Comparative Analysis of Effects of Nutrient Management Practices on Soil Microbiome and Rhizosphere Chemistry in Brinjal (Solanum melongena L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Characterization of Soil
2.3. Root Architecture
2.4. Root Exudate Collection and Analysis
2.5. DNA Isolation from the Soil Sample
2.6. Library Preparation
2.7. Metagenomic Data Processing and Bioinformatics Workflow
3. Results
3.1. Physicochemical Properties of Experimental Soil
3.2. Effect of Different Nutrient Management on Root Architecture Traits in Brinjal
3.3. Metabolite Profiling and Root Exudation Patterns in Brinjal: Insights from LC-MS Analysis
3.4. Microbial Diversity and Community Dynamics
3.4.1. Relative Abundance of Microbial Phyla
3.4.2. Relative Abundance of Microbial Communities at the Genus Level
3.4.3. Alpha and Beta Diversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- York, L.M.; Carminati, A.; Mooney, S.J.; Ritz, K.; Bennett, M.J. The holistic rhizosphere: Integrating zones, processes, and semantics in the soil influenced by roots. J. Exp. Bot. 2016, 67, 3629–3643. [Google Scholar] [CrossRef] [PubMed]
- Violante, A.; Caporale, A.G. Biogeochemical processes at soil-root interface. J. Soil Sci. Plant Nutr. 2015, 15, 422–448. [Google Scholar] [CrossRef]
- Ilakiya, T.; Swarnapriya, R.; Pugalendhi, L.; Geethalakshmi, V.; Lakshmanan, A.; Kumar, M.; Lorenzo, J.M. Carbon accumulation, soil microbial and enzyme activities in elephant foot yam-based intercropping system. Agriculture 2023, 13, 187. [Google Scholar] [CrossRef]
- Schmidt, J.E.; Kent, A.D.; Brisson, V.L.; Gaudin, A.C. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 2019, 7, 146. [Google Scholar] [CrossRef]
- Chauhan, P.; Sharma, N.; Tapwal, A.; Kumar, A.; Verma, G.S.; Meena, M.; Swapnil, P. Soil microbiome: Diversity, benefits and interactions with plants. Sustainability 2023, 15, 14643. [Google Scholar] [CrossRef]
- Zhang, J.; Cook, J.; Nearing, J.T.; Zhang, J.; Raudonis, R.; Glick, B.R.; Cheng, Z. Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiol. Res. 2021, 245, 126690. [Google Scholar] [CrossRef]
- Semenov, M.V.; Krasnov, G.S.; Semenov, V.M.; van Bruggen, A. Mineral and organic fertilizers distinctly affect fungal communities in the crop rhizosphere. J. Fungi 2022, 8, 251. [Google Scholar] [CrossRef]
- Yang, L.; Sun, R.; Li, J.; Zhai, L.; Cui, H.; Fan, B.; Liu, H. Combined organic-inorganic fertilization builds higher stability of soil and root microbial networks than exclusive mineral or organic fertilization. Soil Ecol. Lett. 2023, 5, 220142. [Google Scholar] [CrossRef]
- Yan, H.; Wu, Y.; He, G.; Wen, S.; Yang, L.; Ji, L. Fertilization regime changes rhizosphere microbial community assembly and interaction in Phoebe bournei plantations. Appl. Microbiol. Biotechnol. 2024, 108, 417. [Google Scholar] [CrossRef]
- Kumar, V. Use of integrated nutrient management to enhance soil fertility and crop yield of hybrid cultivar of brinjal (Solanum melongena L.) under field conditions. Adv. Plants Agric. Res. 2016, 4, 1–9. [Google Scholar] [CrossRef]
- Mondal, T.K.; Mohanraj, M.; Reddy, M.P.S.S.; Manobharathi, K.; Kumar, S. A Comprehensive Analysis of Chemical Applications for the Production of Brinjal Crop. J. Exp. Agric. Int. 2024, 46, 53–63. [Google Scholar] [CrossRef]
- Huang, X.F.; Chaparro, J.M.; Reardon, K.F.; Zhang, R.; Shen, Q.; Vivanco, J.M. Rhizosphere interactions: Root exudates, microbes, and microbial communities. Botany 2014, 92, 267–275. [Google Scholar] [CrossRef]
- Wei, X.; Xie, B.; Wan, C.; Song, R.; Zhong, W.; Xin, S.; Song, K. Enhancing soil health and plant growth through microbial fertilizers: Mechanisms, benefits, and sustainable agricultural practices. Agronomy 2024, 14, 609. [Google Scholar] [CrossRef]
- Quince, C.; Walker, A.W.; Simpson, J.T.; Loman, N.J.; Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 2017, 35, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Song, Y.; An, Y.; Lu, Y.; Zhong, G. Soil microorganisms: Their role in enhancing crop nutrition and health. Diversity 2024, 16, 734. [Google Scholar] [CrossRef]
- Shakir, B.S.; Arun, C.V.; Kirthi, A. Study of physicochemical properties and nutrient content of agricultural soils of Chittoor district using different analytical methods. Asian J. Pharm. Clin. Res. 2018, 11, 439–442. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Brevik, E.C. Spatial distribution of soil chemical properties in an organic farm in Croatia. Sci. Total Environ. 2017, 584, 535–545. [Google Scholar] [CrossRef]
- Lobet, G.; Pagès, L.; Draye, X. A novel image-analysis toolbox enabling quantitative analysis of root system architecture. Plant Physiol. 2011, 157, 29–39. [Google Scholar] [CrossRef]
- Döll, S.; Koller, H.; Dam, N.M. A simple, cost-effective and optimized protocol for collecting root exudates from soil grown plants. Rhizosphere 2024, 30, 100899. [Google Scholar] [CrossRef]
- Child, H.T.; Wierzbicki, L.; Joslin, G.R.; Tennant, R.K. Comparative evaluation of soil DNA extraction kits for long read metagenomic sequencing. Access Microbiol. 2024, 6, 000868-v3. [Google Scholar] [CrossRef]
- Stevenson, K.J. Review of originpro 8.5. J. Am. Chem. Soc. 2011, 133, 5621. [Google Scholar] [CrossRef]
- Bronner, I.F.; Quail, M.A. Best practices for Illumina library preparation. Curr. Protoc. Hum. Genet. 2019, 102, e86. [Google Scholar] [CrossRef] [PubMed]
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; He, X.; Chen, S.; Li, Y.; Huang, Q.; Xue, C.; Shen, Q. Long-term organic–inorganic fertilization regimes alter bacterial and fungal communities and rice yields in paddy soil. Front. Microbiol. 2022, 13, 890712. [Google Scholar] [CrossRef]
- Bai, Y.-C.; Chang, Y.-Y.; Hussain, M.; Lu, B.; Zhang, J.-P.; Song, X.-B.; Lei, X.-S.; Pei, D. Soil chemical and microbiological properties are changed by long-term chemical fertilizers that limit ecosystem functioning. Microorganisms 2020, 8, 694. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, J.; Vogt, R.D.; Mulder, J.; Wang, Y.; Qian, C.; Wang, J.; Zhang, X. Soil acidification as an additional driver to organic carbon accumulation in major Chinese croplands. Geoderma 2020, 366, 114234. [Google Scholar] [CrossRef]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mäder, P.; Stolze, M.; Smith, P.; Scialabba, N.E.-H.; et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef]
- Sharma, S.; Padbhushan, R.; Kumar, U. Integrated nutrient management in rice–wheat cropping system: An evidence on sustainability in the Indian subcontinent through meta-analysis. Agronomy 2019, 9, 71. [Google Scholar] [CrossRef]
- Amanullah, K.S.; Imran, K.H.A.; Arif, M.; Altawaha, A.R.; Adnan, M.; Fahad, S.; Parmar, B. Organic matter management in cereals based system: Symbiosis for improving crop productivity and soil health. In Sustainable Agriculture Reviews 29: Sustainable Soil Management: Preventive and Ameliorative Strategies; Springer International Publishing: Cham, Switzerland, 2019; pp. 67–92. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y. The function of root exudates in the root colonization by beneficial soil rhizobacteria. Biology 2024, 13, 95. [Google Scholar] [CrossRef]
- Reigosa, M.J.; Pazos-Malvido, E. Phytotoxic effects of 21 plant secondary metabolites on Arabidopsis thaliana germination and root growth. J. Chem. Ecol. 2007, 33, 1456–1466. [Google Scholar] [CrossRef]
- Baker, N.R.; Zhalnina, K.; Yuan, M.; Herman, D.; Ceja-Navarro, J.A.; Sasse, J.; Jordan, J.S.; Bowen, B.P.; Wu, L.; Fossum, C.; et al. Nutrient and moisture limitations reveal keystone metabolites linking rhizosphere metabolomes and microbiomes. Proc. Natl. Acad. Sci. USA 2024, 121, e2303439121. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Castañeda, T.; Lynch, J.P.; Six, J.; Hartmann, M. Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms. Front. Plant Sci. 2022, 13, 827369. [Google Scholar] [CrossRef] [PubMed]
- Yazhini, G.; Thiyageshwari, S.; Manikandan, A.; Saravanan, V.S.; Selvi, D.; Chithra, L.; Anandham, R. Low and moderate rice-sodic soils affect bacterial diversity and their functions. J. Soil Sci. Plant Nutr. 2024, 24, 855–869. [Google Scholar] [CrossRef]
- Macias-Benitez, S.; Garcia-Martinez, A.M.; Caballero Jimenez, P.; Gonzalez, J.M.; Tejada Moral, M.; Parrado Rubio, J. Rhizospheric organic acids as biostimulants: Monitoring feedbacks on soil microorganisms and biochemical properties. Front. Plant Sci. 2020, 11, 633. [Google Scholar] [CrossRef]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; Da Rocha, U.N.; Shi, S.; Heejung, C.; Ulas, K.; Dominique, L.; Benjamin, P.; et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef]
- Chaudhry, V.; Rehman, A.; Mishra, A.; Chauhan, P.S.; Nautiyal, C.S. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 2012, 64, 450–460. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Babalola, O.O. Streptomyces: Implications and interactions in plant growth promotion. Appl. Microbiol. Biotechnol. 2019, 103, 1179–1188. [Google Scholar] [CrossRef]
- Enebe, M.C.; Babalola, O.O. Effects of inorganic and organic treatments on the microbial community of maize rhizosphere by a shotgun metagenomics approach. Ann. Microbiol. 2020, 70, 49. [Google Scholar] [CrossRef]
- Yang, C.-X.; Chen, S.-J.; Hong, X.-Y.; Wang, L.-Z.; Wu, H.-M.; Tang, Y.-Y.; Gao, Y.-Y.; Hao, G.-F. Plant exudates-driven microbiome recruitment and assembly facilitates plant health management. FEMS Microbiol. Rev. 2025, 49, fuaf008. [Google Scholar] [CrossRef]
- Pascale, A.; Proietti, S.; Pantelides, I.S.; Stringlis, I.A. Modulation of the root microbiome by plant molecules: The basis for targeted disease suppression and plant growth promotion. Front. Plant Sci. 2020, 10, 1741. [Google Scholar] [CrossRef]
- Bebber, D.P.; Richards, V.R. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Appl. Soil Ecol. 2022, 175, 104450. [Google Scholar] [CrossRef]
- Patel, M.; Islam, S.; Glick, B.R.; Choudhary, N.; Yadav, V.K.; Bagatharia, S.; Sahoo, D.K.; Patel, A. Zero budget natural farming components Jeevamrit and Beejamrit augment Spinacia oleracea L. (spinach) growth by ameliorating the negative impacts of the salt and drought stress. Front. Microbiol. 2024, 15, 1326390. [Google Scholar] [CrossRef]
- Singh, S.; Singh, A.B.; Mandal, A.; Thakur, J.K.; Das, A.; Rajput, P.S.; Sharma, G.K. Chemical and microbiological characterization of organic supplements such as Beejamrit, Jeevamrit, and Ghanjeevamrit. Emergent Life Sci. Res. 2023, 9, 234–244. [Google Scholar] [CrossRef]
Crop | Brinjal |
Variety | Hybrid Lalita |
Treatment details | |
INM soil | 25% nutrients through organic sources (kg/ha) + 25% nutrients through inorganic sources (kg/ha) + seed/seedling treatment with Beejamrit + application of Ghanajeevamrit @ 1000 kg/ha, Jeevamrit @ 1500 L/ha/time twice a month with irrigation water |
Inorganic way of nutrient management | 100% inorganic fertilizers (200:150:100 N:P2O5:K2O kg/ha) |
Organic way of nutrient management | Supply of 50% nutrients through organic sources + seed treatment with Beejamrit * + one-time application of Ghanajeevamrit * @ 1000 kg/ha, Jeevamrit * @ 1500 L/ha/time twice a month with irrigation water |
Replications | 7 |
Design | Randomized block design |
Spacing | 60 cm × 45 cm |
Date of Planting | 14 August 2024 |
Crop duration | 180 days |
Parameter | INM | Inorganic | Organic |
---|---|---|---|
pH | 8.19 | 8.27 | 8.14 |
EC (ds/m) | 0.29 | 0.27 | 0.33 |
Organic carbon (%) | 0.95 | 0.33 | 1.75 |
Nitrogen (Kg/ha) | 324.96 | 344.96 | 281 |
Phosphorus (Kg/ha) | 42.35 | 39.48 | 32.74 |
Potassium (Kg/ha) | 223.8 | 209.68 | 188.64 |
Calcium (ppm) | 830 | 1284.31 | 634 |
Sulfur (ppm) | 15.684 | 16.962 | 13.79 |
Treatment | Total Root Length (cm) | Root Surface Area (cm2) | Average Root Diameter (mm) | Root Volume (cm3) |
---|---|---|---|---|
INM soil | 794.89 ± 2.39 a | 399.48 ± 2.55 a | 1.65 ± 0.02 b | 16.3 ± 0.07 a |
Inorganic soil | 757.54 ± 6.48 a | 375.13 ± 3.26 b | 1.85 ± 0.02 a | 14.8 ± 0.08 b |
Organic soil | 738.49 ± 3.22 a | 338.49 ± 1.57 a | 1.45 ± 0.01 c | 13.0 ± 0.05 c |
CD at 5% | 224.64 | 19.87 | 0.103 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bommi, S.; Parameswari, E.; Dhevagi, P.; Krishnan, R.; Janaki, P.; Suganthy, M.; Sangeetha, S.P.; Yazhini, G.; Ilakiya, T. Comparative Analysis of Effects of Nutrient Management Practices on Soil Microbiome and Rhizosphere Chemistry in Brinjal (Solanum melongena L.). Sustainability 2025, 17, 7832. https://doi.org/10.3390/su17177832
Bommi S, Parameswari E, Dhevagi P, Krishnan R, Janaki P, Suganthy M, Sangeetha SP, Yazhini G, Ilakiya T. Comparative Analysis of Effects of Nutrient Management Practices on Soil Microbiome and Rhizosphere Chemistry in Brinjal (Solanum melongena L.). Sustainability. 2025; 17(17):7832. https://doi.org/10.3390/su17177832
Chicago/Turabian StyleBommi, Sathasivam, Ettiyagounder Parameswari, Periyasamy Dhevagi, Ramanujam Krishnan, Ponnusamy Janaki, Mariappan Suganthy, Sundapalayam Palanisamy Sangeetha, Gunasekaran Yazhini, and Tamilselvan Ilakiya. 2025. "Comparative Analysis of Effects of Nutrient Management Practices on Soil Microbiome and Rhizosphere Chemistry in Brinjal (Solanum melongena L.)" Sustainability 17, no. 17: 7832. https://doi.org/10.3390/su17177832
APA StyleBommi, S., Parameswari, E., Dhevagi, P., Krishnan, R., Janaki, P., Suganthy, M., Sangeetha, S. P., Yazhini, G., & Ilakiya, T. (2025). Comparative Analysis of Effects of Nutrient Management Practices on Soil Microbiome and Rhizosphere Chemistry in Brinjal (Solanum melongena L.). Sustainability, 17(17), 7832. https://doi.org/10.3390/su17177832