Contributing to the Concept of Sustainable Buildings: Evaluation of the Carbon Emissions of a Solar Photovoltaic Coating Developed in Northeast Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Coatings
2.2. Life Cycle Assessment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GHG | Greenhouse gas |
LCA | Life cycle assessment |
PV | Photovoltaic |
TBOT | Titanium butoxide |
TEOS | Tetraethyl orthosilicate |
TTIP | Titanium isopropoxide |
Appendix A
References
- Medeiros, S.E.L.; Nilo, P.F.; Silva, L.P.; Santos, C.A.C.; Carvalho, M.; Abrahão, R. Influence of climatic variability on the electricity generation potential by renewable sources in the Brazilian semi-arid region. J. Arid Environ. 2021, 184, 104331. [Google Scholar] [CrossRef]
- Araújo, N.M.; Medeiros, S.E.L.; Abrahão, R. Variability and Sensitivity of Models Used to Estimate Photovoltaic Production. Energies 2024, 17, 4177. [Google Scholar] [CrossRef]
- Sousa, G.C.P.; Oliveira, A.S.; Queiroga, R.A.; Silva, U.C.; Costa, N.P.; Reis, A.F.M.; Neto, J.F.d.S.; Gomes, K.C. Mathematical modeling study to optimize the production of molybdenum and silica absorbing thin films. Sol. Energy 2024, 282, 112962. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Sousa, G.C.P.; Valença, A.K.A.; Silva Neto, J.F.; Gomes, K.C. Effect of surface treatments on absorptance and morphology of molybdenum and silica absorbing thin films. Sol. Energy 2023, 254, 158–167. [Google Scholar] [CrossRef]
- Song, Z.; Huang, L.; Dong, Q.; Zhang, G.; Chew, M.Y.L.; Setunge, S.; Shi, L. Impacts of shadow conditions on solar PV array performance: A full-scale experimental and empirical study. Energy 2025, 320, 135219. [Google Scholar] [CrossRef]
- Gonçalves, G.L.; Abrahão, R.; Rotella Junior, P.; Rocha, L.C.S. Economic feasibility of conventional and building-integrated photovoltaics implementation in Brazil. Energies 2022, 15, 6707. [Google Scholar] [CrossRef]
- Zhao, M.; Yu, R.; Chang, C.; Bao, D.; Mei, A.; Liu, Y.; Wang, N. Effect of sand and dust shading on the output characteristics of solar photovoltaic modules in desertification areas. Energies 2023, 16, 7910. [Google Scholar] [CrossRef]
- Sulaiman, S.A.; Singh, A.K.; Mokhtar, M.M.M.; Bou-Rabee, M.A. Influence of dirt accumulation on performance of PV panels. Energy Procedia 2014, 50, 50–56. [Google Scholar] [CrossRef]
- Silva, M.C.; Brandao, D.A.L.; Pires, I.A. Evaluating the Impact of Dirt Accumulation on Photovoltaic Performance: Insights from an Experimental Plant in Brazil. Energies 2025, 18, 1214. [Google Scholar] [CrossRef]
- Schultz, H.S.; Carvalho, M. Design, greenhouse emissions, and environmental payback of a photovoltaic solar energy system. Energies 2022, 15, 6098. [Google Scholar] [CrossRef]
- Salamah, T.; Ramahi, A.; Alamara, K.; Juaidi, A.; Abdallah, R.; Abdelkareem, M.A.; Amer, E.-C.; Olabi, A.G. Effect of dust and methods of cleaning on the performance of solar PV module for different climate regions: Comprehensive review. Sci. Total Environ. 2022, 827, 154050. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, R.; Juaidi, A.; Abdel-Fattah, S.; Qadi, M.; Shadid, M.; Albatayneh, A.; Çamur, H.; García-Cruz, A.; Manzano-Agugliaro, F. The effects of soiling and frequency of optimal cleaning of PV panels in Palestine. Energies 2022, 15, 4232. [Google Scholar] [CrossRef]
- Ferretti, N.; El-Issa, A.; Podlowski, L. Standardized test procedure for PV module cleaning equipment. In Proceedings of the EU PVSEC 2019, 36th European Photovoltaic Solar Energy Conference and Exhibition, Marseille, France, 9–13 September 2019. [Google Scholar]
- Alves, D.F.; Sousa, J.P. Fluorine-free approaches to impart photovoltaic systems with self-cleaning and anti-icing features. J. Coat. Technol. Res. 2024, 21, 1907–1919. [Google Scholar] [CrossRef]
- Ali, M.S.; Awalin, L.J.; Abdul Jaafar, A.S.; Omar, A.; Abu Bakar, A.H.; Abd Rahim, N.; Abd Halim, S. Assessment and analysis of polydimethylsiloxane-coated solar photovoltaic panels for cost-efficient solutions. Sustain. Environ. Res. 2024, 34, 19. [Google Scholar] [CrossRef]
- Sarkın, A.S.; Ekren, N.; Sağlam, Ş. A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Sol. Energy 2020, 199, 63–73. [Google Scholar] [CrossRef]
- Tayel, S.A.; Abu El-Maaty, A.E.; Mostafa, E.M.; Elsaadawi, Y.F. Enhance the performance of photovoltaic solar panels by a self-cleaning and hydrophobic nanocoating. Sci. Rep. 2022, 12, 21236. [Google Scholar] [CrossRef]
- Qin, J.; Lu, H. A review of self-cleaning coatings for solar photovoltaic systems: Theory, materials, preparation, and applications. Environ. Sci. Pollut. Res. 2023, 30, 91591–91616. [Google Scholar] [CrossRef]
- Araújo, F.A.A.; Freire, F.N.A.; Pinho, D.C.; Dutra, K.H.; Rocha, P.A.C.; Silva, M.E.V.D. Characterization of new selective coatings, made of granite and chrome, for solar collectors. Matéria 2019, 24, e12379. [Google Scholar] [CrossRef]
- Papakonstantinou, I.; Tiwari, M.; Sengar, N.; Upadhyay, A.; Cotta, R.M.; Gadhia, P.; Gadhia, D.; Krishnamurthy, S. Royal Academy of Engineering. Project description. Self-Cleaning Coatings for Targeting Solar Energy and Water Supply Mismatch in India and Brazil. 2020. Available online: https://raeng.org.uk/programmes-and-prizes/programmes/international-programmes/frontiers/funding/follow-on-funding/awardees-2019-2020/self-cleaning-coatings-for-targeting-solar-energy-and-water-supply-mismatch-in-india-and-brazil?utm_source=chatgpt.com (accessed on 5 May 2025).
- Mazur, M.M.; Alberti, E.L.; Portella, K.F.; Mazur, V.T.; Pianaro, S.A.; Sustainable Technology of Hydrophobic Thin Films Deposited with Plasma to Replace the Use of Water in the Maintenance of Photovoltaic Solar Cells. SEE-U: Sustainable Development Goals, a Global Scientific Conference at UFPR. Available online: https://acervodigital.ufpr.br/xmlui/bitstream/handle/1884/92596/4999.pdf?sequence=1&isAllowed=y (accessed on 5 May 2025).
- Andrade, M.M.D.; Dornelles, K.A. Chemical composition of cool coatings and the influence on solar reflectance and thermal emittance. Ambiente Construído 2024, 24, e138358. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Rosenbaum, R.K.; Olsen, S.I. Life Cycle Assessment; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Sánchez-Cruces, E.; Barrera-Calva, E.; Lavanderos, K.; González, F. Life cycle analysis (LCA) of solar selective thin films by electrodeposition and by sol-gel techniques. Energy Procedia 2014, 57, 2812–2818. [Google Scholar] [CrossRef]
- Rossi, F.; Rotondi, L.; Stefanelli, M.; Sinicropi, A.; Vesce, L.; Parisi, M.L. Comparative life cycle assessment of different fabrication processes for perovskite solar mini-modules. EPJ Photovolt. 2024, 15, 20. [Google Scholar] [CrossRef]
- Laopreecha, P.; Varabuntoonvit, V.; Kumnorkaew, P.; Muangnapoh, T.; Sodsai, T. Life cycle assessment of nano-silica coating for solar photovoltaic panel. Asia-Pac. J. Sci. Technol. 2022, 27, 1–11. [Google Scholar] [CrossRef]
- Cavalcante, S.L. Development and Evaluation of the Use of Self-Cleaning Coating to Improve the Maintenance Cycle of Photovoltaic Panels. Master’s Thesis, Federal University of Paraíba, João Pessoa, Brazil, 2024. (In Portuguese). [Google Scholar]
- Zäll, E.; Karlsson, S.; Järn, M.; Segervald, J.; Lundberg, P.; Wågberg, T. Durability of antireflective SiO2 coatings with closed pore structure. Sol. Energy Mater. Sol. Cells 2023, 261, 112521. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 27 August 2025).
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006. Available online: https://www.iso.org/standard/38498.html (accessed on 27 August 2025).
- PRe Consultants, 2024. SimaPro v.9.6.0.1. Available online: www.simapro.com (accessed on 30 January 2025).
- ECOINVENT Database. Version 3.8. Ecoinvent Database. 2021. Available online: http://www.ecoinvent.org (accessed on 27 August 2025).
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2021: The Physical Science Basis. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 30 January 2025).
- Carvalho, M.; Marques, A.D.S.; Abrahão, R. Greenhouse gas emissions within the exergoenvironmental assessment of a compact combined cooling, heating and power system. Int. J. Exergy 2022, 38, 346–366. [Google Scholar] [CrossRef]
- National System Operator. 2024. Available online: https://www.ons.org.br/paginas/resultados-da-operacao/historico-da-operacao/dados-gerais (accessed on 30 January 2025).
- Carvalho, M.; Delgado, D. Potential of photovoltaic solar energy to reduce the carbon footprint of the Brazilian electricity matrix. LALCA Rev. Lat. Am. Em Avaliação Do Ciclo De Vida 2017, 1, 64–85. [Google Scholar] [CrossRef]
- Carbon Trust. Net Zero Transition Planning and Delivery—Avoided Emissions. 2025. Available online: https://www.carbontrust.com/what-we-do/net-zero-transition-planning-and-delivery/avoided-emissions#:~:text=Avoided%20emissions%20refer%20to%20the,replacing%20fossil%20fuel%20energy%20sources (accessed on 19 June 2025).
- Abreu, R.P.; Correia, V.H.L.; Lourenço, A.B.; da Silva Marques, A.; Carvalho, M. Thermoeconomic and thermoenvironmental analysis of the chilled water system in a shopping mall. Int. J. Refrig. 2022, 134, 304–311. [Google Scholar] [CrossRef]
- Carvalho, M.; Da Silva, E.S.; Andersen, S.L.; Abrahão, R. Life cycle assessment of the transesterification double step process for biodiesel production from refined soybean oil in Brazil. Environ. Sci. Pollut. Res. 2016, 23, 11025–11033. [Google Scholar] [CrossRef]
- Menezes, V.L.; Gomes, K.C.; Carvalho, M. Evaluation of the manufacturing processes for solar selective surfaces based on CrxOy from a carbon footprint perspective. Clean. Mater. 2022, 3, 100035. [Google Scholar] [CrossRef]
TEOS Coating | |||||
---|---|---|---|---|---|
Material | Amount (mol) | Molar Mass (g/mol) | Density (g/mL) | Volume (mL) | Chemical Formula |
Tetraethyl orthosilicate (TEOS), 99.0% | 1 | 208.33 | 0.94 | 221.63 | Si(OC2H5)4 |
Deionized water | 15.47 | 18.02 | 1 | 278.77 | H2O |
Ethyl alcohol, absolute, 99.8% | 31.28 | 46.07 | 0.789 | 1826.45 | C2H6O |
Hydrochloric acid | 6.87 | 36.46 | 1.18 | 212.27 | HCl |
TTIP Coating | |||||
---|---|---|---|---|---|
Material | Amount (mol) | Molar Mass (g/mol) | Density (g/mL) | Volume (mL) | Chemical Formula |
Titanium (IV) isopropoxide | 1 | 284.22 | 0.955 | 297.61 | TI[OCH(CH3)2]4 |
Glacial acetic acid | 4 | 60.05 | 1.049 | 228.98 | CH3COOH |
Isopropyl alcohol | Total volume of the above two items | 60.1 | 0.789 | 526.59 | C3H7OH |
Nitric acid | 0.1 molar solution of nitric acid in distilled water | - | - | 0.22 | HNO3 |
Distilled water | - | - | 52.44 | H2O |
Coating Layer | Equipment | Time (Hours) | Power (W) | Allocation (%) | Electricity (kWh) |
---|---|---|---|---|---|
TEOS | Magnetic agitator | 3 | 750 | 100% | 2.25 |
Muffle furnace | 24 | 750 | 23.71% | 4.27 | |
Total | 6.52 | ||||
TiO2 | Magnetic agitator | 2 | 750 | 100% | 1.50 |
Muffle furnace | 24 | 750 | 76.28% | 13.72 | |
Total | 15.22 |
Antireflective Coating | |||
---|---|---|---|
Material | Amount | Emission Factor | Carbon Footprint (kg CO2-eq) |
Tetraethyl orthosilicate | 221.63 mL | 4.78 kg CO2-eq/L | 1.0594 |
Deionized water | 278.77 mL | 0.000311 kg CO2-eq/L | 8.67 × 10−5 |
Ethyl alcohol | 1826.45 mL | 1.17 kg CO2-eq/L | 2.1369 |
Hydrochloric acid | 212.27 mL | 1.05 kg CO2-eq/L | 0.2229 |
Electricity | 6.52 kWh | 0.152 kg CO2-eq/kWh | 0.9910 |
TOTAL | 4.4103 (1.7368 g CO2-eq/mL) |
Self-Cleaning Coating | |||
---|---|---|---|
Material | Amount | Emission Factor | Carbon Footprint (kg CO2-eq) |
Titanium isopropoxide | 297.61 mL | 6.03 kg CO2-eq/L | 1.7946 |
Glacial acetic acid | 228.98 mL | 1.67 kg CO2-eq/L | 0.3824 |
Isopropyl alcohol | 526.59 mL | 4.74 kg CO2-eq/L | 2.4960 |
Nitric acid | 0.22 mL | 2.87 kg CO2-eq/L | 0.0006 |
Distilled water | 52.44 mL | 0.00601 kg CO2-eq/L | 0.0003 |
Electricity | 15.23 kWh | 0.152 kg CO2-eq/kWh | 2.3153 |
TOTAL | 6.99 (6.3204 g CO2-eq/mL) |
Emissions (kg CO2-eq) | ||
---|---|---|
Item | ||
Coated PV panels | 20,054,310 | |
Cables, grounding | 1,048,161 | |
Inverters | 395,442 | |
Transformers | 440,978 | |
Administrative building | 115,522 | |
Junction boxes | 15,426 | |
O&M | ||
Replacement of coated PV panels | 250,354 | |
Replacement of inverters | 98,860 | |
Washing of panels | 57,339 | |
Mowing | 59,094 | |
TOTAL | 22,535,486 |
Annual Electricity [MWh/Year] | Avoided Emissions [kg CO2-eq/Year] | Balance of Emissions [kg CO2-eq] | |
---|---|---|---|
Year | 22,535,486 | ||
1 | 33,969.64 | 5,163,385 | 17,372,101 |
2 | 33,731.85 | 5,127,242 | 12,244,860 |
3 | 33,495.73 | 5,091,351 | 7,153,509 |
4 | 33,261.26 | 5,055,711 | 2,097,797 |
5 | 33,028.43 | 5,020,321 | −2,922,524 |
6 | 32,797.23 | 4,985,179 | −7,907,703 |
7 | 32,633.25 | 4,960,253 | −12,867,957 |
8 | 32,470.08 | 4,935,452 | −17,803,409 |
9 | 32,307.73 | 4,910,775 | −22,714,183 |
10 | 32,146.19 | 4,886,221 | −27,600,404 |
11 | 31,985.46 | 4,861,790 | −32,462,194 |
12 | 31,825.53 | 4,837,481 | −37,299,675 |
13 | 31,666.40 | 4,813,293 | −42,112,968 |
14 | 31,508.07 | 4,789,227 | −46,902,195 |
15 | 31,350.53 | 4,765,281 | −51,667,476 |
16 | 31,193.78 | 4,741,454 | −56,408,931 |
17 | 31,037.81 | 4,717,747 | −61,126,678 |
18 | 30,882.62 | 4,694,158 | −65,820,836 |
19 | 30,728.21 | 4,670,688 | −70,491,524 |
20 | 30,574.57 | 4,647,334 | −75,138,858 |
21 | 30,421.69 | 4,624,098 | −79,762,955 |
22 | 30,269.59 | 4,600,977 | −84,363,932 |
23 | 30,118.24 | 4,577,972 | −88,941,905 |
24 | 29,967.65 | 4,555,082 | −93,496,987 |
25 | 29,817.81 | 4,532,307 | −98,029,294 |
Total | 793,189.34 |
Lifetime of Coating [Years] | System Emissions [kg CO2-eq] | Avoided Emissions [kg CO2-eq] |
---|---|---|
None | 22,534,773 | −92,838,222 |
25 | 22,535,486 | −98,029,294 |
10 | 22,536,556 | −98,028,224 |
5 | 22,538,340 | −98,026,440 |
1 | 22,552,606 | −98,012,174 |
0.5 | 22,570,439 | −97,994,341 |
1/12 | 22,748,766 | −97,816,014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, M.; Andrade, H.d.N.; Oliveira, B.F.d.; Cavalcante, S.L.; Gomes, K.C. Contributing to the Concept of Sustainable Buildings: Evaluation of the Carbon Emissions of a Solar Photovoltaic Coating Developed in Northeast Brazil. Sustainability 2025, 17, 7897. https://doi.org/10.3390/su17177897
Carvalho M, Andrade HdN, Oliveira BFd, Cavalcante SL, Gomes KC. Contributing to the Concept of Sustainable Buildings: Evaluation of the Carbon Emissions of a Solar Photovoltaic Coating Developed in Northeast Brazil. Sustainability. 2025; 17(17):7897. https://doi.org/10.3390/su17177897
Chicago/Turabian StyleCarvalho, Monica, Heitor do Nascimento Andrade, Beatriz Ferreira de Oliveira, Sidnéia Lira Cavalcante, and Kelly C. Gomes. 2025. "Contributing to the Concept of Sustainable Buildings: Evaluation of the Carbon Emissions of a Solar Photovoltaic Coating Developed in Northeast Brazil" Sustainability 17, no. 17: 7897. https://doi.org/10.3390/su17177897
APA StyleCarvalho, M., Andrade, H. d. N., Oliveira, B. F. d., Cavalcante, S. L., & Gomes, K. C. (2025). Contributing to the Concept of Sustainable Buildings: Evaluation of the Carbon Emissions of a Solar Photovoltaic Coating Developed in Northeast Brazil. Sustainability, 17(17), 7897. https://doi.org/10.3390/su17177897