Environmental and Public Health Impacts of Mining Tailings in Chañaral, Chile: A Narrative Case-Based Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
3. Results
3.1. Environmental Impacts
ID | Year | Authors | Population/Matrix | Pollutant(s) | Method | Reported Evidence | Ref. |
---|---|---|---|---|---|---|---|
1 | 1978 | Castilla, J. and Nealler, E. | Sub-littoral organisms | Not applicable | Observations and samplings | Low values of light penetrability reflected | [21] |
2 | 1983 | Castilla, J.C. | Marine invertebrates | Molybdenite and chalcopyrite | Sandy beach morphometric and sediment analysis | Geomorphological coastal modifications | [33] |
3 | 1997 | Riquelme, C, et al. | Green algae Enteromorpha compressa | Cu | Laboratory incubation and isolation of epiphyte bacteria | High copper tolerance of epiphytic bacteria | [34] |
4 | 1998 | Correa, J.A. et al. | Algae Lessonia nigrescens | Cu | Three alternative hypotheses were tested on copper tolerance | Sea water mixed with affluent was not lethal to algae | [26] |
5 | 1999 | Correa, J.A. et al. | Algae Enteromorpha compressa | Cu | Monitoring macroalgae, sessile, and mobile invertebrates | Low algae diversity influenced by herbivory | [28] |
6 | 2001 | Lee, M.R. et al. | Nematode, copepod | Trace metals | Laboratory analysis | Extent of metal impacts on meiofauna densities | [35] |
7 | 2001 | Fariña, J.M. and Castilla, J.C. | Seawater | Cu, Zn, Cd, inorganic particles | Standard methods designed | Variation in sessile species in rocky intertidal benthic communities | [32] |
8 | 2002 | Lee, M.R. et al. | Cores of porewater samples | Cu, Al, As, Cr, Mn, Ni, Zn | Diffusive gradients in thin-film (DGT) techniques | High concentrations of metals in porewater | [25] |
9 | 2005 | Medina, M. et al. | Algae and sessile invertebrates | Cu | Measurement of total dissolved copper concentration | Dissolved copper affects the diversity of sessile organisms | [30] |
10 | 2005 | Ramírez, M. et al. | Sessile species | Cd, Cu, Fe, Mn, Ni, Pb, Zn | Sequential chemical extraction method | Mining activity leads to the presence of copper | [36] |
11 | 2005 | Lee, M.R. and Correa, J.A. | Meiofaunal assemblages | Cu | Diffusion gel technique (DGT) | Copper found in seawater is connected to mining tailings | [37] |
12 | 2006 | Correa, J.A. et al. | Kelp Lessonia nigrescens (Phaeophyceae) | Not applicable | Experimental transplants of the large kelp Lessonia nigrescens (Phaeophyceae) | Transplanted plants regenerated | [38] |
13 | 2006 | Dold, B. | Tailing deposits | Cu, Ni, Zn, Pb, Mo, As | Measurement of parameters in the tailings deposit | The sea is affected by As, Mo, Cu, and Zn contamination. The population of Chañaral is mainly exposed to high concentrations of Cu and minor concentrations of Ni and Zn | [22] |
14 | 2006 | Andrade, S. et al. | Intertidal ecosystem | Cu | Total dissolved copper concentration was determined by ASV | Resuspended mine-derived sediments have the highest value of particulate and dissolved copper | [24] |
15 | 2010 | Bea, S.A. et al. | Efflorescent salt in coastal mine tailing deposits | Halite (NaCl) and eriochalcite (CuCl2·2H2O) | Reactive transport modeling | The reduction in evaporation is a key factor that prevents the formation of salt deposits and a specific mineral (eriochalcite) | [39] |
16 | 2012 | De la Iglesia et al. | Epilithic intertidal bacterial | Cu | Culture-independent molecular approach, field sampling, and laboratory microcosm experiments | Copper significantly affects bacterial communities, but its impact can be temporary and reversible | [31] |
17 | 2012 | Ramos-Jiliberto, R. et al. | Intertidal community | Cu | Retrospective qualitative analysis of ecological networks | Four initiators were identified as the primary drivers of observed community structure changes in the intertidal system | [40] |
18 | 2012 | Koski, R. | Mining activities in Spain (Gulf of Cádiz, Portman Bay), Chile (Chañaral Bay), the Philippines (Marinduque Island), and the United States (Callahan mine, Maine; Ellamar and Beatson mines, Prince William Sound, Alaska) | Cu, Pb, Zn | The dispersal of metals is described along a series of pathways leading from source rocks to the marine biosphere | The pathway approach considers a number of physical and chemical processes that influence the dispersion of metals in the continuum from the metal source to bioreceptor | [41] |
19 | 2013 | Valladares, P. et al. | Wild turkey vulture, Cathartes aura | Cd, Pb | Analysis of Cd and Pb using an atomic absorption spectrophotometer and an autosampler | High cadmium accumulation in the kidney compared to similar birds | [27] |
20 | 2013 | Korehi H et al. | Microorganisms | Cu | Scanning electron microscopy | Extreme mine tailings provide an environment that supports the growth of prokaryotes | [42] |
21 | 2014 | Besaury L et al. | Archaeal and bacterial communities | Cu | Molecular tools such as the 16S rRNA gene Q-PCR and RT-Q-PCR | Bacteria are the dominant group within the prokaryotic community | [43] |
22 | 2018 | Bonnail E et al. | Water fog composition | Cu, As | Fog water collectors. Volumes oscillate between 0 and 9000 L per month | High acidity and high concentrations of Cu and As in water collected on top of the mountain were found | [44] |
3.2. Impacts on Human Health (Exposure and Damage)
3.3. Analysis from the Social Sciences
4. Discussion
- (a)
- Remediation and management of mining tailing, integrating environmental, geochemical, and hydraulic aspects. Efforts are required in the control of particulate matter with metals emitted from the tailings.
- (b)
- Research on toxicity, biodegradability, and bioaccumulation in biota and living organisms. It may be necessary to evaluate phytoremediation measures for soil detoxification.
- (c)
- Community-based trans-generational participatory health research to improve the understanding of chronic exposure to toxic metals; efforts must include mental and physical health, neurotoxicity and respiratory damage in children, cardiovascular and cognitive disorders in the elderly, and metabolic and respiratory damage in adults, related to chronic exposure to toxic metals and arsenic.
- (d)
- Promotion of community environmental monitoring together with local and regional governance models, integrating public participation.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hudson-Edwards, K.A.; Jamieson, H.E.; Lottermoser, B.G. Mine Wastes: Past, Present, Future. Elements 2011, 7, 375–380. [Google Scholar] [CrossRef]
- Castillo, E.; Cortes-Maramba, N.P.; Reyes, J.P.; Makalinao, I.; Dioquino, C.; Francisco-Rivera, A.T.; Timbang, R. Health and environmental assessment of the impact of mine tailings spillage in the Philippines. J. Phys. IV 2003, 107, 275–279. [Google Scholar] [CrossRef]
- Csavina, J.; Field, J.; Taylor, M.P.; Gao, S.; Landázuri, A.; Betterton, E.A.; Sáez, A.E. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci. Total Environ. 2012, 433, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Doumas, P.; Munoz, M.; Banni, M.; Becerra, S.; Bruneel, O.; Casiot, C.; Sappin-Didier, V. Polymetallic pollution from abandoned mines in Mediterranean regions: A multidisciplinary approach to environmental risks. Reg. Environ. Change 2016, 18, 677–692. [Google Scholar] [CrossRef]
- Islam, K.; Murakami, S. Global-scale impact analysis of mine tailings dam failures: 1915–2020. Glob. Environ. Change 2021, 70, 102361. [Google Scholar] [CrossRef]
- SERNAGEOMIN. Anuario de la Minería de Chile; Servicio Nacional de Geología y Minería: Santiago, Chile, 2022. [Google Scholar]
- Pérez, G. Pasivos ambientales mineros en Chile: Lineamientos para priorización y remediación. In Avances y Recomendaciones en la Gestión de Pasivos Ambientales Mineros (PAM) y Cierre de Minas en los Países Andinos; Ministerio de Energía y Minas: Lima, Peru, 2019; Available online: https://www.cepal.org/sites/default/files/events/files/11_grecia_perez_caso_pams_chile_pdf (accessed on 17 March 2025).
- Porto, M.; Ferreira, D.; Finamore, R. Health as dignity: Political ecology, epistemology and challenges to environmental justice movements. J. Polit. Ecol. 2017, 24, 110–124. [Google Scholar]
- Boyd, D.R. A/HRC/55/43/Add.1: Visit to Chile Report of the Special Rapporteur on the Issue of Human Rights Obligations Relating to the Enjoyment of a Safe, Clean, Healthy and Sustainable Environment 2024. Updated 3 January 2024. Available online: https://www.ohchr.org/en/documents/country-reports/ahrc5543add1-visit-chile-report-special-rapporteur-issue-human-rights (accessed on 18 July 2025).
- Biblioteca del Congreso Nacional de Chile. Reporte Comunal Chañaral. 2024. Available online: https://www.bcn.cl/siit/reportescomunales/comunas_v.html?anno=2024&idcom=3201 (accessed on 17 March 2024).
- Delegación Presidencial Provincial de Chañaral. Conozca la Provincia. 2021. Available online: https://dppchanaral.dpp.gob.cl/conozca-la-provincia/ (accessed on 17 March 2025).
- Codelco. Reporte de Sustentabilidad. 2017. Available online: https://www.codelco.com/prontus_codelco/site/artic/20180614/asocfile/20180614122058/reporte_sustentabilidad_2017_codelco.pdf (accessed on 17 March 2025).
- San Román, F.J. Plano del Puerto de Chañaral [material cartográfico]. Santiago: Lit. e Imp. “La Nueva Alemana”, Santiago. 1898. [Google Scholar]
- Cortés, M. La Muerte Gris de Chañaral. El Libro Negro de la División Salvado del CODELCO Chile [Internet]. 2010. Available online: https://www.semillasdeagua.cl/wp-content/uploads/LA-MUERTE-GRIS-DE-CHA%C3%91ARALPDF.pdf (accessed on 17 August 2025).
- Vergara, A. Cuando el río suena, piedras trae: Relaves de cobre en la bahía de Chañaral, 1938–1990. Cuad. Hist. 2011, 135, 135–151. [Google Scholar] [CrossRef]
- Ministerio de Obras Públicas (MOP). Memoria Anual; Dirección de Planeamiento, Departamento de Estadística y Control: Santiago, Chile, 1974. [Google Scholar]
- Cacciuttolo, C.; Cano, D.; Custodio, M. Socio-Environmental Risks Linked with Mine Tailings Chemical Composition: Promoting Responsible and Safe Mine Tailings Management Considering Copper and Gold Mining Experiences from Chile and Peru. Toxics 2023, 11, 462. [Google Scholar] [CrossRef]
- Cortés, S. Percepción y Medición del Riesgo a Metales en una Población Expuesta a Residuos Mineros. Universidad de Chile. 2009. Available online: http://repositorio.uchile.cl/handle/2250/116517 (accessed on 17 March 2025).
- Ilustre Municipalidad de Chañaral. Plan de Desarrollo Comunal Chañaral. 2019. Available online: https://www.portaltransparencia.cl/PortalPdT/documents/10179/62801/Informe+Final+PLADECO+2019-2026.pdf/3699b935-370e-48ae-a42f-d5b70473f99d (accessed on 17 March 2025).
- González, P. Chañaral, un problema ambiental insoslayable. Intentos de solución en una ciudad bajo letargo. Rev. Estud. Urbano-Reg. 2018, 1, 1–2. [Google Scholar]
- Castilla, J.C.; Nealler, E. Marine environmental impact due to mining activities of El Salvador Copper Mine, Chile. Mar. Pollut. Bull. 1978, 9, 67–70. [Google Scholar] [CrossRef]
- Dold, B. Element flows associated with marine shore mine tailings deposits. Environ. Sci. Technol. 2006, 40, 752–758. [Google Scholar] [CrossRef]
- Lee, M.R.; Correa, J.A.; Seed, R. A sediment quality triad assessment of the impact of copper mine tailings disposal on the littoral sedimentary environment in the Atacama region of northern Chile. Mar. Pollut. Bull. 2006, 52, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- Andrade, S.; Moffett, J.; Correa, J.A. Distribution of dissolved species and suspended particulate copper in an intertidal ecosystem affected by copper mine tailings in Northern Chile. Mar. Chem. 2006, 101, 203–212. [Google Scholar] [CrossRef]
- Lee, M.R.; Correa, J.A.; Zhang, H. Effective metal concentrations in porewater and seawater labile metal concentrations associated with copper mine tailings disposal into the coastal waters of the Atacama region of northern Chile. Mar. Pollut. Bull. 2002, 44, 956–961. [Google Scholar] [CrossRef]
- Correa, J.A.; Roman, D.A.; Rivera, L.; Ramírez, M.A.; De, J.P.; Harpe, L.A.; Román, D.; Lidia, R. Copper, copper mining effluents, and grazing as potential determinants of algal abundance and diversity in Northern Chile. Environ. Monit. Assess. 1998, 61, 267–283. [Google Scholar] [CrossRef]
- Valladares, P.; Alvarado, S.; Urra, C.; Abarca, J.; Inostroza, J.; Codoceo, J.; Ruz, M. Cadmium and Lead content in Liver and Kidney tissues of Wild Turkey Vulture Cathartes aura (Linneo, 1758) from Chañaral, Atacama desert, Chile. Gayana 2013, 77, 97–104. [Google Scholar] [CrossRef]
- Correa, J.A.; Castilla, J.C.; Ramirez, M.; Varas, M.; Lagos, N.; Vergara, S.; Moenne, A.; Román, D.; Brown, M.T. Copper, copper mine tailings and their effect on marine algae in Northern Chile. J. Appl. Phycol. 1999, 11, 57–67. [Google Scholar] [CrossRef]
- Gobierno Regional de Atacama. Evaluación de una Estrategia de Detoxificación de Efluentes Contaminados con Metales Pesados Utilizando Algas Marinas Chilenas. Informe Final. Copiapó, Chile. 2015. Available online: https://goreatacama.gob.cl/wp-content/uploads/Informe-final-Evaluacion-de-una-estrategia-de-detoxificacion-contaminados-con-metales-pesados-utilizando-algas-marinas-chilenas.pdf (accessed on 25 August 2025).
- Medina, M.; Andrade, S.; Faugeron, S.; Lagos, N.; Mella, D.; Correa, J.A. Biodiversity of rocky intertidal benthic communities associated with copper mine tailing discharges in northern Chile. Mar. Pollut. Bull. 2005, 50, 396–409. [Google Scholar] [CrossRef]
- De la Iglesia, R.; Valenzuela-Heredia, D.; Andrade, S.; Correa, J.; González, B. Composition dynamics of epilithic intertidal bacterial communities exposed to high copper levels. FEMS Microbiol. Ecol. 2012, 79, 720–727. [Google Scholar] [CrossRef]
- Fariña, J.M.; Castilla, J.C. Temporal variation in the diversity and cover of sessile species in rocky intertidal communities affected by copper mine tailings in Northern Chile. Mar. Pollut. Bull. 2001, 42, 554–568. [Google Scholar] [CrossRef]
- Castilla, J.C. Environmental impact in sandy beaches of copper mine tailings at Chañaral, Chile. Mar. Pollut. Bull. 1983, 14, 459–464. [Google Scholar] [CrossRef]
- Riquelme, C.; Rojas, A.; Florest, V.; Correa, J.A. Epiphytic bacteria in a copper-enriched environment in Northern Chile. Mar. Pollut. Bull. 1997, 34, 816–820. [Google Scholar] [CrossRef]
- Lee, M.R.; Correa, J.A.; Castilla, J.C. An assessment of the potential use of the nematode to copepod ratio in the monitoring of metals pollution. The Chañaral case. Mar. Pollut. Bull. 2001, 42, 691–701. [Google Scholar] [CrossRef]
- Ramírez, M.; Massolo, S.; Frache, R.; Correa, J.A. Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Mar. Pollut. Bull. 2005, 50, 62–72. [Google Scholar] [CrossRef]
- Lee, M.R.; Correa, J.A. Effects of copper mine tailings disposal on littoral meiofaunal assemblages in the Atacama region of northern Chile. Mar. Environ. Res. 2005, 59, 1–18. [Google Scholar] [CrossRef]
- Correa, J.A.; Lagos, N.A.; Medina, M.H.; Castilla, J.C.; Cerda, M.; Ramírez, M.; Martínez, E.; Faugeron, S.; Andrade, S.; Pinto, R.; et al. Experimental transplants of the large kelp Lessonia nigrescens (Phaeophyceae) in high-energy wave-exposed rocky intertidal habitats of northern Chile: Experimental, restoration and management applications. Hydrobiologia 2006, 335, 13–18. [Google Scholar] [CrossRef]
- Bea, S.A.; Ayora, C.; Carrera, J.; Saaltink, M.W.; Dold, B. Geochemical and environmental controls on the genesis of soluble efflorescent salts in coastal mine tailings deposits: A discussion based on reactive transport modeling. J. Contam. Hydrol. 2010, 111, 65–82. [Google Scholar] [CrossRef]
- Ramos-Jiliberto, R.; Garay-Narváez, L.; Medina, M.H. Retrospective qualitative analysis of ecological networks under environmental perturbation: A copper-polluted intertidal community as a case study. Ecotoxicology 2012, 21, 234–243. [Google Scholar] [CrossRef]
- Koski, R. Metal Dispersion Resulting from Mining Activities in Coastal Environments: A Pathways Approach. Oceanography 2012, 25, 170–183. [Google Scholar] [CrossRef]
- Korehi, H.; Blöthe, M.; Sitnikova, M.A.; Dold, B.; Schippers, A. Metal mobilization by iron- and sulfur-oxidizing bacteria in multiple extreme mine tailings in the Atacama Desert, Chile. Environ. Sci. Technol. 2013, 47, 2189–2196. [Google Scholar] [CrossRef]
- Besaury, L.; Ghiglione, J.F.; Quillet, L. Abundance, activity, and diversity of archaeal and bacterial communities in both uncontaminated and highly copper-contaminated marine sediments. Mar. Biotechnol. 2014, 16, 230–242. [Google Scholar] [CrossRef]
- Bonnail, E.; Cunha Lima, R.; Martínez Turrieta, G. Trapping fresh sea breeze in desert? Health status of Camanchaca, Atacama’s fog. Environ. Sci. Pollut. Res. 2018, 25, 18204–18212. [Google Scholar] [CrossRef] [PubMed]
- Cortés, S.; Molina, L.; Burgos, S.; Adaros, H.; Ferreccio, C. Urinary metal levels in a Chilean community 31 years after the dumpings of mine tailings. J. Health Pollut. 2016, 6, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Mesías Monsalve, S.; Martínez, L.; Yohannessen Vásquez, K.; Alvarado Orellana, S.; Klarián Vergara, J.; Martín Mateo, M.; Costilla Salazar, R.; Fuentes Alburquenque, M.; Cáceres Lillo, D.D. Trace element contents in fine particulate matter (PM2.5) in urban school microenvironments near a contaminated beach with mine tailings, Chañaral, Chile. Environ. Geochem. Health 2018, 40, 1077–1091. [Google Scholar] [CrossRef] [PubMed]
- Moya, P.M.; Arce, G.J.; Leiva, C.; Vega, A.S.; Gutiérrez, S.; Adaros, H.; Muñoz, L.; Pastén, P.A.; Cortés, S. An integrated study of health, environmental and socioeconomic indicators in a mining-impacted community exposed to metal enrichment. Environ. Geochem. Health 2019, 41, 2505–2519. [Google Scholar] [CrossRef]
- Cortés, S.; Zúñiga-Venegas, L.; Pancetti, F.; Covarrubias, A.; Ramírez-Santana, M.; Adaros, H.; Muñoz, L. A positive relationship between exposure to heavy metals and development of chronic diseases: A case study from Chile. Int. J. Environ. Res. Public Health 2021, 18, 1419. [Google Scholar] [CrossRef]
- Cortés, S.; Burgos, S.; Adaros, H.; Lucero, B.; Quirós-Alcalá, L. Environmental health risk perception: Adaptation of a population-based questionnaire from Latin America. Int. J. Environ. Res. Public Health 2021, 18, 8600. [Google Scholar] [CrossRef]
- González, P. Historia Ambiental de Chañaral. Intrusión de Relaves Mineros, Transformación Territorial Y Conflicto de Contenido Ambiental. Available online: https://www.researchgate.net/publication/343615788_Historia_ambiental_de_Chanaral_Intrusion_de_relaves_mineros_transformacion_territorial_y_conflicto_de_contenido_ambiental (accessed on 19 August 2025).
- González, P. Living among tailing sands. Sanitary uncertainty and environmental suffering in Chañaral (Chile). Rev. INVI 2021, 36, 83–108. [Google Scholar]
- Schorr, B. Oportunidades desiguales: Empresas y Estado en conflictos sobre la minería en Chile. Estud. Atacameños 2018, 57, 239–255. [Google Scholar] [CrossRef]
- Aedo, M. Afectos y resistencias de las mujeres de Chañaral frente a los impactos de la minería estatal en Chile. Sustainability 2019, 10, 87–103. [Google Scholar]
- Quintana-Muñoz, J. Making (Un)Safe Territory in the Midst of Socio-Environmental Disasters: Territory Meanings and Emotions in Chañaral, Chile. Rev. Austral Cienc. Sociales 2022, 2022, 107–128. [Google Scholar] [CrossRef]
- Gouveia, N.; Slovic, A.D.; Kanai, C.M.; Soriano, L. Air pollution and environmental justice in Latin America: Where are we and how can we move forward? Curr. Environ. Health Rep. 2022, 9, 152–164. [Google Scholar] [CrossRef]
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and health: A progress update. Lancet Planet Health. 2022, 6, e535–e547. [Google Scholar] [CrossRef]
- Villasana López, P.E.; Dörner Paris, A.P.; Estay Sepúlveda, J.G.; Moreno Leiva, G.M.; Monteverde Sanchez, A. Zonas de sacrificio y justicia ambiental en Chile. Una mirada crítica desde los Objetivos de Desarrollo Sostenible 2030. Hist. Ambient. Latinoam. Caribeña 2020, 10, 342–365. [Google Scholar] [CrossRef]
- Ministerio de Vivienda y Urbanismo. Decreto N°47. Fija Nuevo Texto de la Ordenanza General de la Ley General de Urbanismo y Construcciones. Ley Chile. 1992. Available online: https://www.bcn.cl/leychile/navegar?idNorma=8201 (accessed on 17 March 2025).
- Romero, H.; Vásquez, A. La comodificación de los territorios urbanizables y la degradación ambiental en Santiago de Chile. Scripta Nova 2005, IX, 1–68. [Google Scholar]
- Barton, J.R. Sustentabilidad urbana como planificación estratégica. EURE 2006, 32, 27–45. [Google Scholar] [CrossRef]
- Hervé, D. Noción y elementos de la justicia ambiental: Directrices para su aplicación en la planificación territorial y en la evaluación ambiental estratégica. Rev. Derecho 2010, 23, 9–36. [Google Scholar]
- Cacciuttolo, C.; Atencio, E. Past, Present, and Future of Copper Mine Tailings Governance in Chile (1905–2022): A Review in One of the Leading Mining Countries in the World. Int. J. Environ. Res. Public Health 2022, 19, 13060. [Google Scholar] [CrossRef] [PubMed]
- Copaja, S.V.; Muñoz, F. Ecological risk assessment of trace elements in the tailings from Andacollo city, Northern Chile. J. Chil. Chem. Soc. 2022, 67, 5674–5681. [Google Scholar] [CrossRef]
ID | Year | Authors | Population (Sample) | Pollutant(s) | Method | Reported Evidence | Ref. |
---|---|---|---|---|---|---|---|
23 | 2016 | Cortés, S et al. | Adults 18 to 65 years old. Sample: 205 individuals | Cu, Hg, Ni, Pb, As | A questionnaire and a urine sample | The study revealed elevated urinary levels of total and inorganic arsenic and lead in this area, surpassing international standards. These levels were higher than those in other regions of Chile, indicating potential environmental health concerns for the population. | [45] |
24 | 2018 | Mesías Monsalve, S. et al. | School spaces. Sample: 10 schools | Na, Cl, S, Ca, Fe, K, Mn, Ti, Si, MP2.5 | Trace element concentrations were measured using X-ray fluorescence on two consecutive days in both summer and winter of 2012 and 2013 | Indoor school spaces, particularly classrooms, had higher trace element levels compared to outdoor environments. The most abundant elements detected were Na, Cl, S, Ca, Fe, K, Mn, Ti, and Si, associated with the Earth’s crust. | [46] |
25 | 2019 | Moya, P.M. et al. | Sample of 158 participants, 18 to 65 years old | As, Cu, Ni, Pb, Mn | Cross-sectional epidemiological study | High concentrations of arsenic and copper were found in street dust; arsenic concentration in street dust was correlated with the distance to the mine tailings; urinary levels of metals were low and did not significantly correlate with the socioeconomic level (SES) of the population; there was no clear relationship between SES and urinary levels of metals. | [47] |
26 | 2021 | Cortés S et al. | Sample: 25 volunteers, 45 to 65 years old | As and its metabolites, Cu, Ni, Cr, and Pb | Cross-sectional study. Inductively coupled plasma mass spectrometry (ICP-MS) to measure metals. Questionnaire for demographic, lifestyle, metal exposure, and health status | Urinary Ni levels are positively linked to glycemia and IL-6. AsBet levels are positively linked to total cholesterol, while inorganic arsenic is linked to glycemia. A negative association was found between AsBet and 8-OHdG. | [48] |
27 | 2021 | Cortés S et al. | Adults no Sample: 205 | Cu, Hg, Ni, Pb, As | Questionnaire about health risk perception of environmental hazards | The final questionnaire is a straightforward, reliable, and valuable tool for assessing environmental health risk perceptions in Latin American countries. Environmental health risk perception is higher in women. | [49] |
ID | Year | Reference | Subject of Study | Social Group | Method | Reported Evidence | Ref. |
---|---|---|---|---|---|---|---|
28 | 2011 | Vergara, A. | Impact of large copper mining in the Province of Chañaral between 1938 and 1990 | Not applicable | Reconstruction of environmental history through documentary consultation | The disposal of tailings into the riverbed and sea has changed the coastline, devastated bay plants and marine life, and impacted the health of local residents | [15] |
29 | 2018 | Schorr, B. | Analysis of the environmental conflict in Chañaral and the population’s opposition to mining | Environmental activists and mining companies | Documentary consultation | Activists in Chañaral struggle to gain support in holding the mining company accountable and seeking compensation for the damage caused | [52] |
30 | 2018 | González, P. | Study of the background of the environmental problem at Chañaral until the legalization and termination of tailings disposal in 1990 | Mining companies and population | Documentary consultation | Failed solutions and unsuccessful projects demonstrate socio-ecological inequalities, worsening the environmental impact, and leading to urban lethargy in Chañaral | [20] |
31 | 2019 | González, P. | Territorial production in the coastal town of Chañaral; changes were promoted since the 1920s | Mining companies and population | Analysis of written, oral, and cartographic sources | Contamination remains a significant concern, creating a physical and symbolic burden and adversely affecting urban quality of life. Hence, the socio-environmental conflict endures in a state of latency | [50] |
32 | 2019 | Aedo, M. | The affections and knowledge of women leaders in Chañaral regarding the search for justice and reparation of the territory | Women leaders of social organizations | Interviews | Due to the denial of justice and reparations by governments, women have established support systems encompassing health, food, child and elderly care, as well as education. These systems aim to repair the damage caused by coming together, uplifting their community’s spirits, and creating spaces for enjoyment and connection | [53] |
33 | 2021 | González, P. | The socio-environmental situation of Chañaral as an environmental, biomedical and sociocultural phenomenon | Mining companies and population | Analysis of qualitative information and reports on public health | Daily suffering and uncertainties about toxic risks create environmental distress due to the lack of comprehensive measures to address the issue effectively | [51] |
34 | 2022 | Quintana-Muñoz, J. | Analysis of territory meanings | Mining companies and population | Interviews and speech analysis | The population demands the right to stay in a safe territory and shape it according to their needs | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortés, S.; González, P.; Leiva, C.; Vargas, Y.; Vega, A.; Pastén, P. Environmental and Public Health Impacts of Mining Tailings in Chañaral, Chile: A Narrative Case-Based Review. Sustainability 2025, 17, 7732. https://doi.org/10.3390/su17177732
Cortés S, González P, Leiva C, Vargas Y, Vega A, Pastén P. Environmental and Public Health Impacts of Mining Tailings in Chañaral, Chile: A Narrative Case-Based Review. Sustainability. 2025; 17(17):7732. https://doi.org/10.3390/su17177732
Chicago/Turabian StyleCortés, Sandra, Pablo González, Cinthya Leiva, Yendry Vargas, Alejandra Vega, and Pablo Pastén. 2025. "Environmental and Public Health Impacts of Mining Tailings in Chañaral, Chile: A Narrative Case-Based Review" Sustainability 17, no. 17: 7732. https://doi.org/10.3390/su17177732
APA StyleCortés, S., González, P., Leiva, C., Vargas, Y., Vega, A., & Pastén, P. (2025). Environmental and Public Health Impacts of Mining Tailings in Chañaral, Chile: A Narrative Case-Based Review. Sustainability, 17(17), 7732. https://doi.org/10.3390/su17177732