Application Potential of MCDM/MCDA Methods in Transport—Literature Review and Case Study
Abstract
1. Introduction
- identification of the most popular MCDM/MCDA methods used for selected decision-making problems in the field of transport, along with their classification;
- updating the literature review on the application potential of MCDM/MCDA methods in the field of transport;
- assessment of selected methods that enable the weighing of decision factors and the ranking of variants.
2. Literature Review
- the aim and research problem,
- the methodology and location of the research.
- TOPSIS method (used, among others, to assess the sustainable development of road transport, environmental effects of transport, and to prioritize transportation projects),
- AHP method (used, among others, to evaluate public road transportation vehicles and optimum rail route/station locations, and to analyze the severity of road accidents),
- Fuzzy AHP method (used, among others, to assess passenger satisfaction and assess infrastructure alternatives),
- CRITIC method (used, among others, to assess road safety, evaluate railway transportation performance, and analyze the spatiotemporal variation in transit accessibility).
- Safety and quality of public transport
- Scenarios for the development of public transport systems
- Urban area
- Transport sustainability and resilience
- Road, air, rail, and sea transport
- Electric vehicles
- Other.
3. Research Methodology
4. Case Study
4.1. Decomposition of the Decision Problem
4.2. Estimation of Subcriteria Weights Using Selected MCDM/MCDA Methods
- -
- If the criteria had the same weight in the project documentation, then at the stage of pairwise comparisons in the AHP method they received 1.
- -
- If the difference was 1 point—then a score of 3 from the Saaty scale was awarded.
- -
- If the difference was 2 points—then a score of 5 from the Saaty scale was awarded.
- -
- If the difference was 3 pts—then a rating of 7 from the Saaty scale was awarded.
- -
- If the difference was 4 points—then a score of 9 from the Saaty scale was awarded.
4.3. Comparative Analysis
- 1 point means a criterion of little importance;
- 2 points means a criterion of little decisiveness;
- 3 points means an important criterion;
- 4 points means a significant criterion;
- 5 points means a decisive criterion.
4.4. Variants Ranking
5. Discussion
6. Conclusions
- the most popular multi-criteria method used in recent years in the transport sector is the TOPSIS method, which enables the ranking of decision variants based on the distance from patterns and anti-patterns,
- methods from the AHP family enjoy constant popularity, especially in the context of factor weighing, a novelty is the CRITIC method, which is distinguished by objective weighing that does not take into account preferences,
- it is recommended to use the AHP and Fuzzy AHP methods interchangeably due to very similar results, not only at the factor weighing stage, but also at the final variant ranking stage,
- the main research areas in the transport sector to which multi-criteria methods have been applied so far are: safety and quality of public transport; scenarios for the development of the public transport system; urban area; transport sustainability and resilience; road, air, rail, and sea transport; electric vehicles; other,
- recently, two research areas have developed: urban area and transport sustainability and resilience, which reflects new problems in the field of transport: transport issues in urbanized areas and the development of transport in accordance with the paradigm of sustainable development,
- due to the complex nature of decision-making problems in the field of transport, the need to take into account many, often contradictory criteria of a social, environmental, economic or technical nature, it is recommended to use at least two multi-criteria methods,
- among the future research directions, it is worth indicating a comparative analysis of the CRITIC method (which is a novelty in decision-making problems in the transport sector) to other methods of objective weighing of criteria, e.g., entropy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert. Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Dytczak, M. Selected Methods for Multi-Criteria Decision Analysis in Civil. In Engineering; Opole University of Technology: Opole, Poland, 2008. [Google Scholar]
- Kobryń, A. Multi-Criteria Decision Support in Space Management; Difin: Warsaw, Poland, 2015. [Google Scholar]
- Ogrodnik, K. Multi-Criteria Analysis of Design Solutions in Architecture and Engineering: Review of Applications and a Case Study. Buildings 2019, 9, 244. [Google Scholar] [CrossRef]
- Broniewicz, E.; Ogrodnik, K. Multi-criteria analysis of transport infrastructure projects. Transp. Res. Part D: Transp. Environ. 2020, 83, 102351. [Google Scholar] [CrossRef]
- Broniewicz, E.; Ogrodnik, K. A comparative evaluation of multi-criteria analysis methods for sustainable transport. Energies 2021, 14, 5100. [Google Scholar] [CrossRef]
- Blagojević, A.; Kasalica, S.; Stević, Ž.; Tričković, G.; Pavelkić, V. Evaluation of Safety Degree at Railway Crossings in Order to Achieve Sustainable Traffic Management: A Novel Integrated Fuzzy MCDM Model. Sustainability 2021, 13, 832. [Google Scholar] [CrossRef]
- Zehmed, K.; Jawab, F. A Combined Approach Based on Fuzzy SERVPERF and DEA for Measuring and Benchmarking the Quality of Urban Bus Transport Service at the Route Level. Ind. Eng. Manag. Syst. 2020, 19, 442–459. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Dobryakova, L. How to choose the optimal single-track vehicle to move in the city? Electric scooters study case. Procedia Comput. Sci. 2020, 176, 2243–2253. [Google Scholar] [CrossRef]
- Ortega, J.; Tóth, J.; Moslem, S.; Péter, T.; Duleba, S. An Integrated Approach of Analytic Hierarchy Process and Triangular Fuzzy Sets for Analyzing the Park-and-Ride Facility Location Problem. Symmetry 2020, 12, 1225. [Google Scholar] [CrossRef]
- Wilken, D.; Oswald, M.; Draheim, P.; Pade, C.; Brand, U.; Vogt, T. Multi-dimensional assessment of passenger cars: Comparison of electric vehicles with internal combustion engine vehicles. Procedia CIRP 2020, 90, 291–296. [Google Scholar] [CrossRef]
- Cakir, E.; Tas, M.A.; Ulukan, Z. Neutrosophic fuzzy MARCOS approach for sustainable hybrid electric vehicle assessment. In 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE: New York, NY, USA, 2021; pp. 3423–3428. [Google Scholar] [CrossRef]
- Baric, D.; Dzambo, A. An application of the AHP method for evaluation of level crossing design in a congested urban area: Case study LC Sokolska in Zagreb, Croatia. Transp. Probl. 2021, 16, 95–106. [Google Scholar] [CrossRef]
- Ersoy, Y. Performance evaluation of airports during the COVID-19 pandemic. Gospod. Narod. Pol. J. Econ. 2021, 308, 23–53. [Google Scholar] [CrossRef]
- Stanković, J.J.; Marjanović, I.; Papathanasiou, J.; Drezgić, S. Social, economic and environmental Sustainability of port regions: MCDM approach in composite index creation. J. Mar. Sci. Eng. 2021, 9, 74. [Google Scholar] [CrossRef]
- Görçün, Ö.F. Evaluation of the selection of proper metro and tram vehicle for urban transportation by using a novel integrated MCDM approach. Sci. Prog. 2021, 104, 0036850420950120. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L.; Koh, J.; Deng, Y. An adaptive decision making method with copula Bayesian network for location selection. Inf. Sci. 2021, 544, 56–77. [Google Scholar] [CrossRef]
- Matić, B.; Jovanović, S.; Marinković, M.; Sremac, S.; Das, D.K.; Stević, Ž. A novel integrated interval rough MCDM model for ranking and selection of asphalt production plants. Mathematics 2021, 9, 269. [Google Scholar] [CrossRef]
- Kumar, A. Transition management theory-based policy framework for analyzing environmentally responsible freight transport practices. J. Clean. Prod. 2021, 294, 126209. [Google Scholar] [CrossRef]
- Gavalas, D.; Syriopoulos, T.; Tsatsaronis, M. Assessing key performance indicators in the shipbuilding industry: An MCDM approach. Marit. Policy Manag. 2021, 49, 463–491. [Google Scholar] [CrossRef]
- Pamucar, D.; Deveci, M.; Canıtez, F.; Paksoy, T.; Lukovac, V. A novel methodology for prioritizing zero-carbon measures for sustainable transport. Sustain. Prod. Consum. 2021, 27, 1093–1112. [Google Scholar] [CrossRef]
- Gök-Kısa, A.C.; Çelik, P.; Peker, I. Performance evaluation of privatized ports by entropy based TOPSIS and ARAS approach. Benchmarking 2021, 29, 118–135. [Google Scholar] [CrossRef]
- Tadić, S.; Kovač, M.; Krstić, M.; Roso, V.; Brnjac, N. The selection of intermodal transport system scenarios in the function of Southeastern Europe regional development. Sustainability 2021, 13, 5590. [Google Scholar] [CrossRef]
- Gutiérrez, L.R.; Oliva, M.A.D.V.; Romero-Ania, A. Managing sustainable urban public transport systems: An AHP multicriteria decision model. Sustainability 2021, 13, 4614. [Google Scholar] [CrossRef]
- Rao, S.H. Transportation synthetic sustainability indices: A case of Taiwan intercity railway transport. Ecol. Indic. 2021, 127, 107753. [Google Scholar] [CrossRef]
- Pamucar, D.; Ecer, F.; Deveci, M. Assessment of alternative fuel vehicles for sustainable road transportation of United States using integrated fuzzy FUCOM and neutrosophic fuzzy MARCOS methodology. Sci. Total Environ. 2021, 788, 147763. [Google Scholar] [CrossRef]
- Stoilova, S.; Munier, N. Analysis of policies of railway operators using SWOT criteria and the SIMUS method: A case for the Bulgarian railway network. Sustainability 2021, 13, 6948. [Google Scholar] [CrossRef]
- Özceylan, E.; Erbaş, M.; Çetinkaya, C.; Kabak, M. Analysis of potential high-speed rail routes: A case of GIS-based multicriteria evaluation in Turkey. J. Urban. Plann. Dev. 2021, 147, 04021012. [Google Scholar] [CrossRef]
- Stević, Ž.; Das, D.K.; Kopić, M.; Salido, M.A. A novel multiphase model for traffic safety evaluation: A case study of South Africa. Math. Probl. Eng. 2021, 2021, 1–22. [Google Scholar] [CrossRef]
- Huang, C.-N.; Liou, J.J.; Lo, H.-W.; Chang, F.-J. Building an assessment model for measuring airport resilience. J. Air Transp. Manag. 2021, 95, 102101. [Google Scholar] [CrossRef]
- Öztürk, F. A hybrid type-2 fuzzy performance evaluation model for public transport services. Arab. J. Sci. Eng. 2021, 46, 10261–10279. [Google Scholar] [CrossRef]
- Canbulut, G.; Köse, E.; Arik, O.A. Public transportation vehicle selection by the grey relational analysis method. Public. Transp. 2021, 14, 367–384. [Google Scholar] [CrossRef]
- Krishankumar, R.; Pamucar, D.; Deveci, M.; Ravichandran, K.S. Prioritization of zero-carbon measures for sustainable urban mobility using integrated double hierarchy decision framework and EDAS approach. Sci. Total Environ. 2021, 797, 149068. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gou, X.; Xu, Z. A continuous interval-valued double hierarchy linguistic GLDS method and its application in performance evaluation of bus companies. Appl. Intell. 2021, 52, 4511–4526. [Google Scholar] [CrossRef]
- Pamucar, D.; Iordache, M.; Deveci, M.; Schitea, D.; Iordache, I. A new hybrid fuzzy multi-criteria decision methodology model for prioritizing the alternatives of the hydrogen bus development: A case study from Romania. Int. J. Hydrog. Energy 2021, 46, 29616–29637. [Google Scholar] [CrossRef]
- Tumsekcali, E.; Ayyildiz, E.; Taskin, A. Interval valued intuitionistic fuzzy AHP-WASPAS based public transportation service quality evaluation by a new extension of SERVQUAL model: P-SERVQUAL 4.0. Expert. Syst. Appl. 2021, 186, 115757. [Google Scholar] [CrossRef]
- Alkharabsheh, A.; Duleba, S. Public transportation service quality evaluation during the COVID-19 pandemic in Amman City using integrated approach fuzzy AHP-Kendall model. Vehicles 2021, 3, 330–340. [Google Scholar] [CrossRef]
- Das, D.; Kalbar, P.P.; Velaga, N.R. Framework for comparative evaluation of car-sharing alternatives for urban and suburban regions: Case study of Mumbai, India. J. Urban. Plann. Dev. 2021, 147, 05021022. [Google Scholar] [CrossRef]
- Torbacki, W. Achieving sustainable mobility in the Szczecin Metropolitan Area in the post-COVID-19 era: The DEMATEL and PROMETHEE II approach. Sustainability 2021, 13, 12672. [Google Scholar] [CrossRef]
- Cerreta, M.; Poli, G.; Somma, M. Assessing infrastructures alternatives: The implementation of a fuzzy analytic hierarchy process (F-AHP). In Computational Science and Its Applications—ICCSA 2021, Part VII; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 12955, pp. 504–516. [Google Scholar] [CrossRef]
- Ammenberg, J.; Dahlgren, S. Sustainability assessment of public transport, part I-a multi-criteria assessment method to compare different bus technologies. Sustainability 2021, 13, 825. [Google Scholar] [CrossRef]
- Pamucar, D.; Yazdani, M.; Montero-Simo, M.J.; Araque-Padilla, R.A.; Mohammed, A. Multi-criteria decision analysis towards robust service quality measurement. Expert. Syst. Appl. 2021, 170, 114508. [Google Scholar] [CrossRef]
- Morfoulaki, M.; Papathanasiou, J. Use of PROMETHEE MCDA method for ranking alternative measures of sustainable urban mobility planning. Mathematics 2021, 9, 602. [Google Scholar] [CrossRef]
- Ziemba, P. Selection of electric vehicles for the needs of sustainable transport under conditions of uncertainty—A comparative study on fuzzy MCDA methods. Energies 2021, 14, 7786. [Google Scholar] [CrossRef]
- Petrović, N.; Mihajlović, J.; Jovanović, V.; Ćirić, D.; Živojinović, T. Evaluating annual operation performance of Serbian railway system by using multiple criteria decision-making technique. Acta Polytech. Hung. 2022, 19, 157–168. [Google Scholar] [CrossRef]
- Adebiyi, S.O.; Odufuwa, B.O.; Adebisi, O.S.; Akinwole, A.K. Optimizing service quality management of the bus rapid transport system in Lagos using the multi-criteria decision analysis. Sci. J. Silesian Univ. Technol. Ser. Transp. 2022, 116, 5–23. [Google Scholar] [CrossRef]
- Ali, Y.; Sabir, M. Mode-route choice decisions: A case study of CPEC investment in Pakistan railways. Sci. J. Silesian Univ. Technol. Ser. Transp. 2022, 115, 5–21. [Google Scholar] [CrossRef]
- Stević, Ž.; Subotić, M.; Tanackov, I.; Sremac, S.; Ristić, B.; Simić, S. Evaluation of two-lane road sections in terms of traffic risk using an integrated MCDM model. Transport 2022, 37, 318–329. [Google Scholar] [CrossRef]
- Feng, J.; Xu, S.X.; Xu, G.; Cheng, H. An integrated decision-making method for locating parking centers of recyclable waste transportation vehicles. Transp. Res. Part. E Logist. Transp. Rev. 2022, 157, 102569. [Google Scholar] [CrossRef]
- Zapolskytė, S.; Trépanier, M.; Burinskienė, M.; Survilė, O. Smart urban mobility system evaluation model adaptation to Vilnius, Montreal and Weimar cities. Sustainability 2022, 14, 715. [Google Scholar] [CrossRef]
- Hajduk, S. Multi-criteria analysis in the decision-making approach for the linear ordering of urban transport based on TOPSIS technique. Energies 2022, 15, 274. [Google Scholar] [CrossRef]
- Garcia-Ayllon, S.; Hontoria, E.; Munier, N. The contribution of MCDM to SUMP: The case of Spanish cities during 2006–2021. Int. J. Environ. Res. Public. Health 2022, 19, 294. [Google Scholar] [CrossRef]
- Farooq, D.; Moslem, S. Estimating driver behavior measures related to traffic safety by investigating 2-dimensional uncertain linguistic data-a Pythagorean fuzzy analytic hierarchy process approach. Sustainability 2022, 14, 1881. [Google Scholar] [CrossRef]
- Cheemakurthy, H.; Garme, K. Fuzzy AHP-based design performance index for evaluation of ferries. Sustainability 2022, 14, 3680. [Google Scholar] [CrossRef]
- Lu, X.; Lu, J.; Yang, X.; Chen, X. Assessment of urban mobility via a pressure-state-response (PSR) model with the IVIF-AHP and FCE methods: A case study of Beijing, China. Sustainability 2022, 14, 3112. [Google Scholar] [CrossRef]
- Aydin, N.; Ceylan, H.; Yildirim, M. Planning location of mobility hub for sustainable urban mobility. Sustain. Cities Soc. 2022, 81, 103843. [Google Scholar] [CrossRef]
- Lamii, N.; Bentaleb, F.; Fri, M.; Mabrouki, C.; Semma, E.A. Use of Delphi-AHP method to identify and analyze risks in seaport dry port system. Trans. Marit. Sci. 2022, 11, 185–206. [Google Scholar] [CrossRef]
- Ali, Y.; Ahmad, N.; Sabir, M. Selection of sustainable mode of transportation based on environmental, economic, and social factors: Pakistan a case in point. Transp. Dev. Econ. 2022, 8, 1–14. [Google Scholar] [CrossRef]
- Wang, C.-N.; Le, T.Q.; Chang, K.-H.; Dang, T.-T. Measuring road transport sustainability using MCDM-based entropy objective weighting method. Symmetry 2022, 14, 1033. [Google Scholar] [CrossRef]
- Demir, G.; Damjanović, M.; Matović, B.; Vujadinović, R. Toward sustainable urban mobility by using fuzzy-FUCOM and fuzzy-CoCoSo methods: The case of the SUMP Podgorica. Sustainability 2022, 14, 4972. [Google Scholar] [CrossRef]
- Chen, F.; Zhu, Y.; Zu, J.; Lyu, J.; Yang, J. Appraising road safety attainment by CRITIC-ELECTRE-FCM: A policymaking support for Southeast Asia. Transp. Policy 2022, 122, 104–118. [Google Scholar] [CrossRef]
- Pamucar, D.; Gorcun, O.F. Evaluation of the European container ports using a new hybrid fuzzy LBWA-CoCoSo’B techniques. Expert. Syst. Appl. 2022, 203, 117463. [Google Scholar] [CrossRef]
- Bahadori, M.S.; Hafezi, M.; Asadi, S. A GIS-MCDM method for ranking potential station locations in the expansion of bike-sharing systems. Axioms 2022, 11, 263. [Google Scholar] [CrossRef]
- Hanafiah, R.M.; Zainon, N.S.; Karim, N.H.; Rahman, N.S.F.A.; Behforouzi, M.; Soltani, H.R. A new evaluation approach to control maritime transportation accidents: A study case at the Straits of Malacca. Case Stud. Transp. Policy 2022, 10, 751–763. [Google Scholar] [CrossRef]
- Ozdagoglu, A.; Oztas, G.Z.; Keles, M.K.; Genc, V. A comparative bus selection for intercity transportation with an integrated PIPRECIA & COPRAS-G. Case Stud. Transp. Policy 2022, 10, 993–1004. [Google Scholar] [CrossRef]
- Patil, M.; Majumdar, B.B. An investigation on the key determinants influencing electric two-wheeler usage in urban Indian context. Res. Transp. Bus. Manag. 2022, 43, 100693. [Google Scholar] [CrossRef]
- Munim, Z.H.; Duru, O.; Ng, A.K. Transhipment port’s competitiveness forecasting using analytic network process modelling. Transp. Policy 2022, 124, 70–82. [Google Scholar] [CrossRef]
- Ziemba, P.; Gago, I. Compromise multi-criteria selection of e-scooters for the vehicle sharing system in Poland. Energies 2022, 15, 5048. [Google Scholar] [CrossRef]
- Sharma, H.K.; Majumder, S.; Biswas, A.; Prentkovskis, O.; Kar, S.; Skačkauskas, P.; Velaga, N.R. A study on decision-making of the Indian railways reservation system during COVID-19. J. Adv. Transp. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Zarrinpanjeh, N.; Javan, F.D.; Azadi, H.; Viira, A.-H.; Kurban, A.; Witlox, F. Commuters accessibility to transportation lifelines in Karaj city, Iran: A fuzzy approach. Sustain. Cities Soc. 2022, 85, 104037. [Google Scholar] [CrossRef]
- Khalife, A.; Fay, T.-A.; Göhlich, D. Optimizing public charging: An integrated approach based on GIS and multi-criteria decision analysis. World Electr. Veh. J. 2022, 13, 131. [Google Scholar] [CrossRef]
- Zhang, J.; Tu, Y.; Liu, J.; Liu, L.; Li, Z. Regional public transportation safety risk grading assessment under time dimension: A case study of Chinese mainland. Transp. Policy 2022, 126, 343–354. [Google Scholar] [CrossRef]
- Nguyen, T.; Tran, Q.P.; Chileshe, N.; Huynh, T.Y.T.; Hallo, L. Risk prioritization using analytic process network for metro rail implementation projects in developing countries: A typical case study of Vietnam. Int. J. Constr. Manag. 2022, 24, 1077–1089. [Google Scholar] [CrossRef]
- Turon, K. Carsharing vehicle fleet selection from the frequent user’s point of view. Energies 2022, 15, 6166. [Google Scholar] [CrossRef]
- Shabani, A.; Ahmadinejad, B.; Salmasnia, A. Measuring the customer satisfaction of public transportation in Tehran during the COVID-19 pandemic using MCDM techniques. Case Stud. Transp. Policy 2022, 10, 1520–1530. [Google Scholar] [CrossRef] [PubMed]
- Stoilova, S. A new aggregated multi-criteria approach for evaluation of the autonomous metro systems’ performance in the European countries. Symmetry 2022, 14, 2025. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhang, Y.C. Comprehensive sustainable assessment and prioritization of different railway projects based on a hybrid MCDM model. Sustainability 2022, 14, 12065. [Google Scholar] [CrossRef]
- Torkayesh, A.E.; Yazdani, M.; Ribeiro-Soriano, D. Analysis of industry 4.0 implementation in mobility sector: An integrated approach based on QFD, BWM, and stratified combined compromise solution under fuzzy environment. J. Ind. Inf. Integr. 2022, 30, 100406. [Google Scholar] [CrossRef]
- Goyal, S.; Agarwal, S.; Singh, N.S.S.; Mathur, T.; Mathur, N. Analysis of hybrid MCDM methods for the performance assessment and ranking public transport sector: A case study. Sustainability 2022, 14, 15110. [Google Scholar] [CrossRef]
- Siksnelyte-Butkiene, I.; Streimikiene, D. Sustainable development of road transport in the EU: Multi-criteria analysis of countries’ achievements. Energies 2022, 15, 8291. [Google Scholar] [CrossRef]
- Watróbski, J.; Baczkiewicz, A. Towards sustainable transport assessment considering alternative fuels based on MCDA methods. In Proceedings of the 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS), Sofia, Bulgaria, 4–7 September 2022; pp. 799–808. [Google Scholar] [CrossRef]
- Gutiérrez, L.R.; Oliva, M.A.D.V.; Romero-Ania, A. Economic, ecological and social analysis based on DEA and MCDA for the management of the Madrid urban public transportation system. Mathematics 2022, 10, 172. [Google Scholar] [CrossRef]
- Raad, N.G.; Rajendran, S.; Salimi, S. A novel three-stage fuzzy GIS-MCDA approach to the dry port site selection problem: A case study of Shahid Rajaei Port in Iran. Comput. Ind. Eng. 2022, 168, 108112. [Google Scholar] [CrossRef]
- Lorencic, V. Cruise port performance evaluation in the context of port authority: An MCDA approach. Sustainability 2022, 14, 4181. [Google Scholar] [CrossRef]
- Turoń, K.; Kubik, A.; Chen, F. What car for car-sharing? Conventional, electric, hybrid or hydrogen fleet? Analysis of the vehicle selection criteria for car-sharing systems. Energies 2022, 15, 4344. [Google Scholar] [CrossRef]
- Turon, K. Selection of car models with a classic and alternative drive to the car-sharing services from the system’s rare users perspective. Energies 2022, 15, 6876. [Google Scholar] [CrossRef]
- Haase, M.; Wulf, C.; Baumann, M.; Ersoy, H.; Koj, J.C.; Harzendorf, F.; Estrada, L.S.M. Multi-criteria decision analysis for prospective Sustainability assessment of alternative technologies and fuels for individual motorized transport. Clean. Technol. Environ. Policy 2022, 24, 3171–3197. [Google Scholar] [CrossRef]
- Moradi, S.; Sierpiński, G.; Masoumi, H. Selection of possible scenarios for improving the quality of public transport services through the use of hybrid fuzzy-MCDM models. Sci. J. Silesian Univ. Technol. Ser. Transp. 2023, 119, 189–198. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Cui, Z. Alleviating the bauxite maritime supply chain risks through resilient strategies: QFD-MCDM with intuitionistic fuzzy decision approach. Sustainability 2023, 15, 8244. [Google Scholar] [CrossRef]
- Sarkar, B.; Chakraborty, D.; Biswas, A. Development of type-2 Pythagorean fuzzy set with its application to sustainable transport system selection. Appl. Soft Comput. 2023, 142, 110332. [Google Scholar] [CrossRef]
- Cui, H.; Dong, S.; Hu, J.; Chen, M.; Hou, B.; Zhang, J.; Zhang, B.; Xian, J.; Chen, F. A hybrid MCDM model with Monte Carlo simulation to improve decision-making stability and reliability. Inf. Sci. 2023, 647, 119439. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Y.; Guo, Y.; Cui, H.; Gao, H.; Zhou, Z.; Zhang, N.; Zhu, S.; Chen, F. An integrated decision model with reliability to support transport safety system analysis. Reliab. Eng. Syst. Saf. 2023, 239, 109540. [Google Scholar] [CrossRef]
- Hatefi, M.A. An improved rank order centroid method (IROC) for criteria weight estimation: An application in the engine/vehicle selection problem. Informatica 2023, 34, 249–270. [Google Scholar] [CrossRef]
- Saxena, A. Evaluating the appropriate fuel-based bus technology in Indian context by integrating fuzzy AHP-fuzzy TOPSIS. Eur. Transp. Trasp. Eur. 2023, 92, 1–15. [Google Scholar] [CrossRef]
- Moreno-Solaz, H.; Artacho-Ramírez, M.; Aragonés-Beltrán, P.; Cloquell-Ballester, V.-A. Sustainable selection of waste collection trucks considering feasible future scenarios by applying the stratified best and worst method. Heliyon 2023, 9, e15481. [Google Scholar] [CrossRef] [PubMed]
- Bošković, S.; Švadlenka, L.; Jovčić, S.; Dobrodolac, M.; Simić, V.; Bacanin, N. An alternative ranking order method accounting for two-step normalization (AROMAN)-A case study of the electric vehicle selection problem. IEEE Access 2023, 11, 39496–39507. [Google Scholar] [CrossRef]
- Sivilevičius, H.; Martišius, M. The significance of the factors increasing the asphalt pavement recycling rate in the country, determined using multiple-criteria decision-making methods. Appl. Sci. 2023, 13, 12226. [Google Scholar] [CrossRef]
- Önden, I.; Pamucar, D.; Deveci, M.; As, Y.; Birol, B.; Yıldız, F.Ş. Prioritization of transfer centers using GIS and fuzzy Dombi Bonferroni weighted assessment (DOBAS) model. Expert. Syst. Appl. 2024, 238, 121827. [Google Scholar] [CrossRef]
- Saxena, A.; Yadav, A.K. Adopting a multi-criteria decision-making approach to identify barriers to electrification of urban freight in India. Transp. Res. Rec. 2024, 2678, 816–827. [Google Scholar] [CrossRef]
- Bouraima, M.B.; Saha, A.; Stević, Ž.; Antucheviciene, J.; Qiu, Y.; Marton, P. Assessment actions for improving railway sector performance using intuitionistic fuzzy-rough multi-criteria decision-making model. Appl. Soft Comput. 2023, 148, 110900. [Google Scholar] [CrossRef]
- Sadrani, M.; Najafi, A.; Mirqasemi, R.; Antoniou, C. Charging strategy selection for electric bus systems: A multi-criteria decision-making approach. Appl. Energy 2023, 347, 121415. [Google Scholar] [CrossRef]
- Auttha, W.; Klungboonkrong, P. Evaluation of the transport environmental effects of an urban road network in a medium-sized city in a developing country. Sustainability 2023, 15, 16743. [Google Scholar] [CrossRef]
- Pamučar, D.; Durán-Romero, G.; Yazdani, M.; López, A.M. A decision analysis model for smart mobility system development under circular economy approach. Socio-Econ. Plann. Sci. 2023, 86, 101474. [Google Scholar] [CrossRef]
- Jou, Y.-T.; Saflor, C.S.; Mariñas, K.A.; Young, M.N. Determining factors affecting perceived customer satisfaction on public utility bus system in Occidental Mindoro, Philippines: A case study on service quality assessment during major disruptions. Sustainability 2023, 15, 2996. [Google Scholar] [CrossRef]
- Liu, A.; Li, Z.; Shang, W.-L.; Ochieng, W. Performance evaluation model of transportation infrastructure: Perspective of COVID-19. Transp. Res. Part. A Policy Pract. 2023, 170, 103605. [Google Scholar] [CrossRef]
- Kundu, P.; Görçün, Ö.F.; Garg, C.P.; Küçükönder, H.; Çanakçıoğlu, M. Evaluation of public transportation systems for sustainable cities using an integrated fuzzy multi-criteria group decision-making model. Environ. Dev. Sustain. 2023, 26, 27655–27684. [Google Scholar] [CrossRef]
- Bouraima, M.B.; Tengecha, N.A.; Stević, Ž.; Simić, V.; Qiu, Y. An integrated fuzzy MCDM model for prioritizing strategies for successful implementation and operation of the bus rapid transit system. Ann. Oper. Res. 2023, 342, 141–172. [Google Scholar] [CrossRef]
- Li, Y.; Guan, S.; Yin, X.; Wang, X.; Liu, J.; Na Wong, I.; Wang, G.; Chen, F. Measurement of road safety situation by CRITIC-TODIM-NMF: A lesson system of legislation and regulation for the United States. Measurement 2023, 220, 113333. [Google Scholar] [CrossRef]
- Sonar, H.; Belal, H.M.; Foropon, C.; Manatkar, R.; Sonwaney, V. Examining the causal factors of the electric vehicle adoption: A pathway to tackle climate change in resource-constrained environment. Ann. Oper. Res. 2023, 1–27. [Google Scholar] [CrossRef]
- Gulcimen, S.; Aydogan, E.K.; Uzal, N. Robust multicriteria sustainability assessment in urban transportation. J. Urban. Plann. Dev. 2023, 149, 04023010. [Google Scholar] [CrossRef]
- Wang, C.; Li, L. A two-phase model for sustainable location of dry ports: A case of Ningbo-Zhoushan Port in China. Transp. Plann. Technol. 2023, 46, 304–334. [Google Scholar] [CrossRef]
- Çalışkan, B.; Atahan, A.O. Cartographic modelling and multi-criteria analysis (CMCA) for rail transit suitability. Urban. Rail Transit. 2023, 9, 1–18. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Q.; Qu, S. Evaluation of railway transportation performance based on CRITIC-relative entropy method in China. J. Adv. Transp. 2023, 2023, 1–11. [Google Scholar] [CrossRef]
- Ecer, F.; Küçükönder, H.; Kaya, S.K.; Görçün, Ö.F. Sustainability performance analysis of micro-mobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework. Transp. Res. Part. A Policy Pract. 2023, 172, 103667. [Google Scholar] [CrossRef]
- Wang, N.; Xu, Y.; Puška, A.; Stević, Ž.; Alrasheedi, A.F. Multi-criteria selection of electric delivery vehicles using fuzzy–rough methods. Sustainability 2023, 15, 15541. [Google Scholar] [CrossRef]
- Zhang, L.; Hua, X. Evaluating efficiency of railway transportation based on cross-efficiency evaluation method and relative entropy evaluation method in China. IET Intell. Transp. Syst. 2023, 17, 2410–2418. [Google Scholar] [CrossRef]
- Alshamrani, A.; Alzahrani, A.; Alzahrani, H.; Alzahrani, M. Optimal design of an eco-friendly transportation network under uncertain parameters. Sustainability 2023, 15, 5538. [Google Scholar] [CrossRef]
- Papaioannou, G.; Nathanail, E.; Polydoropoulou, A. A hybrid MCDA methodology to evaluate ferry fleet assignment to routes in the Greek Islands. In Proceedings of the Conference on Sustainable Urban Mobility; Springer: Cham, Switzerland, 2023; pp. 1517–1540. [Google Scholar] [CrossRef]
- Oubahman, L.; Duleba, S. Fuzzy PROMETHEE model for public transport mode choice analysis. Evol. Syst. 2024, 15, 285–302. [Google Scholar] [CrossRef]
- Hezam, I.M.; Basua, D.; Mishra, A.R.; Rani, P.; Cavallaro, F. Intuitionistic fuzzy gained and lost dominance score based on symmetric point criterion to prioritize zero-carbon measures for sustainable urban transportation. Kybernetes 2023, 53, 3816–3847. [Google Scholar] [CrossRef]
- Więckowski, J.; Wątróbski, J.; Kizielewicz, B.; Sałabun, W. Complex sensitivity analysis in multi-criteria decision analysis: An application to the selection of an electric car. J. Clean. Prod. 2023, 390, 136051. [Google Scholar] [CrossRef]
- Szterlik-Grzybek, P.; Kucharski, A. Assessing of the possibility of locating electric car charging stations using fuzzy AHP and GIS—The case of Łódź, Poland. Econ. Environ. 2023, 84, 134–148. [Google Scholar] [CrossRef]
- Trivedi, P.; Shah, J.; Esztergár-Kiss, D.; Duleba, S. Phase-wise injury integrated severity modeling of road accidents: A two-stage hybrid multi-criteria decision-making model. Evol. Syst. 2024, 15, 1275–1295. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Y.; Zhang, Y.; Hou, B.; Mei, Y.; Wu, P.; Chen, Y.; Zhou, W.; Wu, H.; Chen, F. Advanced CRITIC-GRA-GMM model with multiple restart simulation for assuaging decision uncertainty: An application to transport safety engineering for OECD members. Adv. Eng. Inform. 2024, 60, 102373. [Google Scholar] [CrossRef]
- Solanki, V.S.; Agarwal, P.K. Identification of key performance indicators using hybrid COPRAS-TOPSIS for urban public transit systems by evaluating with AHP and FAHP. Multimed. Tools Appl. 2024, 83, 82439–82469. [Google Scholar] [CrossRef]
- Gökgöz, F.; Yalçin, E. Analyzing the performances and efficiencies of European electric vehicles in the European Union market using decision analysis methods. Transp. Res. Rec. 2024, 2678, 1039–1056. [Google Scholar] [CrossRef]
- Elomiya, A. A hybrid suitability mapping model integrating GIS, machine learning, and multi-criteria decision analytics for optimizing service quality of electric vehicle charging stations. Sustain. Cities Soc. 2024, 106, 105397. [Google Scholar] [CrossRef]
- Wu, S.; Kremantzis, M.D.; Tanveer, U.; Ishaq, S.; O’DEa, X.; Jin, H. Performance evaluation of the global airline industry under the impact of the COVID-19 pandemic: A dynamic network data envelopment analysis approach. J. Air Transp. Manag. 2024, 118, 102597. [Google Scholar] [CrossRef]
- Usun, S.O.; Bas, S.A.; Meniz, B.; Ozkok, B.A. Passenger satisfaction assessment in the aviation industry using Type-2 fuzzy TOPSIS. J. Air Transp. Manag. 2024, 119, 102630. [Google Scholar] [CrossRef]
- Weng, Y.; Zhang, J.; Yang, C.; Ramzan, M. Intermodal travel planning and decision support integrated with transportation and energy systems. Heliyon 2024, 10, e31577. [Google Scholar] [CrossRef]
- Khichad, J.S.; Vishwakarma, R.J.; Gaur, A.; Sain, A. Optimization of highway performance and safety by integrated multi-criteria decision-making techniques. Int. J. Pavement Res. Technol. 2024, 1–17. [Google Scholar] [CrossRef]
- Tehrani, M.J.; Khavas, R.G. Analyzing the potential of the Southern Corridor in competition with China-Europe freight transport corridors using multi-criteria decision-making. Int. J. Civ. Eng. 2024, 22, 2283–2302. [Google Scholar] [CrossRef]
- Yildirim, A.K.; Kavus, B.Y.; Karaca, T.K.; Bozbey, I.; Taskin, A. A novel seismic vulnerability assessment for the urban roadway by using interval valued fermatean fuzzy analytical hierarchy process. Nat. Hazards 2024, 120, 13811–13834. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Chang, H.-C.; Li, Y.-C.; Liou, J.J. Developing an airport resilience assessment model for climate change. J. Air Transp. Manag. 2024, 119, 102646. [Google Scholar] [CrossRef]
- Avila, P.; Ferreira, J.C.; Silva, F.J.G.; Pereira, M.T. Comparative analysis of multicriteria decision-making methods for bus washing process selection: A case study. J. Eng. 2024, 2024, 2694662. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, J.; Liu, X.; Meng, Z.; Pu, M.; Wu, H.; Yan, X.; Yang, G.; Zhang, X.; Chen, C.; et al. An integrated MCDM model with enhanced decision support in transport safety using machine learning optimization. Knowl. Based Syst. 2024, 301, 112286. [Google Scholar] [CrossRef]
- Güler, A.; Polatgil, M. Investigation of the effect of expert’s opinions on multi-criteria decision making techniques in electric vehicle selection. Eur. Transp.—Trasp. Eur. 2024, 99, 1–17. [Google Scholar] [CrossRef]
- Kalan, O.; Işık, M.; Yüksel, F.Ş. An application using ELECTRE and MOORA methods in the selection of international airport transfer center (hub) in Türkiye. Appl. Sci. Basel 2024, 14, 7678. [Google Scholar] [CrossRef]
- Rathod, R.; Joshi, G.; Shriniwas, A.; Fang, Z. Evaluation of spatiotemporal transit accessibility: Weighted indexing using the CRITIC-MCDM approach and performance gap analysis. J. Adv. Transp. 2024, 2024, 6343594. [Google Scholar] [CrossRef]
- Elomiya, A.; Křupka, J.; Simic, V.; Švadlenka, L.; Průša, P.; Jovčić, S. An advanced spatial decision model for strategic placement of off-site hydrogen refueling stations in urban areas. ETransportation 2024, 22, 100375. [Google Scholar] [CrossRef]
- Junyent, I.A.; Casanovas, M.M.; Roukouni, A.; Sanz, J.M.; Blanch, E.R.; Correia, G.H.d.A. Planning shared mobility hubs in European cities: A methodological framework using MCDA and GIS applied to Barcelona. Sustain. Cities Soc. 2024, 106, 105377. [Google Scholar] [CrossRef]
- Rocchi, L.; Rizzo, A.G.; Paolotti, L.; Boggia, A.; Attard, M. Assessing climate change vulnerability of coastal roads. Mitig. Adapt. Strateg. Glob. Change 2024, 29, 1–29. [Google Scholar] [CrossRef]
- Ogrodnik, K. Application of MCDM/MCDA methods in city rankings-review and comparative analysis. Econ. Environ. 2023, 86, 132–151. [Google Scholar] [CrossRef]
- GDDKiA. STEŚ-R Design Documentation—Multi-Criteria Analysis; GDDKiA: Warsaw, Poland, 2024. [Google Scholar]
- Ayhan, M.B. A fuzzy AHP approach for supplier selection problem: A case study in a gearmotor company. Int. J. Manag. Value Supply Chain. 2013, 4, 11–23. [Google Scholar]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems: The CRITIC method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- OnlineOutput MCDM Software. Available online: https://onlineoutput.com/ (accessed on 4 June 2025).
- GDDKiA. Design Documentation STEŚ-R—Project Information Card; GDDKiA: Warsaw, Poland, 2024. [Google Scholar]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making. Methods and Applications. A State-of-the-Art Survey; Springer: Berlin, Germany, 1981. [Google Scholar] [CrossRef]





| # | Author | Research Problem | MCDM Method/Methods | Location |
|---|---|---|---|---|
| MCDM | ||||
| 1 | Çakir E., Tas M.A., Ulukan Z. [12] | Sustainable hybrid electric vehicle selection problem | Neutrosophic Fuzzy MARCOS | Turkey |
| 2 | Baric D., Dzambo A. [13] | Evaluation of level crossing design in a congested urban area | AHP | Zagreb (Croatia) |
| 3 | Ersoy Y. [14] | Performance evaluation of airports during the COVID-19 pandemic | DEA TOPSIS EDAS | Main international airports (international) |
| 4 | Blagojevic A., Kasalica S., Stevic Z., Trickovic G., Pavelkic V. [7] | Assessment of the level of safety at railway crossings | fuzzy FUCOM fuzzy PIPRECIA fuzzy MARCOS | Bosnia and Herzegovina |
| 5 | Stankovic J.J., Marjanovic I., Papathanasiou J., Drezgic S. [15] | Social, economic, and environmental sustainability of port regions | Entropy PROMETHEE | 37 sea prt regions in seven countries on the European side of the Mediterranean (Europe) |
| 6 | Görçün Ö.F. [16] | Evaluation of the selection of proper metro and tram vehicle for urban transportation | CRITIC EDAS | Turkey |
| 7 | Pan Y., Zhang L.M., Koh J.L., Deng Y. [17] | Location of the Pedestrian Overhead Bridge (POB) to install lift facilities | CBN TOPSIS | Singapore |
| 8 | Matic B., Jovanovic S., Marinkovic M., Sremac S., Das D.K., Stevic Z. [18] | Classification and selection of asphalt production facilities | IRN PIPRECIA IRN EDAS | Autonomous Province of Vojvodina (Serbia) |
| 9 | Kumar A. [19] | Identify, classify, and measure the important environmentally responsible transport practices | GC VIKOR | India |
| 10 | Gavalas D., Syriopoulos T., Tsatsaronis M. [20] | Assessing key performance indicators in the shipbuilding industry | fuzzy DEMATEL Fuzzy ANP MOORA | Active shipyards of the Bay of Bengal countries (Bay of Bengal) |
| 11 | Pamucar D., Deveci M., Canitez F., Paksoy T., Lukovac V. [21] | Prioritizing zero-carbon measures for sustainable transport | BWM TODIM-D | London (Great Britain) |
| 12 | Gök-Kisa A.C., Çelik P., Peker I. [22] | Performance evaluation of privatized ports | Entropy ARAS TOPSIS | Turkey |
| 13 | Tadić S., Kovac M., Krstić M., Roso V., Brnjac N. [23] | The selection of intermodal transport system scenarios | fuzzy Delphi fuzzy FARE fuzzy MARCOS | South-Eastern Europe region (Europe) |
| 14 | Gutiérrez L.R., Oliva M.A.D., Romero-Ania A. [24] | Evaluate public road transportation vehicles | AHP | Madrid (Spain) |
| 15 | Rao S.H. [25] | Examine the impacts of intercity railways passenger transportation service | DEMATEL DEMATEL-ANP | Taiwan |
| 16 | Pamucar D., Ecer F., Deveci M. [26] | Assessment of alternative fuel vehicles | fuzzy FUCOM neutrosophic fuzzy MARCOS | New Jersey (US) |
| 17 | Stoilova S. Munier N. [27] | Railway operators’ policy assessments | SIMUS | Bulgaria |
| 18 | Özceylan E., Erbas M., Çetinkaya C., Kabak M. [28] | Analysis of potential high-speed rail routes | Fuzzy AHP ARAS | Turkey |
| 19 | Stevic Z., Das D.K., Kopic M. [29] | Road safety assessment | CRITIC DEA MARCOS | Republic of South Africa |
| 20 | Huang C.N., Liou J.J.H. Lo H.W., Chang F.J. [30] | Measuring airport resilience | Bayesian BWM modified PROMETHEE | Taiwan |
| 21 | Öztürk F. [31] | Passenger Satisfaction Rating | Fuzzy AHP Fuzzy TOPSIS | Istanbul (Turkey) |
| 22 | Canbulut G., Köse E., Arik O.A. [32] | The tramway selection problem of a company operating in the public transport sector | AHP GRA MOORA | Turkey |
| 23 | Krishankumar R., Pamucar D., Deveci M., Ravichandran K.S. [33] | Prioritization of zero-carbon measures for sustainable urban mobility | EDAS | India |
| 24 | Wang X.D., Gou X.J., Xu Z.S. [34] | Performance evaluation of bus companies | CIVDHL-GLDS | Sichuan province (China) |
| 25 | Pamucar D., Iordache M., Deveci M., Schitea D., Iordache I. [35] | Prioritizing the alternatives for the development of hydrogen buses | BWM MARCOS | Romania |
| 26 | Tumsekcali E., Ayyildiz E., Taskin A. [36] | Public transportation service quality evaluation | IVIF-AHP IVIF-WASPAS | Istanbul (Turkey) |
| 27 | Alkharabsheh A., Duleba S. [37] | Public transportation service quality evaluation | Fuzzy AHP | Amman (Jordan) |
| 28 | Das D., Kalbar, P.P., Velaga N.R. [38] | Comparative evaluation of car-sharing alternatives for urban and suburban regions | AHP TOPSIS | Mumbai (India) |
| 29 | Torbacki W. [39] | Supporting the decision-making process regarding the directions of development of a sustainable transport system in the metropolitan area | DEMATEL PROMETHEE II | Szczecin Metropolitan Area (Poland) |
| MCDA | ||||
| 30 | Cerreta M., Poli G. [40] | Assessing infrastructures alternatives | FAHP | Abruzzo hinterland (Italy) |
| 31 | Ammenberg J., Dahlgren S. [41] | Assessments of public bus technologies’ sustainability | MCA | Sweden |
| 32 | Pamucar D., Yazdani M., Montero-Simo M.J., Araque-Padilla R.A. Mohammed A. [42] | Airport service quality assessment | SWARA-G MARCOS-G | Spain |
| 33 | Morfoulaki M., Papathanasiou J. [43] | Ranking alternative measures of sustainable urban mobility planning | PROMETHEE | Greece |
| 34 | Ziemba P. [44] | Selection of electric vehicles | fuzzy TOPSIS fuzzy SAW NEAT F-PROMETHEE II | Poland |
| # | Author | Research Problem | MCDM Method/Methods | Location |
|---|---|---|---|---|
| MCDM | ||||
| 1 | Petrovic N., Mihajlovic J., Jovanovic V., Ciric D., Zivojinovic T. [45] | Evaluation of the operational performance of rail freight and passenger transport systems | Entropia TOPSIS | Serbia |
| 2 | Adebiyi S.O., Akinrinmade O.J., Amole B.B. [46] | Bus Rapid Transit Assessment | FAHP VIKOR | Nigeria |
| 3 | Ali Y., Sabir M. [47] | Mode-route choice decisions | AHP TOPSIS | Pakistan |
| 4 | Stevic Z., Subotic M., Tanackov I., Sremac S., Ristic B., Simic S. [48] | Evaluation of two-lane road sections in terms of traffic risk | CRITIC FUCOM PIPRECIA MARCOS | Bosnia and Herzegovina |
| 5 | Feng J.H., Xu S.X., Xu G.Y., Cheng H.B. [49] | Locating parking centers of recyclable waste transportation vehicles | DEMATEL EW WASPAS | China |
| 6 | Zapolskyte S., Trépanier M., Burinskiene M., Survile O. [50] | Smart urban mobility system evaluation model | SAW COPRAS TOPSIS AHP | Vilnius (Lithuania) Montreal (Canada) Weimar (Germany) |
| 7 | Hajduk S. [51] | Analysis of selected smart cities in terms of urban transport | TOPSIS | Selected cities (international) |
| 8 | Garcia-Ayllon S., Hontoria E., Munier N. [52] | Decision-making in assessing alternatives when implementing proposals within Sustainable Urban Mobility Plans | SIMUS WSM | Spain |
| 9 | Farooq D., Moslem S. [53] | Estimating driver behavior measures related to traffic safety | PF-AHP PF-DEMATEL PF-ANP | Budapest (Hungary) |
| 10 | Cheemakurthy H., Garme K. [54] | Evaluation of ferries | AHP Fuzzy AHP | Stockholm (Sweden) |
| 11 | Lu X., Lu J.Q., Yang X.Z., Chen X.M. [55] | Urban Mobility Assessment | IVIF-AHP FCE | Beijing (China) |
| 12 | Aydin N., Seker S., Ozkan B. [56] | Planning location of mobility hub for sustainable urban mobility | interval type-2 fuzzy AHP interval type-2 fuzzy WASPAS | Istanbul (Turkey) |
| 13 | Lamii N., Bentaleb F., Fri M., Mabrouki C., Semma E. [57] | Identify and analyze risks in seaport dry port system | Delphi AHP | Casablanca (Marocco) |
| 14 | Ali Y., Khan A.U., Bin Hameed H. [58] | Choosing a sustainable means of transport | Fuzzy VIKOR | Pakistan |
| 15 | Wang C.N., Le T.Q., Chang K.H., Dang T.T. [59] | Measuring road transport sustainability | Entropia CoCoSo | OECD countries |
| 16 | Demir G., Damjanovic M., Matovic B., Vujadinovic R. [60] | Sustainable Urban Mobility Plans | Fuzzy-FUCOM Fuzzy-CoCoSo | Podgorica (Montenegro) |
| 17 | Chen F., Zhu Y.L., Zu J.C., Lyu J., Yang J.F. [61] | Appraise the road safety attainment | CRITIC ELECTRE FCM | 11 countries in Southeast Asia |
| 18 | Pamucar, D., Gorcun O.F. [62] | Assessment of European Container Ports | Fuzzy LBWA fuzzy CoCoSo’B | Europe |
| 19 | Bahadori M.S., Gonçalves A.B., Moura F. [63] | Ranking potential station locations in the expansion of bike-sharing systems | AHP TOPSIS | Lisbon (Portugal) |
| 20 | Hanafiah R.M., Zainon N.S. Karim N.H., Rahman N.S.F.A., Behforouzi M., Soltani H.R. [64] | Controlling maritime transportation accidents | AHP TOPSIS | Straits of Malacca |
| 21 | Ozdagoglu A., Oztas G.Z., Keles M.K., Genc V. [65] | A comparative bus selection for intercity transportation | PIPRECIA COPRAS-G | Turkey |
| 22 | Patil M., Majumdar B.B. [66] | Key determinants influencing electric two-wheeler usage | AHP RIDIT | India |
| 23 | Munim Z.H., Duru O., Ng A.K.Y. [67] | Assessment of the competitiveness of transhipment ports | ANP | Bangladesh |
| 24 | Ziemba P. Gago I. [68] | Selection of e-scooters for the vehicle sharing system | PROSA GDSS GAIA | Poland |
| 25 | Sharma H.K., Majumder S., Biswas A., Prentkovskis O., Kar S., Skackauskas P. [69] | Evaluate and analyze the factors that modify The Indian Railways Reservation System | DMS | India |
| 26 | Zarrinpanjeh N., Javan F.D., Azadi H., Viira A.H., Kurban A., Witlox F. [70] | Analysis of access to different transport options | AHP | Karaj (Iran) |
| 27 | Khalife A., Fay T.A., Göhlich D. [71] | Planning strategic rollouts of public charging infrastructure in size and location | AHP | Germany |
| 28 | Zhang J.T., Tu Y., Liu J., Liu L.Y., Li Z.M. [72] | Regional traffic safety risk assessments | AHP Sort II CRITIC | China |
| 29 | Nguyen T., Tran Q.P., Chileshe N., Huynh T.Y.T., Hallo L. [73] | Identifying potential major risks of railway metro project implementation | ANP | Ho Chi Minh (Vietnam) |
| 30 | Turon K. [74] | Car-sharing vehicle fleet selection | ELECTRE III | Poland |
| 31 | Shabani A., Shabani A., Ahmadinejad B., Salmasnia A. [75] | Public transport customer satisfaction assessment during the COVID-19 pandemic | BWM Fuzzy TOPSIS | Tehran (Iran) |
| 32 | Stoilova S. [76] | Evaluation of fully autonomous subway systems | entropy Shannona BWM TOPSIS EDAS MOORA COPRAS PROMETHEE | Europe |
| 33 | Liu Z.Q., Zhang Y.C. [77] | Evaluation of the sustainability of railway projects | DANP VIKOR | China |
| 34 | Torkayesh A.E., Yazdani M., Ribeiro-Soriano D. [78] | Analysis of the implementation of Industry 4.0 in the mobility sector | QFD BWM S-CoCoSo | Spain |
| 35 | Goyal S., Agarwal S., Singh N.S.S., Mathur T., Mathur N. [79] | Assessment and ranking of the public transport sector | TOPSIS VIKOR ELECTRE DM Fuzzy AHP | India |
| 36 | Siksnelyte-Butkiene I., Streimikiene D. [80] | Road transport sustainability assessment | TOPSIS | UE |
| MCDA | ||||
| 37 | Wątróbski J., Baczkiewicz A. [81] | Multi-criteria assessment of sustainable transport | SPOTIS ARAS TOPSIS | European countries (Europe) |
| 38 | Gutierrez L.R., Oliva M.A.D., Romero-Ania A. [82] | Management of the urban public transportation system | DEA ELECTRE III | Madrid (Spain) |
| 39 | Raad N.G., Rajendran S., Salimi S. [83] | Selecting a dry port location | Fuzzy MULTIMOORA Fuzzy SWARA | Shahid Rajaei (Iran) |
| 40 | Lorencic V., Twrdy E., Lep M. [84] | Port efficiency assessment | AHP TOPSIS | Mediterranean cruise ports: Barcelona (Spain), Piraeus (Greece), Civitavecchia (Italy), and Marseille (France) |
| 41 | Turon K., Kubik A., Chen F. [85] | Analysis of vehicle selection criteria for car-sharing systems | ELECTRE III | Poland |
| 42 | Turon K. [86] | Selection of car models with a classic and alternative drive to the car-sharing services | ELECTRE III | Poland |
| 43 | Haase M., Wulf, C., Baumann M., Ersoy H., Koj J.C., Harzendorf F., Estrada L.S.M. [87] | Sustainability assessment for passenger vehicles | TOPSIS | Germany |
| # | Author | Research Problem | MCDM Method/Methods | Location |
|---|---|---|---|---|
| MCDM | ||||
| 1 | Moradi S., Sierpinski G., Masoumi H. [88] | Public transport service quality | Fuzzy AHP Fuzzy Topsis | Katowice (Poland) |
| 2 | Sun J.C., Wang H.Y., Cui Z.M. [89] | Maritime supply chain | DEMATEL | Guinea China |
| 3 | Sarkar, B., Chakraborty, D., Biswas, A. [90] | Selection of a sustainable transport system | T2PFS | India |
| 4 | Cui H.Z., Dong S.W., Hu J.Y., Chen M.Q., Hou B.D., Zhang J.S., Zhang B.T., Xian J.T., Chen F. [91] | Road safety development | CRITIC MABAC | 11 countries, Asia |
| 5 | Li Y.X., Ding Y.X., Guo Y.L., Cui H.Z., Gao H.Y., Zhou Z.Y., Zhang N.B., Zhu S.Y., Chen F. [92] | Transport safety system analysis | CRITIC MOORA SC | 10 countries, Asia |
| 6 | Hatefi M.A. [93] | Engine/vehicle selection problem | ROC IROC | Iran |
| 7 | Saxena A., Yadav A.K. [94] | Selection of bus technology | Fuzzy AHP Fuzzy TOPSIS | India |
| 8 | Moreno-Solaz H., Artacho-Ramírez M.A., Aragonés-Beltrán P., Cloquell-Ballester V.A. [95] | Selection of waste collection trucks | SBWM | Castellon (Spain) |
| 9 | Boskovic S., Svadlenka L., Jovcic S., Dobrodolac M., Simic V., Bacanin N. [96] | Electric vehicle selection | AROMAN | Czechia |
| 10 | Sivilevicius H., Martisius M. [97] | Asphalt pavement recycling rate | AHP ARTIW-L ARTIW-N DPW | Lithuania |
| 11 | Önden I., Pamucar D., Deveci M., As Y., Birol B., Yildiz F.S. [98] | Strategic positioning of railway stations | Fuzzy DOBAS | Turkey |
| 12 | Saxena A., Yadav A.K. [99] | Barriers to the adoption of electric freight vehicles in urban areas | FAHP | India |
| 13 | Bouraima M.B., Tengecha N.A., Stevic Z. Simic, V., Qiu Y.J. [100] | Identifying the most critical challenges to Bus Rapid Transport implementation | Fuzzy Step-Wise Weight Assessment Ratio Analysis | Dar es Salaam, Tanzania |
| 14 | Sadrani M., Najafi A., Mirqasemi R., Antoniou C. [101] | Selecting the best Electric Buses charging strategy | FBWM FRAFSI | Monachium (Germany) |
| 15 | Auttha W., Klungboonkrong P. [102] | Environmental effects of transport | FAHP FSM TOPSIS | Khon Kaen City (Thailand) |
| 16 | Pamucar D., Durán-Romero G., Yazdani M., López A.M. [103] | Effective solutions in smart mobility systems | LMAW MARCOS | Madrit (Spain) |
| 17 | Jou Y.T., Saflor C.S., Marinas K.A., Young M.N. [104] | Service quality of bus transits | AHP SERVQUAL | Philippines |
| 18 | Liu A.J., Li Z.X., Shang W.L., Ochieng W. [105] | Evaluate the urban transportation resilience | fuzzy FUCOM CoCoSo | China |
| 19 | Kundu P., Görçün O.F., Garg C.P., Küçükönder H., Çanakçioglu M. [106] | Choosing the urban transportation system | fuzzy BWM fuzzy MAIRCIA | general perspective (international) |
| 20 | Bouraima M.B., Qiu Y.J., Stevic Z., Simic V. [107] | Assessment of current operational railway systems | IR SWARA CoCoSo | West Africa |
| 21 | Li Y.X., Guan S.L., Yin X.Y., Wang X.T., Liu J.L., Wong I.N., Wang G.Z., Chen F. [108] | Road safety situation measurement | CRITIC TODIM NMF | USA |
| 22 | Sonar H., Belal H.M., Foropon C., Manatkar R., Sonwaney V. [109] | Criteria relevant to electric vehicle (EVs) adoption | DEMATEL | India |
| 23 | Gulcimen S., Aydogan E.K., Uzal N. [110] | Design and planning of urban transportation | HF-AHP MAUT | Turkey |
| 24 | Wang C.X., Li L.J. [111] | Determining the sustainable location of dry ports | SWARA WASPAS | China |
| 25 | Çaliskan B., Atahan A.O. [112] | Optimum rail route/station location | AHP | Turkey |
| 26 | Zhang L.L., Cheng Q., Qu S.Y. [113] | Evaluating railway transportation performance | CRITIC entropy | China |
| 27 | Ecer F., Kücükönder H., Kaya S.K., Görçün O.F. [114] | Micro-mobility solutions in cities | LOPCOW CoCoSo IVFNN | Turkey |
| 28 | Wang N., Xu Y., Puska A., Stevic Z., Alrasheedi A.F. [115] | Selection of electric vehicle | SWARA MARCOS | Brčko District (Bosnia and Herzegovina) |
| 29 | Zhang L.L., Hua X.K. [116] | Evaluating railway transportation efficiency | CERE | China |
| 30 | Alshamrani A., Sengupta D., Das A., Bera U.K., Hezam I.M., Nayeem M.K., Aqlan F. [117] | Design of an eco-friendly transportation network | MAUT ELECTRE TOPSIS Exp-TOPSIS | Tripura (India) |
| MCDA | ||||
| 31 | Papaioannou G., Nathanail E., Polydoropoulou A. [118] | Assessment of ferry transport system | AHP PROMETHEE | Greece |
| 32 | Oubahman L., Duleba S. [119] | Public transportation service quality | PROMETHEE GAIA | Budapest (Hungary) |
| 33 | Hezam I.M., Basua D., Mishra A.R., Rani P., Cavallaro F. [120] | Sustainable urban transportation system | IF-GLDS IF-SPC TOPSIS COPRAS WASPAS CoCoSo | India |
| 34 | Wieckowski J., Watróbski J., Kizielewicz B., Salabun W. [121] | Evaluating the group of electric cars | TOPSIS | Poland |
| 35 | Kucharski A., Szterlik-Grzybek P. [122] | Locating electric vehicle charging stations | Fuzzy AHP | Lodz (Poland) |
| # | Author | Research Problem | MCDM Method/Methods | Location |
|---|---|---|---|---|
| MCDM | ||||
| 1 | Trivedi P., Shah J.T., Esztergar-Kiss D., Duleba S. [123] | Road accident severity analysis | AHP MULTIMOORA | 30 cities in India |
| 2 | Zhou Z.Y., Zhang Y.H., Zhang Y., Hou B.D., Mei Y.H., Wu P.J., Chen Y.C., Zhou W.J., Wu H.Y., Chen F. [124] | Transport safety engineering | CRITIC GRA GMM | OECD countries |
| 3 | Solanki V.S., Agarwal P.K. [125] | Identification of key performance indicators for urban public transit systems | COPRAS TOPSIS AHP FAHP | India |
| 4 | Gökgöz F., Yalçin E. [126] | Analyze and compare the performance of European EVs | PSI ADAM DEA | UE |
| 5 | Elomiya A., Krupka J., Jovcic S., Simic V., Svadlenka L., Pamucar D. [127] | Evaluating EVCS placement in densely urbanized areas | AHP FAHP SWARA | Praga (Czechia) |
| 6 | Wu S.J., Kremantzis M.D., Tanveer U., Ishaq S., O’Dea X., Jin, H. [128] | Assesses the efficiency of 26 international airlines under the impact of the COVID-19 pandemic | DNDEA | international |
| 7 | Usun S.O., Bas S.A., Meniz B., Ozkok B.A. [129] | Passenger satisfaction survey in the aviation industry | Type-2 fuzzy TOPSIS | US Airlines passengers (USA) |
| 8 | Weng Y.J. Zhang J.Z. Yang, C.L. Ramzan M. [130] | Prioritizing transportation projects | TOPSIS Fuzzy TOPSIS AHP | Chongqing (China) |
| 9 | Khichad J.S., Vishwakarma R.J., Gaur A., Sain A. [131] | Optimization of highway performance and safety | FAHP TOPSIS VIKOR | Jaipur (India) |
| 10 | Tehrani, M.J., Khavas R.G. [132] | Analyzing the potential of the southern corridor | FDAHP TOPSIS | Iran |
| 11 | Yildirim A.K., Kavus B.Y., Karaca T.K., Bozbey I., Taskin A. [133] | A novel seismic vulnerability assessment for the urban roadway | Interval-valued Fermatean fuzzy AHP | Istanbul (Turkey) |
| 12 | Hsu C.C., Chang H.C., Li Y.C., Liou J.J.H. [134] | Developing an airport resilience assessment model for climate change | Modified DEMATEL Dombi Weighted Aggregator method modified VIKOR | Taiwan |
| 13 | Avila, P., Mota, A., Oliveira E., Castro H., Ferreira L.P., Bastos J., Nuno O.F., Moreira J. [135] | Bus washing process selection | Fuzzy AHP AHP ELECTRE TOPSIS SMART | Portugal |
| 14 | Guo Z.Y., Liu J.N., Liu X.C., Meng Z.Y., Pu M.L., Wu H.Y., Yan X., Yang G., Zhang X.J., Chen C.L., Chen F. [136] | Transport safety | LOPCOW MULTIMOORA DBSCAN | European Union |
| 15 | Güler A., Polatgil M. [137] | Electric vehicle selection | AHP SWARA Copelanda Bordy | Turkey |
| 16 | Kalan O., Isik M., Yüksel F.S. [138] | Selection of international airport transfer center | AHP MOORA ELECTRE | Turkey |
| 17 | Rathod R., Joshi G., Shriniwas A. [139] | Analyzes the spatiotemporal variation in transit accessibility | CRITIC | Surat (India) |
| 18 | Elomiya A., Krupka J., Simic V., Svadlenka L., Prusa P., Jovcic S. [140] | Strategic placement of hydrogen refueling stations (HRSs) | FAHP TOPSIS | Prague (Czechia) |
| MCDA | ||||
| 19 | Junyent I.A., Casanovas M.M., Roukouni A., Sanz J.M.; Blanch E.R., Roca, Correia G.H.D. [141] | Planning shared mobility hubs in cities | AHP | Barcelona (Spain) |
| 20 | Rocchi L., Rizzo A.G., Paolotti L. Boggia A. Attard M. [142] | The climate change vulnerability of coastal roads | VIKOR COPRA PROMETHEE | Malta |
| Abbr. | Criterion Name |
|---|---|
| TECHNICAL CRITERIA | |
| CT1 | Length of the main route |
| CT2 | SDRR traffic intensity on the investment in 2030 |
| CT3 | SDRR traffic volume remaining on existing road in 2030 |
| CT4 | Number of heavy vehicles on investment in 2030 |
| CT5 | The need to reconstruct the 220 kV line |
| CT6 | Integrated points in the road safety assessment |
| CT7 | Road managers’ preferences |
| CT8 | Geology (geotechnics) |
| CT9 | Surface area of engineering structures |
| CT10 | Route extension indicator |
| CT11 | Share of overtaking sections in the entire route |
| CT12 | Passage through flood-prone areas |
| SOCIAL CRITERIA | |
| CS1 | Collision with planned gas station |
| CS2 | Residential buildings to be demolished |
| CS3 | Number of conclusions from information meetings conducted against a given location variant |
| CS4 | Number of conclusions from information meetings conducted for a given location variant |
| CS5 | Compliance of the route with the Local Spatial Development Plan |
| ENVIRONMENTAL CRITERIA | |
| CEN1 | Collision with protected areas under Article 6, Section 1 of the Act of 16 April 2004 on Nature Conservation |
| CEN2 | Collision with ecological corridors of national importance |
| CEN3 | Land occupancy |
| CEN4 | Agricultural land constituting agricultural land of classes I–III |
| CEN5 | Collision with mining areas, mining areas and natural resource deposits |
| CEN6 | Collision with protected habitats from Annex I of the Habitats Directive |
| CEN7 | Collision with amphibian habitats |
| CEN8 | Collision with bird species found within the boundaries of the investment area |
| CEN9 | Collision with surface streams |
| CEN10 | Collision with water reservoirs |
| CEN11 | Collision with historic buildings |
| ECONOMIC CRITERIA | |
| CE1 | Cost of preparation and works |
| CE2 | Real estate acquisition cost (SKNN) |
| CE3 | Total investment cost |
| CE4 | Average total cost of 1 km of main route |
| CE5 | ERR internal rate of return |
| CE6 | ENPV net present value of the investment |
| CE7 | BCR Benefit-Cost Ratio |
| CE8 | Undiscounted time cost reduction |
| CE9 | Undiscounted accident cost reduction |
| CT1 | CT2 | CT3 | CT4 | CT5 | CT6 | CT7 | CT8 | CT9 | CT10 | CT11 | CT12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CT1 | 1.000 | 1.000 | 5.000 | 3.000 | 7.000 | 5.000 | 5.000 | 3.000 | 3.000 | 9.000 | 7.000 | 5.000 |
| CT2 | 1.000 | 1.000 | 5.000 | 3.000 | 7.000 | 5.000 | 5.000 | 3.000 | 3.000 | 9.000 | 7.000 | 5.000 |
| CT3 | 0.200 | 0.200 | 1.000 | 0.333 | 3.000 | 1.000 | 1.000 | 0.333 | 0.333 | 5.000 | 3.000 | 1.000 |
| CT4 | 0.333 | 0.333 | 3.000 | 1.000 | 5.000 | 3.000 | 3.000 | 1.000 | 1.000 | 7.000 | 5.000 | 3.000 |
| CT5 | 0.143 | 0.143 | 0.333 | 0.200 | 1.000 | 0.333 | 0.333 | 0.200 | 0.200 | 3.000 | 1.000 | 0.333 |
| CT6 | 0.200 | 0.200 | 1.000 | 0.333 | 3.000 | 1.000 | 1.000 | 0.333 | 0.333 | 5.000 | 3.000 | 1.000 |
| CT7 | 0.200 | 0.200 | 1.000 | 0.333 | 3.000 | 1.000 | 1.000 | 0.333 | 0.333 | 5.000 | 3.000 | 1.000 |
| CT8 | 0.333 | 0.333 | 3.000 | 1.000 | 5.000 | 3.000 | 3.000 | 1.000 | 1.000 | 7.000 | 5.000 | 3.000 |
| CT9 | 0.333 | 0.333 | 3.000 | 1.000 | 5.000 | 3.000 | 3.000 | 1.000 | 1.000 | 7.000 | 5.000 | 3.000 |
| CT10 | 0.111 | 0.111 | 0.200 | 0.143 | 0.333 | 0.200 | 0.200 | 0.143 | 0.143 | 1.000 | 0.333 | 0.200 |
| CT11 | 0.143 | 0.143 | 0.333 | 0.200 | 1.000 | 0.333 | 0.333 | 0.200 | 0.200 | 3.000 | 1.000 | 0.333 |
| CT12 | 0.200 | 0.200 | 1.000 | 0.333 | 3.000 | 1.000 | 1.000 | 0.333 | 0.333 | 5.000 | 3.000 | 1.000 |
| CS1 | CS2 | CS3 | CS4 | CS5 | |
|---|---|---|---|---|---|
| CS1 | 1.000 | 0.333 | 0.200 | 0.200 | 0.200 |
| CS2 | 3.000 | 1.000 | 0.333 | 0.333 | 0.333 |
| CS3 | 5.000 | 3.000 | 1.000 | 1.000 | 1.000 |
| CS4 | 5.000 | 3.000 | 1.000 | 1.000 | 1.000 |
| CS5 | 5.000 | 3.000 | 1.000 | 1.000 | 1.000 |
| CEN1 | CEN2 | CEN3 | CEN4 | CEN5 | CEN6 | CEN7 | CEN8 | CEN9 | CEN10 | CEN11 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| CEN1 | 1.000 | 0.143 | 0.200 | 0.143 | 0.143 | 0.143 | 0.200 | 0.143 | 0.200 | 0.200 | 0.200 |
| CEN2 | 7.000 | 1.000 | 3.000 | 1.000 | 1.000 | 1.000 | 3.000 | 1.000 | 3.000 | 3.000 | 3.000 |
| CEN3 | 5.000 | 0.333 | 1.000 | 0.333 | 0.333 | 0.333 | 1.000 | 0.333 | 1.000 | 1.000 | 1.000 |
| CEN4 | 7.000 | 1.000 | 3.000 | 1.000 | 1.000 | 1.000 | 3.000 | 1.000 | 3.000 | 3.000 | 3.000 |
| CEN5 | 7.000 | 1.000 | 3.000 | 1.000 | 1.000 | 1.000 | 3.000 | 1.000 | 3.000 | 3.000 | 3.000 |
| CEN6 | 7.000 | 1.000 | 3.000 | 1.000 | 1.000 | 1.000 | 3.000 | 1.000 | 3.000 | 3.000 | 3.000 |
| CEN7 | 5.000 | 0.333 | 1.000 | 0.333 | 0.333 | 0.333 | 1.000 | 0.333 | 1.000 | 1.000 | 1.000 |
| CEN8 | 7.000 | 1.000 | 3.000 | 1.000 | 1.000 | 1.000 | 3.000 | 1.000 | 3.000 | 3.000 | 3.000 |
| CEN9 | 5.000 | 0.333 | 1.000 | 0.333 | 0.333 | 0.333 | 1.000 | 0.333 | 1.000 | 1.000 | 1.000 |
| CEN10 | 5.000 | 0.333 | 1.000 | 0.333 | 0.333 | 0.333 | 1.000 | 0.333 | 1.000 | 1.000 | 1.000 |
| CEN11 | 5.000 | 0.333 | 1.000 | 0.333 | 0.333 | 0.333 | 1.000 | 0.333 | 1.000 | 1.000 | 1.000 |
| CE1 | CE2 | CE3 | CE4 | CE5 | CE6 | CE7 | CE8 | CE9 | |
|---|---|---|---|---|---|---|---|---|---|
| CE1 | 1.000 | 1.000 | 1.000 | 7.000 | 3.000 | 3.000 | 5.000 | 5.000 | 5.000 |
| CE2 | 1.000 | 1.000 | 1.000 | 7.000 | 3.000 | 3.000 | 5.000 | 5.000 | 5.000 |
| CE3 | 1.000 | 1.000 | 1.000 | 7.000 | 3.000 | 3.000 | 5.000 | 5.000 | 5.000 |
| CE4 | 0.143 | 0.143 | 0.143 | 1.000 | 0.200 | 0.200 | 0.333 | 0.333 | 0.333 |
| CE5 | 0.333 | 0.333 | 0.333 | 5.000 | 1.000 | 1.000 | 3.000 | 3.000 | 3.000 |
| CE6 | 0.333 | 0.333 | 0.333 | 5.000 | 1.000 | 1.000 | 3.000 | 3.000 | 3.000 |
| CE7 | 0.200 | 0.200 | 0.200 | 3.000 | 0.333 | 0.333 | 1.000 | 1.000 | 1.000 |
| CE8 | 0.200 | 0.200 | 0.200 | 3.000 | 0.333 | 0.333 | 1.000 | 1.000 | 1.000 |
| CE9 | 0.200 | 0.200 | 0.200 | 3.000 | 0.333 | 0.333 | 1.000 | 1.000 | 1.000 |
| Definition | Classic Saaty Scale | Fuzzy Triangular Scale |
|---|---|---|
| Equal importance | 1 | 1,1,1 |
| Weak or slight | 2 | 1,2,3 |
| Moderate importance | 3 | 2,3,4 |
| Moderate plus | 4 | 3,4,5 |
| Strong importance | 5 | 4,5,6 |
| Strong plus | 6 | 5,6,7 |
| Very strong | 7 | 6,7,8 |
| Very, very strong | 8 | 7,8,9 |
| Extremely strong | 9 | 9,9,9 |
| “If activity i has one of the above non-zero numbers assigned to it when compared with activity j, then j has the reciprocal value when compared with i” | Reciprocals of above | Reciprocals of above |
| CT1 | CT2 | CT3 | CT4 | CT5 | CT6 | CT7 | CT8 | CT9 | CT10 | CT11 | CT12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CT1 | 1.000 | −0.448 | 0.067 | −0.825 | 0.972 | 0.989 | −0.776 | −0.936 | 0.049 | 1.000 | 0.717 | −0.987 |
| CT2 | −0.448 | 1.000 | 0.855 | 0.863 | −0.537 | −0.460 | 0.260 | 0.125 | 0.862 | −0.445 | −0.892 | 0.462 |
| CT3 | 0.067 | 0.855 | 1.000 | 0.476 | −0.022 | 0.066 | −0.227 | −0.373 | 1.000 | 0.071 | −0.549 | −0.064 |
| CT4 | −0.825 | 0.863 | 0.476 | 1.000 | −0.890 | −0.844 | 0.662 | 0.575 | 0.489 | −0.823 | −0.978 | 0.846 |
| CT5 | 0.972 | −0.537 | −0.022 | −0.890 | 1.000 | 0.994 | −0.870 | −0.847 | −0.036 | 0.972 | 0.827 | −0.995 |
| CT6 | 0.989 | −0.460 | 0.066 | −0.844 | 0.994 | 1.000 | −0.857 | −0.901 | 0.050 | 0.989 | 0.762 | −1.000 |
| CT7 | −0.776 | 0.260 | −0.227 | 0.662 | −0.870 | −0.857 | 1.000 | 0.681 | −0.221 | −0.776 | −0.667 | 0.863 |
| CT8 | −0.936 | 0.125 | −0.373 | 0.575 | −0.847 | −0.901 | 0.681 | 1.000 | −0.355 | −0.937 | −0.426 | 0.896 |
| CT9 | 0.049 | 0.862 | 1.000 | 0.489 | −0.036 | 0.050 | −0.221 | −0.355 | 1.000 | 0.053 | −0.558 | −0.049 |
| CT10 | 1.000 | −0.445 | 0.071 | −0.823 | 0.972 | 0.989 | −0.776 | −0.937 | 0.053 | 1.000 | 0.715 | −0.987 |
| CT11 | 0.717 | −0.892 | −0.549 | −0.978 | 0.827 | 0.762 | −0.667 | −0.426 | −0.558 | 0.715 | 1.000 | −0.767 |
| CT12 | −0.987 | 0.462 | −0.064 | 0.846 | −0.995 | −1.000 | 0.863 | 0.896 | −0.049 | −0.987 | −0.767 | 1.000 |
| CS1 | CS2 | CS3 | CS4 | CS5 | |
|---|---|---|---|---|---|
| CS1 | 1.000 | −0.333 | 0.333 | −0.132 | 0.333 |
| CS2 | −0.333 | 1.000 | 0.333 | −0.662 | −1.000 |
| CS3 | 0.333 | 0.333 | 1.000 | 0.132 | −0.333 |
| CS4 | −0.132 | −0.662 | 0.132 | 1.000 | 0.662 |
| CS5 | 0.333 | −1.000 | −0.333 | 0.662 | 1.000 |
| CEN1 | CEN2 | CEN3 | CEN4 | CEN5 | CEN6 | CEN7 | CEN8 | CEN9 | CEN10 | CEN11 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| CEN1 | 1.000 | 0.802 | −0.961 | 0.028 | −0.941 | 0.834 | −0.855 | −0.999 | −0.999 | −0.854 | 0.301 |
| CEN2 | 0.802 | 1.000 | −0.840 | −0.329 | −0.939 | 0.920 | −0.629 | −0.796 | −0.796 | −0.462 | 0.358 |
| CEN3 | −0.961 | −0.840 | 1.000 | 0.245 | 0.975 | −0.760 | 0.681 | 0.968 | 0.968 | 0.869 | −0.548 |
| CEN4 | 0.028 | −0.329 | 0.245 | 1.000 | 0.266 | 0.063 | −0.492 | −0.004 | −0.004 | 0.048 | −0.860 |
| CEN5 | −0.941 | −0.939 | 0.975 | 0.266 | 1.000 | −0.866 | 0.705 | 0.943 | 0.943 | 0.739 | −0.471 |
| CEN6 | 0.834 | 0.920 | −0.760 | 0.063 | −0.866 | 1.000 | −0.855 | −0.816 | −0.816 | −0.426 | 0.000 |
| CEN7 | −0.855 | −0.629 | 0.681 | −0.492 | 0.705 | −0.855 | 1.000 | 0.836 | 0.836 | 0.581 | 0.238 |
| CEN8 | −0.999 | −0.796 | 0.968 | −0.004 | 0.943 | −0.816 | 0.836 | 1.000 | 1.000 | 0.870 | −0.333 |
| CEN9 | −0.999 | −0.796 | 0.968 | −0.004 | 0.943 | −0.816 | 0.836 | 1.000 | 1.000 | 0.870 | −0.333 |
| CEN10 | −0.854 | −0.462 | 0.869 | 0.048 | 0.739 | −0.426 | 0.581 | 0.870 | 0.870 | 1.000 | −0.522 |
| CEN11 | 0.301 | 0.358 | −0.548 | −0.860 | −0.471 | 0.000 | 0.238 | −0.333 | −0.333 | −0.522 | 1.000 |
| CE1 | CE2 | CE3 | CE4 | CE5 | CE6 | CE7 | CE8 | CE9 | |
|---|---|---|---|---|---|---|---|---|---|
| CE1 | 1.000 | 0.520 | 0.896 | 0.860 | 0.495 | −0.103 | 0.506 | −0.898 | −0.944 |
| CE2 | 0.520 | 1.000 | 0.845 | 0.630 | 0.946 | 0.657 | 0.952 | −0.821 | −0.285 |
| CE3 | 0.896 | 0.845 | 1.000 | 0.865 | 0.801 | 0.277 | 0.811 | −0.988 | −0.739 |
| CE4 | 0.860 | 0.630 | 0.865 | 1.000 | 0.447 | −0.163 | 0.465 | −0.930 | −0.865 |
| CE5 | 0.495 | 0.946 | 0.801 | 0.447 | 1.000 | 0.797 | 1.000 | −0.730 | −0.200 |
| CE6 | −0.103 | 0.657 | 0.277 | −0.163 | 0.797 | 1.000 | 0.786 | −0.171 | 0.421 |
| CE7 | 0.506 | 0.952 | 0.811 | 0.465 | 1.000 | 0.786 | 1.000 | −0.743 | −0.214 |
| CE8 | −0.898 | −0.821 | −0.988 | −0.930 | −0.730 | −0.171 | −0.743 | 1.000 | 0.781 |
| CE9 | −0.944 | −0.285 | −0.739 | −0.865 | −0.200 | 0.421 | −0.214 | 0.781 | 1.000 |
| Abbr. | Name of the Sub-Criterion | Weight (Method from Design Documentation) | Weight (AHP) | Weight (FAHP) | Weight (CRITIC) |
|---|---|---|---|---|---|
| TECHNICAL CRITERIA | |||||
| CT1 | Length of the main route | 12.822 | 0.22 | 0.215 | 0.079 |
| CT2 | SDRR traffic intensity on the investment in 2030 | 12.822 | 0.22 | 0.215 | 0.088 |
| CT3 | SDRR traffic volume remaining on existing road in 2030 | 7.692 | 0.046 | 0.047 | 0.070 |
| CT4 | Number of heavy vehicles on investment in 2030 | 10.256 | 0.107 | 0.108 | 0.083 |
| CT5 | The need to reconstruct the 220 kV line | 5.128 | 0.022 | 0.022 | 0.087 |
| CT6 | Integrated points in the road safety assessment | 7.692 | 0.046 | 0.047 | 0.081 |
| CT7 | Road managers’ preferences | 7.692 | 0.046 | 0.047 | 0.094 |
| CT8 | Geology (geotechnics) | 10.256 | 0.107 | 0.108 | 0.091 |
| CT9 | Surface area of engineering structures | 10.256 | 0.107 | 0.108 | 0.070 |
| CT10 | Route extension indicator | 2.564 | 0.013 | 0.012 | 0.079 |
| CT11 | Share of overtaking sections in the entire route | 5.128 | 0.022 | 0.022 | 0.086 |
| CT12 | Passage through flood-prone areas | 7.692 | 0.046 | 0.047 | 0.092 |
| SOCIAL CRITERIA | |||||
| CS1 | Collision with planned gas station | 11.765 | 0.05 | 0.052 | 0.184 |
| CS2 | Residential buildings to be demolished | 17.648 | 0.107 | 0.111 | 0.274 |
| CS3 | Number of conclusions from information meetings conducted against a given location variant | 23.529 | 0.281 | 0.279 | 0.171 |
| CS4 | Number of conclusions from information meetings conducted for a given location variant | 23.529 | 0.281 | 0.279 | 0.162 |
| CS5 | Compliance of the route with the Local Spatial Development Plan | 23.529 | 0.281 | 0.279 | 0.210 |
| ENVIRONMENTAL CRITERIA | |||||
| CEN1 | Collision with protected areas under Article 6, Section 1 of the Act of 16 April 2004 on Nature Conservation | 2.780 | 0.015 | 0.015 | 0.127 |
| CEN2 | Collision with ecological corridors of national importance | 11.111 | 0.145 | 0.143 | 0.107 |
| CEN3 | Land occupancy | 8.333 | 0.052 | 0.053 | 0.070 |
| CEN4 | Agricultural land constituting agricultural land of classes I–III | 11.111 | 0.145 | 0.143 | 0.086 |
| CEN5 | Collision with mining areas, mining areas and natural resource deposits | 11.111 | 0.145 | 0.143 | 0.078 |
| CEN6 | Collision with protected habitats from Annex I of the Habitats Directive | 11.111 | 0.145 | 0.143 | 0.099 |
| CEN7 | Collision with amphibian habitats | 8.333 | 0.052 | 0.053 | 0.081 |
| CEN8 | Collision with bird species found within the boundaries of the investment area | 11.111 | 0.145 | 0.143 | 0.079 |
| CEN9 | Collision with surface streams | 8.333 | 0.052 | 0.055 | 0.079 |
| CEN10 | Collision with water reservoirs | 8.333 | 0.052 | 0.053 | 0.076 |
| CEN11 | Collision with historic buildings | 8.333 | 0.052 | 0.055 | 0.116 |
| ECONOMIC CRITERIA | |||||
| CE1 | Cost of preparation and works | 14.706 | 0.219 | 0.217 | 0.106 |
| CE2 | Real estate acquisition cost (SKNN) | 14.706 | 0.219 | 0.217 | 0.081 |
| CE3 | Total investment cost | 14.706 | 0.219 | 0.217 | 0.093 |
| CE4 | Average total cost of 1 km of main route | 5.880 | 0.021 | 0.021 | 0.111 |
| CE5 | ERR internal rate of return | 11.765 | 0.097 | 0.099 | 0.071 |
| CE6 | ENPV net present value of the investment | 11.765 | 0.097 | 0.099 | 0.091 |
| CE7 | BCR Benefit-Cost Ratio | 8.824 | 0.042 | 0.043 | 0.071 |
| CE8 | Undiscounted time cost reduction | 8.824 | 0.042 | 0.043 | 0.214 |
| CE9 | Undiscounted accident cost reduction | 8.824 | 0.042 | 0.043 | 0.161 |
| CT1 | CT2 | CT3 | CT4 | CT5 | CT6 | CT7 | CT8 | CT9 | CT10 | CT11 | CT12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Units | km | Cars/24 h | Cars/24 h | Cars/24 h | Pieces | Points | Pieces | % | m2 | - | % | km |
| V1 | 8.54 | 9615 | 498 | 2396 | 0 | 70 | 2 | 38 | 12,437.9 | 1.054 | 41 | 15.574 |
| V2 | 8.496 | 9252 | 840 | 2343 | 0 | 69.45 | 3 | 34 | 13,050 | 1.049 | 43 | 15.059 |
| V3 | 9.704 | 9591 | 719 | 2458 | 1 | 58.3 | 4 | 15 | 12,821.5 | 1.198 | 39 | 6.082 |
| V4 | 8.794 | 9252 | 840 | 2343 | 0 | 68.5 | 2 | 25 | 13,039.2 | 1.086 | 44 | 14.448 |
| CS1 | CS2 | CS3 | CS4 | CS5 | |
|---|---|---|---|---|---|
| Units | Pieces | Pieces | Pieces | Pieces | % |
| V1 | 0 | 0 | 2 | 3 | 0 |
| V2 | 0 | 1 | 3 | 4 | 35 |
| V3 | 1 | 0 | 3 | 3 | 0 |
| V4 | 0 | 0 | 3 | 1 | 0 |
| CEN1 | CEN2 | CEN3 | CEN4 | CEN5 | CEN6 | CEN7 | CEN8 | CEN9 | CEN10 | CEN11 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Units | m | m | ha | % | Pieces | Pieces | M2 | Pieces | Pieces | Pieces | Pieces |
| V1 | 3240 | 3842 | 26.4097 | 26.5 | 1 | 2 | 1075 | 0 | 3 | 0 | 0 |
| V2 | 3156 | 5115 | 25.2627 | 15.5 | 0 | 2 | 4421 | 0 | 3 | 0 | 2 |
| V3 | 0 | 2769 | 29.6113 | 21.3 | 3 | 1 | 7084 | 2 | 4 | 2 | 0 |
| V4 | 3305 | 5825 | 26.052 | 22 | 0 | 3 | 869 | 0 | 3 | 1 | 0 |
| CEC1 | CEC2 | CEC3 | CEC4 | CEC5 | CEC6 | CEC7 | CEC8 | CEC9 | |
|---|---|---|---|---|---|---|---|---|---|
| Units | PLN | PLN | PLN | PLN/km | % | PLN | - | PLN | PLN |
| V1 | 296,157,557 | 39,996,000 | 416,047,655 | 48,717,524 | 6.8 | 83,042,118 | 1.31 | 176,127,763 | 41,991,670 |
| V2 | 310,535,032 | 25,114,000 | 419,460,649 | 49,371,545 | 7.16 | 96,677,783 | 1.36 | 187,394,423 | 43,708,029 |
| V3 | 333,996,990 | 60,811,735 | 485,013,167 | 49,980,747 | 6.53 | 86,129,768 | 1.27 | 239,539,109 | 44,523,583 |
| V4 | 318,592,288 | 26,103,000 | 430,702,317 | 48,976,838 | 6.94 | 90,507,816 | 1.33 | 187,394,423 | 43,708,029 |
| CI Value | ||||
|---|---|---|---|---|
| Project | AHP | FAHP | CRITIC | |
| V1 | 0.546 | 0.465 | 0.467 | 0.621 |
| V2 | 0.622 | 0.73 | 0.723 | 0.514 |
| V3 | 0.405 | 0.326 | 0.331 | 0.496 |
| V4 | 0.513 | 0.441 | 0.443 | 0.601 |
| Set of Weights | Variant Ranking |
|---|---|
| TOPSIS | |
| Project | V2 > V1 > V4 > V3 |
| AHP | V2 > V1 > V4 > V3 |
| Fuzzy AHP | V2 > V1 > V4 > V3 |
| CRITIC | V1 > V4 > V2 > V3 |
| Ranking method + weights from the project | V2 > V1 > V4 > V3 |
| Weighing Method | Advantages | Disadvantages | Recommended Research Problems from the Transport Sector |
|---|---|---|---|
| point | simple algorithm possibility of evaluation by a group of experts | no pairwise comparison possible | evaluation of investment options |
| AHP | possibility of creating a hierarchical structure possibility of pairwise comparisons possibility of calculations in a regular spreadsheet/software possibility of assessing consistency possibility of assessment by a group of experts | possible problems with maintaining consistency of pairwise comparisons, especially in the case of larger matrix dimensions | assessment of the quality of transport systems assessment of preferences of travelers/traffic users assessment of criteria and variants in terms of different scenarios (environmental, economic, technical, etc.) |
| Fuzzy AHP | possibility of creating a hierarchical structure possibility of pairwise comparison possibility of taking into account uncertainty possibility of evaluation by a group of experts | labor-intensive | assessment of the quality of transport systems assessment of preferences of travelers/traffic users assessment of criteria and variants in terms of different scenarios (environmental, economic, technical, etc.) |
| CRITIC | the most objective tool the ability to calculate in a regular spreadsheet | does not take into account the decision-maker’s preferences | transport safety assessment |
| Criterion | Point | AHP | Fuzzy AHP | CRITIC |
|---|---|---|---|---|
| Algorithm complexity | − | − | + | − |
| Preference considerations | + | + | + | − |
| Fuzzy information | − | − | + | − |
| Labor-intensive | − | − | + | + |
| Ease of use | + | + | − | + |
| Spreadsheet/software | + | + | + | + |
| Possibility of integration with other methods | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broniewicz, E.; Ogrodnik, K. Application Potential of MCDM/MCDA Methods in Transport—Literature Review and Case Study. Sustainability 2025, 17, 7671. https://doi.org/10.3390/su17177671
Broniewicz E, Ogrodnik K. Application Potential of MCDM/MCDA Methods in Transport—Literature Review and Case Study. Sustainability. 2025; 17(17):7671. https://doi.org/10.3390/su17177671
Chicago/Turabian StyleBroniewicz, Elżbieta, and Karolina Ogrodnik. 2025. "Application Potential of MCDM/MCDA Methods in Transport—Literature Review and Case Study" Sustainability 17, no. 17: 7671. https://doi.org/10.3390/su17177671
APA StyleBroniewicz, E., & Ogrodnik, K. (2025). Application Potential of MCDM/MCDA Methods in Transport—Literature Review and Case Study. Sustainability, 17(17), 7671. https://doi.org/10.3390/su17177671

