Effects of Climate Change and Ecological Water Conveyance on the Suitable Distribution of Populus euphratica in Tarim River Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Species Occurrence Sites
2.3. Environmental Variables
2.4. Model Description and Setup
2.5. Model Evaluation and Classification of Suitability Levels
3. Results
3.1. Assessment of Prediction Results
3.2. Contribution of Environmental Variables
3.3. Suitable Habitat Distribution for P. euphratica
3.4. Impact of Climate Change on the Distribution of P. euphratica
3.5. Impact of Ecological Water Conveyance on the Distribution of P. euphratica
3.6. Shift in the Distribution Center of P. euphratica
4. Discussion
4.1. Rationality of MaxEnt Model and Limitations
4.2. Analysis of Major Environmental Variables
4.3. Spatial Distribution of Suitable Habitat for P. euphratica
4.4. Effects of Climate Change and Ecological Water Conveyance on the Distribution of P. euphratica
4.5. Evolution of the Distribution Center of P. euphratica
4.6. Recommendations for Ecological Water Conveyance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Babatunde, D.E.; Anozie, A.N.; Omoleye, J.A.; Oyebode, O.; Babatunde, O.M.; Agboola, O. Prediction of global warming potential and carbon tax of a natural gas-fired plant. Energy Rep. 2020, 6, 1061–1070. [Google Scholar] [CrossRef]
- Kemp, D.B.; Han, Z.; Hu, X.; Chen, W.; Jin, S.; Izumi, K.; Yan, Q.; Baranyi, V.; Jin, X.; Corso, J.D.; et al. Global hydroclimate perturbations during the Toarcian oceanic anoxic event. Earth-Sci. Rev. 2024, 258, 104946. [Google Scholar] [CrossRef]
- Yang, T.; Ding, J.Z.; Liu, D.; Wang, X.Y.; Wang, T. Combined Use of Multiple Drought Indices for Global Assessment of Dry Gets Drier and Wet Gets Wetter Paradigm. J. Clim. 2019, 32, 737–748. [Google Scholar] [CrossRef]
- Xiong, J.H.; Guo, S.L.; Abhishek; Chen, J.; Yin, J.B. Global evaluation of the “dry gets drier, and wet gets wetter” paradigm from a terrestrial water storage change perspective. Hydrol. Earth Syst. Sci. 2022, 26, 6457–6476. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Yang, G.; Xiao, Y.; Argiriou, A.A.; Shi, Y.; Lei, S.; Zhang, M. Altitude effect of precipitation isotopes in an arid mountain-basin system: Observation and modelling around the world’s second-largest shifting desert. J. Hydrol. 2024, 636, 131351. [Google Scholar] [CrossRef]
- Tang, H.; Wang, L.; Wang, Y. Spatial and Temporal Variation Characteristics of Vegetation Cover in the Tarim River Basin, China, and Analysis of the Driving Factors. Sustainability 2025, 17, 1414. [Google Scholar] [CrossRef]
- Zhou, G.X.; Chen, Y.N.; Yao, J.Q. Variations in precipitation and temperature in Xinjiang (Northwest China) and their connection to atmospheric circulation. Front. Environ. Sci. 2023, 10, 1082713. [Google Scholar] [CrossRef]
- Li, Y.Y.; Dang, H.L.; Lv, X.H.; Wang, Z.K.; Pu, X.Z.; Zhuang, L. High-throughput sequencing reveals rhizosphere fungal community composition and diversity at different growth stages of Populus euphratica in the lower reaches of the Tarim River. PeerJ 2022, 10, e13552. [Google Scholar] [CrossRef]
- Zhao, X.F.; Xu, H.L.; Zhang, P.; Yang, Y.Q.; Xu, Q.; Wang, C.H. How to realize the sustainable distribution of desert riparian forest? Ecohydrology 2023, 16, e2549. [Google Scholar] [CrossRef]
- Li, Z. Populus euphratica Forest in Xinjiang; China Forestry Publishing House: Beijing, China, 2020. [Google Scholar]
- Keram, A.; Halik, Ü.; Keyimu, M.; Aishan, T.; Mamat, Z.; Rouzi, A. Gap dynamics of natural Populus euphratica floodplain forests affected by hydrological alteration along the Tarim River: Implications for restoration of the riparian forests. For. Ecol. Manag. 2019, 438, 103–113. [Google Scholar] [CrossRef]
- Wan, Y.B.; Peng, L.; Li, H.; Anwaier, A.; Li, D.H.; Ma, Y.; Dai, Y.; Shi, Q. Water-use characteristics of Populus euphratica trees in response to flood and groundwater depth in desert oasis. Environ. Exp. Bot. 2024, 226, 105915. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Zhu, C.; Wang, Y.; Hao, X. Ecohydrological effects of water conveyance in a disconnected river in an arid inland river basin. Sci. Rep. 2022, 12, 9982. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, J.; Ke, Y.; Zhang, Y.; Zhou, C.; Wei, C.; Shen, Z.; De Maeyer, P.; Van de Voorde, T. The patterns of the Populus euphratica forest and cropland changes upstream of the Tarim River under the policy-driven human activities during 1960–2023. Int. J. Remote Sens. 2025, 46, 5087–5106. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Fu, B.; Gao, G.; Shen, Q. Ecological effects and potential risks of the water diversion project in the Heihe River Basin. Sci. Total Environ. 2018, 619–620, 794–803. [Google Scholar] [CrossRef]
- Keram, A.; Halik, Ü.; Aishan, T.; Keyimu, M.; Jiapaer, K.; Li, G. Tree mortality and regeneration of Euphrates poplar riparian forests along the Tarim River, Northwest China. For. Ecosyst. 2021, 8, 49. [Google Scholar] [CrossRef]
- Abdureyim, A.; Dai, Y.; Wan, Y.; Flora, E.; Shi, Q. Response of Populus euphratica radial growth to drought in desert Oases, Taklamakan Desert, China. CATENA 2025, 252, 108873. [Google Scholar] [CrossRef]
- Shi, H.; Shi, Q.; Zhou, X.; Imin, B.; Li, H.; Zhang, W.; Kahaer, Y. Effect of the competition mechanism of between co-dominant species on the ecological characteristics of Populus euphratica under a water gradient in a desert oasis. Glob. Ecol. Conserv. 2021, 27, e01611. [Google Scholar] [CrossRef]
- Guo, W.; Jiao, A.; Wang, W.; Chen, C.; Ling, H.; Yan, J.; Chen, F. Change and Driving Factor Analysis of Eco-Environment of Typical Lakes in Arid Areas. Water 2023, 15, 2107. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Y.; Jiang, X.; Chen, H.; Liu, M.; Wang, R. Potential geographical distribution of the edangred plant Isoetes under human activities using MaxEnt and GARP. Glob. Ecol. Conserv. 2022, 38, e02186. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Yackulic, C.B.; Chandler, R.; Zipkin, E.F.; Royle, J.A.; Nichols, J.D.; Campbell Grant, E.H.; Veran, S. Presence-only modelling using MAXENT: When can we trust the inferences? Methods Ecol. Evol. 2013, 4, 236–243. [Google Scholar] [CrossRef]
- He, P.; Li, J.; Li, Y.; Xu, N.; Gao, Y.; Guo, L.; Huo, T.; Peng, C.; Meng, F. Habitat protection and planning for three Ephedra using the MaxEnt and Marxan models. Ecol. Indic. 2021, 133, 108399. [Google Scholar] [CrossRef]
- Xu, W.; Du, Q.; Yan, S.; Cao, Y.; Liu, X.; Guan, D.X.; Ma, L.Q. Geographical distribution of As-hyperaccumulator Pteris vittata in China: Environmental factors and climate changes. Sci. Total Environ. 2022, 803, 149864. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wang, J.; Zhang, L.; Chen, S.; Zhao, A.; Ning, X.; Fan, G.; Wu, N.; Zhang, L.; Wang, Z. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model. Ecol. Indic. 2023, 148, 110093. [Google Scholar] [CrossRef]
- Xie, C.; Huang, B.; Jim, C.Y.; Han, W.; Liu, D. Predicting differential habitat suitability of Rhodomyrtus tomentosa under current and future climate scenarios in China. For. Ecol. Manag. 2021, 501, 119696. [Google Scholar] [CrossRef]
- Shi, F.; Liu, S.; An, Y.; Sun, Y.; Zhao, S.; Liu, Y.; Li, M. Climatic factors and human disturbance influence ungulate species distribution on the Qinghai-Tibet Plateau. Sci. Total Environ. 2023, 869, 161681. [Google Scholar] [CrossRef]
- Wang, J.M.; Wang, Y.; Feng, J.M.; Chen, C.; Chen, J.; Long, T.; Li, J.; Zang, R.; Li, J. Differential Responses to Climate and Land-Use Changes in Threatened Chinese Taxus Species. Forests 2019, 10, 766. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Y.; Huang, D.; Wang, H.; Cao, Q.; Fan, P.; Yang, N.; Zheng, P.; Wang, R. The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Sci. Total Environ. 2020, 744, 140786. [Google Scholar] [CrossRef]
- Xue, L.; Yang, F.; Yang, C.; Chen, X.; Zhang, L.; Chi, Y.; Yang, G. Identification of potential impacts of climate change and anthropogenic activities on streamflow alterations in the Tarim River Basin, China. Sci. Rep. 2017, 7, 8254. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Wang, Q. Assessing ecological vulnerability in western China based on Time-Integrated NDVI data. J. Arid Land 2016, 8, 533–545. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Fu, J.; Wei, J. Spatiotemporal heterogeneity and attributions of streamflow and baseflow changes across the headstreams of the Tarim River Basin, Northwest China. Sci. Total Environ. 2023, 856, 159230. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Fu, J.; Chen, Z.; Ning, Z.; Liu, Y. Quantifying the relative contribution of climate variability and human activities impacts on baseflow dynamics in the Tarim River Basin, Northwest China. J. Hydrol. Reg. Stud. 2021, 36, 100853. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, R.; Chen, X.; Yu, G.; Gan, M.; Disse, M. Agricultural water allocation strategies along the oasis of Tarim River in Northwest China. Agric. Water Manag. 2017, 187, 24–36. [Google Scholar] [CrossRef]
- Ye, M.; Xu, H.; Song, Y. The utilization of water resources and its variation tendency in Tarim River Basin. Chin. Sci. Bull. 2006, 51, 16–24. [Google Scholar] [CrossRef]
- Peng, Y.; He, G.; Wang, G. Spatial-temporal analysis of the changes in Populus euphratica distribution in the Tarim National Nature Reserve over the past 60 years. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 103000. [Google Scholar] [CrossRef]
- Zhu, C.G.; Chen, Y.N.; Li, W.H.; Chen, Y.P.; Ma, J.X.; Fu, A.H. Effects of groundwater decline on Populus euphratica at hyper-arid regions: The lower reaches of the tarim river in Xinjiang, China. Fresenius Environ. Bull. 2011, 20, 3326–3337. [Google Scholar]
- Ye, Z.; Chen, S.; Zhang, Q.; Liu, Y.; Zhou, H. Ecological Water Demand of Taitema Lake in the Lower Reaches of the Tarim River and the Cherchen River. Remote Sens. 2022, 14, 832. [Google Scholar] [CrossRef]
- Jiao, A.Y.; Wang, W.Q.; Ling, H.B.; Deng, X.Y.; Yan, J.J.; Chen, F.L. Effect evaluation of ecological water conveyance in Tarim River Basin, China. Front. Environ. Sci. 2022, 10, 1019695. [Google Scholar] [CrossRef]
- GBIF Occurrence Download. Available online: https://doi.org/10.15468/dl.rn7bec (accessed on 13 May 2024).
- Zhu, X.; Yuan, G.; Shao, M.; Yi, X.; Du, T. Populus euphratica Woodlands and Tamarix Thickets Distribution Data in Lower Tarim River Basin, China, 2013. J. Glob. Change Data Discov. 2016, 12, 8. [Google Scholar] [CrossRef]
- Han, L.; Feng, Y.; Li, Y.; Wang, Y.; Wang, H. Effects of groundwater depth on carbon, nitrogen, phosphorus ecological stoichiometric and homeostasis characteristics of Populus pruinosa leaves and soil in Tarim Basin, Xinjiang, China. Chin. J. Plant Ecol. 2024, 48, 92–102. [Google Scholar]
- Jia, W.; Li, S.; Gao, X.; Wang, N.; Wang, S.; Tian, Y.; Liu, J.; Mao, W.; Tian, J. The Foliar Dust Grain Size Characteristics of Different Plant Species in the Central Taklimakan Desert. J. Desert Res. 2014, 34, 658–665. [Google Scholar]
- Jiang, X.; Hao, S.; Ye, M.; He, D.; Zhang, Z.; Li, G. Study on water utilization sources of Populus euphratica under different groundwater depths in the lower Tarim River. Arid Land Geogr. 2024, 47, 2017–2029. [Google Scholar]
- Ma, J.; Shi, J.; Wang, X.; Baidourela, A.; Liu, M.; Abula, A. Effects of flood overflow on soil organic carbon and active components of Populus euphratica forest in the middle reaches of the Tarim River. Arid Zone Res. 2023, 40, 1248–1257. [Google Scholar]
- Mo, Z.; Wang, C.; Wang, H.; Sun, M.; Wei, L. Physiological characteristics of Populus euphratica leaves and their response to soil water, salt and pH value in Yarkant River Basin. J. South-Cent. Univ. Natl. 2023, 42, 733–738. [Google Scholar]
- Wang, H.; Han, L.; Li, Z.; Peng, J.; Ma, C. The photosynthetic and water physiological characteristics of Populus euphratica and Populus pruinosa in the upper reaches of Tarim River. Acta Ecol. Sin. 2009, 29, 5843–5850. [Google Scholar]
- Wang, J. Whole-Transcriptome Regulation of Heteromorphic Leaf Development in Populus pruinose. Master Thesis, Tarim University, Alaer, China, 2023. [Google Scholar]
- Wang, Y. Response of hydraulic traits and physiological functions of heteromorphic leaves of Populus euphratica Oliv. to groundwater depths. Master Thesis, Tarim University, Alaer, China, 2024. [Google Scholar]
- Yao, S.; Wang, J.; Huang, W.; Peng, C.; Song, S. Distribution, Uptake and Transport Characteristics of Populus euphratica Ions at Different Leaf Phenological Stages and Their Relationship with Soil Salinity. Acta Bot. Boreali-Occident. Sin. 2023, 43, 2118–2129. [Google Scholar]
- Yao, S. Spatial Variability of Leaf Traits Network of Populus euphratica and Its Relationship with Environmental Factors in the Mainstream of Tarim River. Master Thesis, Tarim University, Alaer, China, 2024. [Google Scholar]
- Zhang, Y.; Liu, M.; Shi, J.; Wang, X.; Abula, A.; Zhang, Y. Numerical analysis of soil and vegetation nutrient characteristics in the initial year of returning farmland in the core area of Tarim River Populus euphratica forest. Xinjiang Agric. Sci. 2024, 61, 699–707. [Google Scholar]
- Zheng, Y.; Zhai, J.; Chen, J.; Han, Z.; Jiao, P.; Li, Z. Seasonal Variations of Clonal Propagation Characteristics of Populus pruinosa Schrenk, Organ Nutrient and Soil Fertility, and Their Coupling Associations in the Forest and Forest Edges. Bull. Bot. Res. 2019, 39, 347–357. [Google Scholar]
- Lyu, R.; Liang, J.; Yu, J.; Wang, X.; Wang, L.; Zhou, Z. Physicochemical Properties and Enzymatic Activities of Different Populus pruinose Forest Types in the up Reaches of Hotan River. J. Northwest For. Univ. 2015, 30, 27–32. [Google Scholar]
- Zhang, Y.C.; Jiang, X.H.; Lei, Y.X.; Wu, Q.L.; Liu, Y.H.; Shi, X.W. Potentially suitable distribution areas of Populus euphratica and Tamarix chinensis by MaxEnt and random forest model in the lower reaches of the Heihe River, China. Environ. Monit. Assess. 2023, 195, 1519. [Google Scholar] [CrossRef] [PubMed]
- Fang, H. Data of Groundwater Resources in Xinjiang from 1980 to 2000. National Cryosphere Desert Data Center: Lanzhou, China, 2021. Available online: www.ncdc.ac.cn (accessed on 17 October 2024).
- Meng, X.; Wang, H. Siol Map Based Harmonized World Soil Database; National Tibetan Plateau Data Center: Beijing, China, 2021. [Google Scholar]
- Wieder, W.R.; Boehnert, J.; Bonan, G.B.; Langseth, M. Regridded Harmonized World Soil Database v1.2; ORNL Distributed Active Archive Center: Oak Ridge, TN, USA, 2014. [Google Scholar]
- Fischer, G.; Nachtergaele, F.; Prieler, S.; van Velthuizen, H.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008); IIASA: Laxenburg, Austria; FAO: Rome, Italy, 2008. [Google Scholar]
- Lu, L.; Liu, C. Chinese Soil Dataset Based on the World Soil Database (HWSD) (v1.1); National Cryosphere Desert Data Center: Lanzhou, China, 2020; Available online: www.ncdc.ac.cn (accessed on 22 September 2024).
- Che, L.; Cao, B.; Bai, C.; Wang, J.; Zhang, L. Predictive distribution and habitat suitability assessment of Notholirion bulbuliferum based on MaxEnt and ArcGIS. Chin. J. Ecol. 2014, 33, 1623–1628. [Google Scholar]
- Lemke, D.; Hulme, P.E.; Brown, J.A.; Tadesse, W. Distribution modelling of Japanese honeysuckle (Lonicera japonica) invasion in the Cumberland Plateau and Mountain Region, USA. For. Ecol. Manag. 2011, 262, 139–149. [Google Scholar] [CrossRef]
- Yalcin, M.; Sari, F.; Yildiz, A. Exploration of potential geothermal fields using MAXENT and AHP: A case study of the Büyük Menderes Graben. Geothermics 2023, 114, 102792. [Google Scholar] [CrossRef]
- Li, W.; Jiang, R.; Wu, H.; Xie, J.; Zhao, Y.; Li, F.; Gan, T.Y. An integrated urban flooding risk analysis framework leveraging machine learning models: A case study of Xi’an, China. Int. J. Disaster Risk Reduct. 2024, 112, 104770. [Google Scholar] [CrossRef]
- Rabinowitz, T.; Polsky, A.; Golan, D.; Danilevsky, A.; Shapira, G.; Raff, C.; Basel-Salmon, L.; Matar, R.T.; Shomron, N. Bayesian-based noninvasive prenatal diagnosis of single-gene disorders. Genome Res. 2019, 29, 428–438. [Google Scholar] [CrossRef]
- Yuan, Y.; Tang, X.; Liu, M.; Liu, X.; Tao, J. Species Distribution Models of the Spartina alterniflora Loisel in Its Origin and Invasive Country Reveal an Ecological Niche Shift. Front. Plant Sci. 2021, 12, 738–769. [Google Scholar] [CrossRef] [PubMed]
- Webb, G.I.; Ting, K.M. On the application of ROC analysis to predict classification performance under varying class distributions. Mach. Learn. 2005, 58, 25–32. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Huang, J.H.; Li, G.Q.; Li, J.; Zhang, X.Q.; Yan, M.J.; Du, S. Projecting the Range Shifts in Climatically Suitable Habitat for Chinese Sea Buckthorn Under Climate Change Scenarios. Forests 2017, 9, 9. [Google Scholar] [CrossRef]
- Nabout, J.C.; Magalhaes, M.R.; Gomes, M.A.D.; da Cunha, H.F. The Impact of Global Climate Change on the Geographic Distribution and Sustainable Harvest of Hancornia speciosa Gomes (Apocynaceae) in Brazil. Environ. Manag. 2016, 57, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Noulèkoun, F.; Chude, S.; Zenebe, A.; Birhane, E. Climate Change Impacts on Faidherbia albida (Delile) A. Chev. Distribution in Dry Lands of Ethiopia. Afr. J. Ecol. 2017, 55, 233–243. [Google Scholar] [CrossRef]
- Bai, J.J.; Hou, P.; Jin, D.; Zhai, J.; Ma, Y.T.; Zhao, J.J. Habitat Suitability Assessment of Black-Necked Crane (Grus nigricollis) in the Zoige Grassland Wetland Ecological Function Zone on the Eastern Tibetan Plateau. Diversity 2022, 14, 579. [Google Scholar] [CrossRef]
- Gebremedhn, H.; Gebrewahid, Y.; Hadgu, G.; de Graaf, D.C. Projecting the impacts of climate change on habitat distribution of Varroa destructor in Ethiopia using MaxEnt ecological modeling. Sci. Total Environ. 2025, 968, 178904. [Google Scholar] [CrossRef] [PubMed]
- Estes, L.D.; Bradley, B.A.; Beukes, H.; Hole, D.G.; Lau, M.; Oppenheimer, M.G.; Schulze, R.; Tadross, M.A.; Turner, W.R. Comparing mechanistic and empirical model projections of crop suitability and productivity: Implications for ecological forecasting. Glob. Ecol. Biogeogr. 2013, 22, 1007–1018. [Google Scholar] [CrossRef]
- Da Re, D.; Tordoni, E.; Lenoir, J.; Rubin, S.; Vanwambeke, S.O. Towards causal relationships for modelling species distribution. J. Biogeogr. 2024, 51, 840–852. [Google Scholar] [CrossRef]
- Radosavljevic, A.; Anderson, R.P. Making better MAXENT models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Aishan, T.; Betz, F.; Halik, Ü.; Cyffka, B.; Rouzi, A. Biomass Carbon Sequestration Potential by Riparian Forest in the Tarim River Watershed, Northwest China: Implication for the Mitigation of Climate Change Impact. Forests 2018, 9, 196. [Google Scholar] [CrossRef]
- Brown, J.H. Mammals on mountainsides: Elevational patterns of diversity. Glob. Ecol. Biogeogr. 2001, 10, 101–109. [Google Scholar] [CrossRef]
- Chettri, B.; Bhupathy, S.; Acharya, B.K. Distribution pattern of reptiles along an eastern Himalayan elevation gradient, India. Acta Oecologica-Int. J. Ecol. 2010, 36, 16–22. [Google Scholar] [CrossRef]
- Gairola, S.; Sharma, C.M.; Ghildiyal, S.K.; Suyal, S. Tree species composition and diversity along an altitudinal gradient in moist tropical montane valley slopes of the Garhwal Himalaya, India. For. Sci. Technol. 2011, 7, 91–102. [Google Scholar] [CrossRef]
- Grace, J.; Berninger, F.; Nagy, L. Impacts of climate change on the tree line. Ann. Bot. 2002, 90, 537–544. [Google Scholar] [CrossRef]
- Peñuelas, J.; Ogaya, R.; Boada, M.; Jump, A.S. Migration, invasion and decline: Changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 2007, 30, 829–837. [Google Scholar] [CrossRef]
- Beckage, B.; Osborne, B.; Gavin, D.G.; Pucko, C.; Siccama, T.; Perkins, T. A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proc. Natl. Acad. Sci. USA 2008, 105, 4197–4202. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Li, Z.; Theakstone, W.H. Changes of the hydrological cycle in two typical Chinese monsoonal temperate glacier basins: A response to global warming? J. Geogr. Sci. 2012, 22, 771–780. [Google Scholar] [CrossRef]
- Xu, H.L.; Ye, M.; Li, J.M. The ecological characteristics of the riparian vegetation affected by river overflowing disturbance in the lower Tarim River. Environ. Geol. 2009, 58, 1749–1755. [Google Scholar] [CrossRef]
- He, X.; Li, P. Surface Water Pollution in the Middle Chinese Loess Plateau with Special Focus on Hexavalent Chromium (Cr6+): Occurrence, Sources and Health Risks. Expo. Health 2020, 12, 385–401. [Google Scholar] [CrossRef]
- Lei, M.; Zhou, J.; Zhou, Y.; Sun, Y.; Ji, Y.; Zeng, Y. Spatial distribution, source apportionment and health risk assessment of inorganic pollutants of surface water and groundwater in the southern margin of Junggar Basin, Xinjiang, China. J. Environ. Manag. 2022, 319, 115757. [Google Scholar] [CrossRef]
- Wilson, M.C.; Chen, X.-Y.; Corlett, R.T.; Didham, R.K.; Ding, P.; Holt, R.D.; Holyoak, M.; Hu, G.; Hughes, A.C.; Jiang, L.; et al. Habitat fragmentation and biodiversity conservation: Key findings and future challenges. Landsc. Ecol. 2016, 31, 219–227. [Google Scholar] [CrossRef]
- Deng, X.; Xu, H.; Ye, M.; Li, B.; Fu, J.; Yang, Z. Impact of long-term zero-flow and ecological water conveyance on the radial increment of Populus euphratica in the lower reaches of the Tarim River, Xinjiang, China. Reg. Environ. Chang. 2015, 15, 13–23. [Google Scholar] [CrossRef]
- Guo, X. Spatial and Temporal Changes of Populus euphratica Forest Structure and Function in Tarim Basin Based on Multi-Source Remote Sensing Data and Driving Forces. PhD Thesis, Tarim University, Alaer, China, 2024. [Google Scholar]
- Zhou, H.; Chen, Y.; Zhu, C.; Li, Z.; Fang, G.; Li, Y.; Fu, A. Climate change may accelerate the decline of desert riparian forest in the lower Tarim River, Northwestern China: Evidence from tree-rings of Populus euphratica. Ecol. Indic. 2020, 111, 105997. [Google Scholar] [CrossRef]
- Lei, X.; Qu, M.J.; Wang, J.M.; Hou, J.H.; Wang, Y.; Li, G.J.; Luo, M.; Li, Z.; Li, J. The Distribution Range of Populus euphratica Oliv. (Salicaceae) Will Decrease Under Future Climate Change in Northwestern China. Forests 2024, 15, 1288. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Chen, Y.; Zhu, C. Science in supporting the ecological restoration and sustainable development of the Tarim River Basin. Arid Land Geogr. 2018, 41, 901–907. [Google Scholar]
- Li, Z.; Deng, X.; Long, A.; Chen, F.; Zhang, L.; Gao, H. Evaluation of soil, water resources and ecological carrying status of the Tarim River Basin from the perspective of three-dimensional ecological footprint model. Environ. Eng. 2022, 40, 286–294. [Google Scholar]
- Zhang, X.; Zuo, Q. Analysis of Water Resource Situation of the Tarim River Basin and the System Evolution under the Changing Environment. J. Coast. Res. 2015, 73, 9–16. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Xu, C.; Ye, Z.; Li, Z.; Zhu, C.; Ma, X. Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim River, China. Hydrol. Process. 2010, 24, 170–177. [Google Scholar] [CrossRef]
- Jiao, A.Y.; Wang, Z.K.; Deng, X.Y.; Ling, H.B.; Chen, F.L. Eco-Hydrological Response of Water Conveyance in the Mainstream of the Tarim River, China. Water 2022, 14, 2622. [Google Scholar] [CrossRef]
- Hao, Y.; Xu, X.; Huang, Q.; Huang, G. Modeling soil water-salt dynamics and maize yield responses to groundwater depths and irrigations. Trans. Chin. Soc. Agric. Eng. 2014, 30, 128–136. [Google Scholar]
- Runyan, C.W.; D’Odorico, P. Ecohydrological feedbacks between salt accumulation and vegetation dynamics: Role of vegetation-groundwater interactions. Water Resour. Res. 2010, 46, W11561. [Google Scholar] [CrossRef]
- Yang, P.; Wu, B.; Wang, S.; Dong, X.; Liu, L. Research on irrigation schedule of cotton drip irrigation under plastic film based on the different ground water table in arid areas. Agric. Res. Arid Areas 2014, 32, 76–82. [Google Scholar]
- Wu, Y.; Zhang, Y.; An, J.; Liu, Q.; Lang, Y. Sap flow of black locust in response to environmental factors in two soils developed from different parent materials in the lithoid mountainous area of North China. Trees 2018, 32, 675–688. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Si, J.H.; Feng, Q.; Yu, T.F.; Li, P.D. Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regul. 2017, 82, 353–362. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.; Ali, S. Abiotic stress and human activities reduce plant diversity in desert riparian forests. Ecol. Indic. 2023, 152, 110340. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, K.; Zuo, Q.; Wang, J.; Wang, W. Land use/land cover change responses to ecological water conveyance in the lower reaches of Tarim River, China. J. Arid Land 2021, 13, 1274–1286. [Google Scholar] [CrossRef]
- Han, Q.; Xue, L.; Liu, Y.; Yang, M.; Chu, X.; Liu, S. Developing a multi-objective simulation-optimization model for ecological water conveyance in arid inland river basins. J. Hydrol. Reg. Stud. 2023, 50, 101551. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y. Changes of desert riparian vegetation along the main stream of Tarim River, Xinjiang. Chin. J. Ecol. 2015, 34, 3166–3173. [Google Scholar]
- Zhou, B.; Yan, H.; Hu, S.; Xiong, H. Effect of river-flooding on soil physical-chemical properties and vegetation. Arid Land Geogr. 2010, 33, 442–448. [Google Scholar]
Variable | Description | Unit |
---|---|---|
Bio2 | Mean Diurnal Range | °C |
Bio3 | Isothermality | % |
Bio7 | Temperature Annual Range | °C |
Bio8 | Mean Temperature of Wettest Quarter | °C |
Bio10 | Mean Temperature of Warmest Quarter | °C |
Bio12 | Annual Precipitation | mm |
Bio14 | Precipitation of Driest Month | mm |
Groundwater Resources | Groundwater Resources Amount | ×108 m3 |
AWC_CLASS | Classification of Available Water Capacity | / |
Elevation | Elevation | m |
Distance to Rivers | Distance to Rivers | km |
Stocking Rate | Stocking Rate | head/hm2 |
Scenario NCC | Scenario CC | Scenario EWC | |
---|---|---|---|
Different variables | bio-clim (1970–2000) | bio-clim (2000–2019) | bio-clim (2000–2019) |
Groundwater Resources (1980–2000) | Groundwater Resources (1980–2000) | Groundwater Resources (2014–2021) | |
AWC_CLASS (1995) | AWC_CLASS (1995) | AWC_CLASS (2009) | |
Same variables | Elevation | Elevation | Elevation |
Distance to Rivers | Distance to Rivers | Distance to Rivers | |
Stocking Rate | Stocking Rate | Stocking Rate |
Scenario | AUCmean | AUCmean Standard Deviation |
---|---|---|
NCC | 0.958 | 0.006 |
CC | 0.961 | 0.008 |
EWC | 0.953 | 0.006 |
0–10 km | 10–40 km | ≥40 km | |
---|---|---|---|
Scenario NCC | 54.95 | 37.20 | 7.85 |
Scenario CC | 55.77 | 35.79 | 8.44 |
Scenario EWC | 49.58 | 39.95 | 10.47 |
Semi-Major Axis (km) | Semi-Minor Axis (km) | Flattening | Orientation Angle (°) | |
---|---|---|---|---|
Climate Change Effect | 483.45 | 234.68 | 0.51 | 75.96 |
Ecological Water Conveyance Effect | 539.53 | 232.37 | 0.57 | 70.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Han, Q.; Wang, H. Effects of Climate Change and Ecological Water Conveyance on the Suitable Distribution of Populus euphratica in Tarim River Basin. Sustainability 2025, 17, 7854. https://doi.org/10.3390/su17177854
Huang W, Han Q, Wang H. Effects of Climate Change and Ecological Water Conveyance on the Suitable Distribution of Populus euphratica in Tarim River Basin. Sustainability. 2025; 17(17):7854. https://doi.org/10.3390/su17177854
Chicago/Turabian StyleHuang, Wenyin, Qifei Han, and Haitao Wang. 2025. "Effects of Climate Change and Ecological Water Conveyance on the Suitable Distribution of Populus euphratica in Tarim River Basin" Sustainability 17, no. 17: 7854. https://doi.org/10.3390/su17177854
APA StyleHuang, W., Han, Q., & Wang, H. (2025). Effects of Climate Change and Ecological Water Conveyance on the Suitable Distribution of Populus euphratica in Tarim River Basin. Sustainability, 17(17), 7854. https://doi.org/10.3390/su17177854