Power Plants (CSP) in Brazil. Anu. Inst. Geocienc. 2023, 46, 1–11. [Google Scholar]
- Zambrano-Asanza, S.; Quiros-Tortos, J.; Franco, J.F. Optimal site selection for photovoltaic power plants using a GIS-based multi-criteria decision making and spatial overlay with electric load. Renew. Sustain. Energy Rev. 2021, 143, 110853. [Google Scholar] [CrossRef]
- Khazael, S.M.; Al-Bakri, M. The optimum site selection for solar energy farms using AHP in GIS environment, a case study of Iraq. Iraqi J. Sci. 2021, 62, 4571–4587. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ruiz, H.G.; Blazquez, J.; Vittorio, M. Assessing residential solar rooftop potential in Saudi Arabia using nighttime satellite images: A study for the city of Riyadh. Energy Policy 2020, 140, 111399. [Google Scholar] [CrossRef]
- Joksimović, M.; Golić, R.; Krstić, F.; Malinić, V.; Vujadinović, S.; Šabić, D.; Gajić, S.; Nikolić, O.; Momčilović Petronijević, A.; Nikolić, V. Depopulation cluster–settlements with 20 or less inhabitants in Serbia. Demografija 2023, 20, 99–118. [Google Scholar] [CrossRef]
- Republički Zavod za Statistiku Srbije. Popis Stanovništva, Domaćinstava i Stanova 2022. Knjiga 2: Starost i Pol, Podaci po Naseljima (Census of Population, Households and Dwellings 2022. Book 2: Age and Gender, Data by Settlements); Republički Zavod za Statistiku Srbije: Belgrade, Serbia, 2023.
- Joksimović, M.; Gajić, M.; Vujadinović, S.; Šabić, D.; Golić, R.; Krstić, F.; Malinić, V. Resource Management in Depopulation Clusters of Serbia. In Proceedings of the 6th Congress of Geographers of Serbia with International Participation “Quo Vadis Geographia? Towards New Geographical Horizons, Zlatibor, Serbia, 29–31 August 2024; Volume 1, pp. 280–288. [Google Scholar]
- Safari, H.; Arefi, S.L. Selection of suitable solar power plant site using FAHP and GIS: A case study from Iran. Renew. Energy 2022, 182, 420–435. [Google Scholar] [CrossRef]
- Yildiz, O.A.; Cebi, S.; Yildiz, O. Multicriteria decision support for sustainable energy planning: An evaluation of alternative scenarios for the solar power plant site selection. Environ. Dev. Sustain. 2025, 27, 1–35. [Google Scholar] [CrossRef]
- Ren, J.; Liang, H.; Chai, J. Fuzzy Multi-MOORA approach for evaluating renewable energy sources for micro-grid system planning. Energy 2017, 140, 1121–1131. [Google Scholar] [CrossRef]
- Gupta, H.; Barua, M.K. Supplier selection among SMEs using combined fuzzy AHP and fuzzy multi-objective optimization. J. Clean. Prod. 2017, 141, 524–539. [Google Scholar] [CrossRef]
- Ozdemir, S.; Sahin, G. Multi-criteria decision-making in the location selection for a solar PV power plant using AHP. Measurement 2018, 129, 218–226. [Google Scholar] [CrossRef]
- Uyan, M. GIS-based solar farms site selection using Analytic Hierarchy Process (AHP) in Karapinar region, Konya/Turkey. Renew. Sustain. Energy Rev. 2013, 28, 11–17. [Google Scholar] [CrossRef]
- Carrión, J.A.; Estrella, A.E.; Dols, F.A.; Toro, M.Z.; Rodríguez, M.; Ridao, A.R. Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants. Renew. Sustain. Energy Rev. 2008, 12, 2358–2380. [Google Scholar] [CrossRef]
- Watson, J.J.; Hudson, M.D. Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landsc. Urban Plan. 2015, 138, 20–31. [Google Scholar] [CrossRef]
- Merrouni, A.A.; Elalaoui, F.E.; Mezrhab, A.; Mezrhab, A.; Ghennioui, A. Large scale PV sites selection by combining GIS and Analytical Hierarchy Process. Case study: Eastern Morocco. Renew. Energy 2018, 119, 863–873. [Google Scholar] [CrossRef]
- Asakereh, A.; Soleymani, M.; Sheikhdavoodi, M.J. A GIS-based Fuzzy-AHP method for the evaluation of solar farms locations: Case study in Khuzestan province, Iran. Sol. Energy 2017, 155, 342–353. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A. Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Appl. Energy 2017, 206, 1225–1240. [Google Scholar] [CrossRef]
- Ghasemi, G.; Noorollahi, Y.; Alavi, H.; Marzband, M.; Shahbazi, M. Theoretical and technical potential evaluation of solar power generation in Iran. Renew. Energy 2019, 138, 1250–1261. [Google Scholar] [CrossRef]
- Heidary Dahooie, J.; Husseinzadeh Kashan, A.; Shoaei Naeini, Z.; Vanaki, A.S.; Zavadskas, E.K.; Turskis, Z. A Hybrid Multi-Criteria-Decision-Making Aggregation Method and Geographic Information System for Selecting Optimal Solar Power Plants in Iran. Energies 2022, 15, 2801. [Google Scholar] [CrossRef]
- Yilmaz, İ.; Kocer, A.; Aksoy, E. Site selection for solar power plants using GIS and fuzzy analytic hierarchy process: Case study of the western mediterranean region of Turkiye. Renew. Energy 2024, 237, 121799. [Google Scholar] [CrossRef]
- Döker, M.F.; Özdoruk, E.; Kırlangıçoğlu, C.; Minaei, M. Wind power plant site selection using fuzzy AHP and weighted fuzzy overlay. Wind Energy 2025, 28, e70001. [Google Scholar] [CrossRef]
- Tarife, R.; Nakanishi, Y.; Zhou, Y.; Estoperez, N.; Tahud, A. Integrated GIS and fuzzy-AHP framework for suitability analysis of hybrid renewable energy systems: A case in Southern Philippines. Sustainability 2023, 15, 2372. [Google Scholar] [CrossRef]
- Otay, I. Tech-center location selection by interval-valued spherical fuzzy AHP based MULTIMOORA methodology. Soft Comput. 2023, 27, 103837–103854. [Google Scholar] [CrossRef]
- Zhou, Q.; Ye, C.; Geng, X. A decision framework of offshore wind power station site selection using a MULTIMOORA method under pythagorean hesitant fuzzy environment. Ocean Eng. 2024, 291, 116416. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C. MULTIMOORA method-based Schweizer–Sklar operations for CO2 geological storage site selection under Pythagorean fuzzy environment. Int. J. Comput. Intell. Syst. 2023, 16, 27. [Google Scholar] [CrossRef]
- Ijadi Maghsoodi, A.; Ijadi Maghsoodi, A.; Mosavi, A.; Rabczuk, T.; Zavadskas, E.K. Renewable energy technology selection problem using integrated H-SWARA-MULTIMOORA approach. Sustainability 2018, 10, 4481. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with the Analytic Hierarchy Process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Çifçi, G. Evaluation of the green supply chain management practices: A fuzzy ANP approach. Prod. Plan. Control 2012, 23, 405–418. [Google Scholar] [CrossRef]
- Cheng, E.W.L.; Li, H. Information priority-setting for better resource allocation using analytic hierarchy process (AHP). Inf. Manag. Comput. Secur. 2001, 9, 61–70. [Google Scholar] [CrossRef]
- Zafar, A.; Zafar, M.; Sarwar, A.; Raza, H.; Khan, M.T. A Fuzzy AHP Method for Green Supplier Selection and Evaluation. In Proceedings of the Twelfth International Conference on Management Science and Engineering Management, Ontario, ON, Canada, 5–8 August 2019; Springer: Cham, Switzerland, 2019; pp. 1355–1366. [Google Scholar] [CrossRef]
- Wang, Y.M.; Elhag, T.M.S. Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Syst. Appl. 2006, 31, 309–319. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K.; Khalifah, Z.; Md Nor, K. Application of multiple-criteria decision-making techniques and approaches to evaluating of service quality: A systematic review of the literature. J. Bus. Econ. Manag. 2015, 16, 1034–1068. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Çifçi, G. A novel fuzzy multi-criteria decision framework for sustainable supplier selection. Comput. Ind. Eng. 2012, 62, 1282–1295. [Google Scholar] [CrossRef]
- Kahraman, C.; Cebeci, U.; Ulukan, Z. Multi-criteria supplier selection using fuzzy AHP. Logist. Inf. Manag. 2003, 16, 382–394. [Google Scholar] [CrossRef]
- Ayhan, M.B. A fuzzy AHP approach for supplier selection problem: A case study in a gear motor company. Int. J. Manag. Value Supply Chain. 2013, 4, 11–23. [Google Scholar] [CrossRef]
- Dargi, A.; Anjomshoae, A.; Galankashi, M.R.; Memari, A.; Tap, M.T. Supplier selection: A fuzzy-ANP approach. Procedia Comput. Sci. 2014, 31, 691–700. [Google Scholar] [CrossRef]
- Govindan, K.; Rajendran, S.; Sarkis, J.; Murugesan, P. Multi criteria decision making approaches for green supplier evaluation and selection: A literature review. J. Clean. Prod. 2015, 98, 66–83. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K. Fuzzy multiple criteria decision-making techniques and applications—Two decades review from 1994 to 2014. Expert Syst. Appl. 2015, 42, 4126–4148. [Google Scholar] [CrossRef]
- Brauers, W.K.M.; Zavadskas, E.K. Project management by the MOORA method. Technol. Econ. Dev. Econ. 2010, 16, 492–502. [Google Scholar] [CrossRef]
- Brauers, W.K.M.; Zavadskas, E.K. MULTIMOORA optimization used to decide on a bank loan to buy property. Technol. Econ. Dev. Econ. 2011, 17, 174–188. [Google Scholar] [CrossRef]
- Chakraborty, S. Applications of the MOORA method for decision making in manufacturing environment. Int. J. Adv. Manuf. Technol. 2011, 54, 1155–1166. [Google Scholar] [CrossRef]
- Mishra, A.R.; Rani, P.; Gupta, P. A novel hesitant fuzzy Multi-MOORA approach for sustainable supplier selection based on EOL strategy under multiple information. J. Clean. Prod. 2019, 234, 1016–1031. [Google Scholar] [CrossRef]
- Prieto-Amparán, J.A.; Pinedo-Alvarez, A.; Morales-Nieto, C.R.; Valles-Aragón, M.C.; Álvarez-Holguín, A.; Villarreal-Guerrero, F. A Regional GIS-Assisted Multi-Criteria Evaluation of Site-Suitability for the Development of Solar Farms. Land 2021, 10, 217. [Google Scholar] [CrossRef]
- Soydan, O. Solar power plants site selection for sustainable ecological development in Nigde, Turkey. SN Appl. Sci. 2021, 3, 41. [Google Scholar] [CrossRef]
- Akay, S.S. Investigating Land Suitability for PV Farm and Existing Sites Using a Multi-Criteria Decision Approach in Gaziantep, Türkiye. Appl. Sci. 2025, 15, 2441. [Google Scholar] [CrossRef]
- Sedrati, M.; Maanan, M.; Rhinane, H. PV power plants sites selection using gis-fahp based approach in north-western Morocco. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 385–392. [Google Scholar] [CrossRef]
- Republic of Serbia, Ministry of Mining and Energy. Energy Sector Development Strategy of the Republic of Serbia up to 2040 with Projections up to 2050; Ministry of Mining and Energy: Belgrade, Serbia, 2024. Available online: https://www.mre.gov.rs/tekst/8325/-energy-sector-development-strategy-of-the-republic-of-serbia-up-to-2040-with-projections-up-to-2050.php (accessed on 26 August 2025).
No. | Cluster | LGU | Area (km2) |
---|---|---|---|
1. | Vidojevičko–radanski | Prokuplje, Kuršumlija, Bojnik, Lebane | 311.3 |
2. | Staroplaninski | Knjaževac | 278.6 |
3. | Visočko–vidlički | Pirot, Dimitrovgrad | 232.1 |
4. | Kuršumlija North | Kuršumlija | 219.9 |
5. | Kuršumlija South | Kuršumlija | 149.1 |
6. | Svrljiški | Pirot, Bela Palanka | 145 |
7. | Crnotravski | Crna Trava, Leskovac, Vlasotince | 133.7 |
8. | Vlasinski | Surdulica | 129.3 |
9. | Rogozna | Novi Pazar | 123.6 |
10. | Burelski | Dimitrovgrad, Pirot | 113 |
Total Area | 1835.6 |
Layer Name | Data Source | Note |
---|---|---|
Slope | EU-DEM (EU Copernicus Programme) | Derived from the DTM model |
Aspect | EU-DEM (EU Copernicus Programme) | Derived from the DTM model |
Protected Areas | Institute for Nature Conservation of Serbia | Most recent database–2024 |
Road Network | OpenStreetMap (OSM) | Downloaded via QGIS plugin and manually digitized |
Watercourses | GeoSrbija | Manually digitized in QGIS |
Settlements | GeoSrbija | Manually digitized in QGIS |
Land use | Republic Geodetic Authority | Classification of land types and land use purposes |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0.00 | 0.00 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Decision Makers | Years of Experience | Scientific Fields |
---|---|---|
Expert 1 | 15 | Fuzzy logic, multi-criteria analysis, solar energy |
Expert 2 | 10 | Solar energy, GIS, environmental protection |
Expert 3 | 34 | Sustainable development, spatial planning, energetics |
Expert 4 | 26 | Geoinformatics, fuzzy logic, environmental management |
Expert 5 | 25 | Multi-criteria decision-making, cluster analysis, settlement geography |
Expert 6 | 27 | Globalization and integration, sustainable development, cluster analysis |
Expert 7 | 17 | Geographical regions of Serbia, energetics, ecology |
Criterion | Categories | Mark | Area (km2) | Percentage of Cluster Area (%) |
---|---|---|---|---|
Aspect | S | 5 | 28.70 | 9.22 |
SW, SE | 4 | 69.29 | 22.25 | |
W, E | 3 | 86.58 | 27.80 | |
NW, NE | 2 | 86.27 | 27.70 | |
N, non-exposed | 1 | 39.69 | 13.03 | |
Slope | 0.5–5° | 5 | 30.68 | 9.85 |
5–10° | 4 | 81.96 | 26.32 | |
10–15° | 3 | 83.15 | 26.71 | |
0–0.5°; 15–20° | 2 | 67.41 | 21.65 | |
>20° | 1 | 48.14 | 15.46 | |
Distance from roads | <300 m | 5 | 124.36 | 39.95 |
300–6000 | 4 | 79.65 | 25.58 | |
600–900 | 3 | 52.04 | 16.72 | |
900–1200 | 2 | 29.70 | 9.54 | |
>1200 | 1 | 25.59 | 8.21 | |
Distance from settlements | <500 m | 1 | 59.91 | 19.24 |
500–1000 | 2 | 69.26 | 22.25 | |
1000–1500 | 3 | 65.96 | 21.19 | |
1500–2000 | 4 | 49.70 | 15.96 | |
>2000 | 5 | 66.49 | 21.36 | |
Land use | Meadows, pastures, degraded areas | 5 | 42.10 | 13.52 |
Urban areas | 4 | 0.71 | 0.23 | |
Agricultural areas | 3 | 1.61 | 0.52 | |
Forests | 2 | 266.90 | 85.72 | |
Water bodies | 1 | 0.02 | 0.01 | |
Distance from rivers | >600 m | 5 | 10.82 | 3.50 |
450–600 | 4 | 15.14 | 4.86 | |
300–450 | 3 | 38.76 | 12.45 | |
150–300 | 2 | 95.48 | 30.66 | |
<150 | 1 | 151.04 | 48.53 | |
Distance from protected areas | >1500 m | 5 | 170.61 | 54.83 |
1200–1500 | 4 | 7.23 | 2.32 | |
900–1200 | 3 | 8.71 | 2.80 | |
600–900 | 2 | 8.98 | 2.88 | |
<600 | 1 | 115.71 | 37.17 |
Criteria | Aspect | Slope | Distance from Roads | Distance from Settlements | Land Use | Distance from Rivers | Distance from Protected Areas |
---|---|---|---|---|---|---|---|
Aspect | 1.000, 1.000, 1.000 | 2.000, 2.500, 3.000 | 3.000, 4.000, 5.000 | 5.000, 6.000, 7.000 | 6.000, 7.000, 8.000 | 8.000, 9.000, 9.000 | 8.000, 9.000, 9.000 |
Slope | 0.333, 0.400, 0.500 | 1.000, 1.000, 1.000 | 2.500, 3.500, 4.500 | 3.000, 4.000, 5.000 | 4.500, 5.500, 6.500 | 5.000, 6.000, 7.000 | 6.000, 7.000, 8.000 |
Distance from Roads | 0.200, 0.250, 0.333 | 0.222, 0.286, 0.400 | 1.000, 1.000, 1.000 | 2.000, 3.000, 4.000 | 3.500, 4.500, 5.500 | 3.500, 4.500, 5.500 | 5.000, 6.000, 7.000 |
Distance from Settlements | 0.143, 0.167, 0.200 | 0.200, 0.250, 0.333 | 0.250, 0.333, 0.500 | 1.000, 1.000, 1.000 | 2.000, 3.000, 4.000 | 3.000, 4.000, 5.000 | 4.000, 5.000, 6.000 |
Land Use | 0.125, 0.143, 0.167 | 0.154, 0.182, 0.222 | 0.182, 0.222, 0.286 | 0.250, 0.333, 0.500 | 1.000, 1.000, 1.000 | 2.000, 3.000, 4.000 | 3.000, 4.000, 5.000 |
Distance from Rivers | 0.111, 0.111, 0.125 | 0.143, 0.167, 0.200 | 0.182, 0.222, 0.286 | 0.200, 0.250, 0.333 | 0.250, 0.333, 0.500 | 1.000, 1.000, 1.000 | 2.000, 3.000, 4.000 |
Distance from Protected Areas | 0.111, 0.111, 0.125 | 0.125, 0.143, 0.167 | 0.143, 0.167, 0.200 | 0.167, 0.200, 0.250 | 0.200, 0.250, 0.333 | 0.250, 0.333, 0.500 | 1.000, 1.000, 1.000 |
Criteria | L | M | U | Defuzzified Weight Coefficients |
---|---|---|---|---|
Slope | 0.2854 | 0.3921 | 0.5330 | 0.3859 |
Aspect | 0.1690 | 0.2451 | 0.3591 | 0.2465 |
Distance from roads | 0.0984 | 0.1469 | 0.2213 | 0.1487 |
Distance from settlements | 0.0634 | 0.0943 | 0.1423 | 0.0956 |
Land use | 0.0408 | 0.0600 | 0.0897 | 0.0607 |
Distance from rivers | 0.0271 | 0.0379 | 0.0561 | 0.0386 |
Distance from protected areas | 0.0187 | 0.0237 | 0.0328 | 0.0240 |
Indicator | Value |
---|---|
Maximum Eigenvalue (λmax) | 7.195 |
Consistency Index (CI) | 0.0325 |
Consistency Ratio (CR) | 0.0246 |
Criterion | Type of Criterion | Justification | Weight Coefficient |
---|---|---|---|
Area of the location | Positive | A larger area implies better economic feasibility | 0.25 |
Share of the highest suitability class (from fuzzy AHP) | Positive | Indicates the internal qualitative suitability of the location | 0.15 |
Distance from the nearest road | Negative | Closer proximity to roads is favorable for transport and reduces costs | 0.20 |
Distance from the nearest settlement | Positive | Helps avoid land use conflicts (e.g., visual impact, community resistance) | 0.15 |
Distance from protected area | Positive | Avoids environmental pressure on sensitive zones | 0.15 |
Potential environmental degradation | Negative | Indicator of environmental impact; lower values are more favorable | 0.10 |
Location No. | Fuzzy Reference Point Approach | Fuzzy Ratio System | Fuzzy Full Multiplicative Form | Final MULTIMOORA Rank | |||
---|---|---|---|---|---|---|---|
z | Rank | y | Rank | p | Rank | ||
1 | 0.157924 | 8 | 0.043708 | 10 | 0.641184 | 10 | 10 |
2 | 0.151584 | 6 | 0.089058 | 7 | 0.839175 | 6 | 6 |
3 | 0.151008 | 5 | 0.072728 | 9 | 0.77946 | 9 | 9 |
4 | 0.138904 | 4 | 0.103351 | 4 | 0.901381 | 5 | 4 |
5 | 0.099135 | 2 | 0.195779 | 2 | 1.663826 | 2 | 2 |
6 | 0.161959 | 9 | 0.091113 | 6 | 0.802588 | 8 | 8 |
7 | 0.164264 | 10 | 0.119875 | 3 | 1.024749 | 3 | 5 |
8 | 0.130259 | 3 | 0.10104 | 5 | 0.904334 | 4 | 3 |
9 | 0.058805 | 1 | 0.281084 | 1 | 1.674751 | 1 | 1 |
10 | 0.15389 | 7 | 0.081291 | 8 | 0.816022 | 7 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinić, V.; Durlević, U.; Brašanac-Bosanac, L.; Novković, I.; Joksimović, M.; Golić, R.; Krstić, F. A Hybrid Fuzzy AHP–MULTIMOORA Approach for Solar Energy Development on Rural Brownfield Sites in Serbia. Sustainability 2025, 17, 7988. https://doi.org/10.3390/su17177988
Malinić V, Durlević U, Brašanac-Bosanac L, Novković I, Joksimović M, Golić R, Krstić F. A Hybrid Fuzzy AHP–MULTIMOORA Approach for Solar Energy Development on Rural Brownfield Sites in Serbia. Sustainability. 2025; 17(17):7988. https://doi.org/10.3390/su17177988
Chicago/Turabian StyleMalinić, Vladimir, Uroš Durlević, Ljiljana Brašanac-Bosanac, Ivan Novković, Marko Joksimović, Rajko Golić, and Filip Krstić. 2025. "A Hybrid Fuzzy AHP–MULTIMOORA Approach for Solar Energy Development on Rural Brownfield Sites in Serbia" Sustainability 17, no. 17: 7988. https://doi.org/10.3390/su17177988
APA StyleMalinić, V., Durlević, U., Brašanac-Bosanac, L., Novković, I., Joksimović, M., Golić, R., & Krstić, F. (2025). A Hybrid Fuzzy AHP–MULTIMOORA Approach for Solar Energy Development on Rural Brownfield Sites in Serbia. Sustainability, 17(17), 7988. https://doi.org/10.3390/su17177988