Spatiotemporal Dynamic Monitoring of Desertification in Ordos Section of Yellow River Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.3. Methods
2.3.1. Desertification Information Extraction
2.3.2. Trend and Spatial Cluster Pattern Analysis
2.3.3. Grey Relational Analysis
3. Results
3.1. NDVI–Albedo Model Construction
3.2. Spatial–Temporal Evolution Trend of Desertification
3.2.1. Temporal Evolution Trend of Desertification
3.2.2. Spatial Evolution Trend of Desertification
3.2.3. Trend Analysis
3.3. Spatial Autocorrelation Characteristics Analysis
3.4. Driving Factors Analysis
4. Discussion
4.1. Natural Drivers for Desertification Evolution
4.2. Anthropogenic Activities for Desertification Evolution
4.3. Recommendation for Desertification Control
4.4. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Becerril-Piña, R.; Mastachi-Loza, C.A. Desertification: Causes and countermeasures. In Life on Land; Springer: Cham, Switzerland, 2021; pp. 219–231. [Google Scholar]
- Wang, Y.; Xu, D.; Li, L. Assessing the influences of natural and human factors upon desertification vulnerability in northern China during 1985–2010. Catena 2023, 233, 107529. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Q.; Lan, F.; Li, Y.; Han, Y.; Zhang, L.; Yang, Y.; Wang, X. Dynamic characteristics and driving factors of grassland desertification in Hexi Corridor. J. Desert Res. 2022, 42, 134. [Google Scholar]
- AbdelRahman, M.A. An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications. Rendiconti Lincei. Scienze Fisiche e Naturali 2023, 34, 767–808. [Google Scholar] [CrossRef]
- Ramola, G.C.; Sahu, L.; Rathod, D.; Kukreti, A. Soil degradation and deterioration: Causes, effects and case studies. Soil Restor. Assess. Reclam. 2023, 107–123. [Google Scholar]
- Abdelhak, M. Soil Improvement in Arid and Semiarid Regions for Sustainable Development, in Natural Resources Conservation and Advances for Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 73–90. [Google Scholar]
- Han, J.; Wang, J.; Chen, L.; Xiang, J.; Ling, Z.; Li, Q.; Wang, E. Driving factors of desertification in Qaidam Basin, China: An 18-year analysis using the geographic detector model. Ecol. Indic. 2021, 124, 107404. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, Y.; Zhang, Y. Review of desert mobility assessment and desertification monitoring based on remote sensing. Remote Sens. 2023, 15, 4412. [Google Scholar] [CrossRef]
- Han, J.; Han, L.; Sun, G.; Mu, H.; Zhang, Z.; Wang, X.; Wang, S. Optimal scale selection and an object-oriented method used for measuring and monitoring the extent of land desertification. Sustainability 2023, 15, 5619. [Google Scholar] [CrossRef]
- Dregne, H. Desertification Assessment, in Methods for Assessment of Soil Degradation; CRC Press: Boca Raton, FL, USA, 2020; pp. 441–458. [Google Scholar]
- Ahmed, Z.; Gui, D.; Abd-Elmabod, S.K.; Murtaza, G.; Ali, S. An overview of global desertification control efforts: Key challenges and overarching solutions. Soil Use Manag. 2024, 40, e13154. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Fu, R.; Li, D.; Jiang, H.; Wang, C.; Peng, Y.; Jia, K.; Hicks, B.J. Remote sensing big data for water environment monitoring: Current status, challenges, and future prospects. Earth’s Future 2022, 10, e2021EF002289. [Google Scholar] [CrossRef]
- Xu, X.; Liu, L.; Han, P.; Gong, X.; Zhang, Q. Accuracy of vegetation indices in assessing different grades of grassland desertification from UAV. Int. J. Environ. Res. Public Health 2022, 19, 16793. [Google Scholar] [CrossRef]
- Song, Z.; Lu, Y.; Ding, Z.; Sun, D.; Jia, Y.; Sun, W. A new remote sensing desert vegetation detection index. Remote Sens. 2023, 15, 5742. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Xue, B. Changes in vegetation cover and its influencing factors in the inner Mongolia reach of the yellow river basin from 2001 to 2018. Environ. Res. 2022, 215, 114253. [Google Scholar] [CrossRef]
- Zhen, Z.; Chen, S.; Yin, T.; Chavanon, E.; Lauret, N.; Guilleux, J.; Henke, M.; Qin, W.; Cao, L.; Li, J.; et al. Using the negative soil adjustment factor of soil adjusted vegetation index (SAVI) to resist saturation effects and estimate leaf area index (LAI) in dense vegetation areas. Sensors 2021, 21, 2115. [Google Scholar] [CrossRef]
- Hu, Y.; Han, Y.; Zhang, Y. Land desertification and its influencing factors in Kazakhstan. J. Arid Environ. 2020, 180, 104203. [Google Scholar] [CrossRef]
- Han, Z.; Wu, Q.; Lai, R.; Soomro, S.E.H.; Hou, D.; Hu, C. Spatio-temporal variations of vegetation cover and its influence on surface air temperature change over the Yellow River Basin, China. J. Water Clim. Change 2022, 13, 3239–3252. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, J.; Liu, X.; Guan, X.; Wei, Y.; Ding, L.; Han, D. The evolution of ecological security and its drivers in the Yellow River Basin. Environ. Sci. Pollut. Res. 2023, 30, 47501–47515. [Google Scholar] [CrossRef]
- Wu, X.; Hao, W.; Qu, G.; Yang, L. Spatial-Temporal Pattern of Vegetation Net Primary Productivity and Its Natural Driving Factors in Ordos Section of the Yellow River Basin. Atmosphere 2025, 16, 89. [Google Scholar] [CrossRef]
- Omer, A.; Elagib, N.A.; Zhuguo, M.; Saleem, F.; Mohammed, A. Water scarcity in the Yellow River Basin under future climate change and human activities. Sci. Total Environ. 2020, 749, 141446. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, L.; Yang, K. Monitoring desertification in Ordos City using integrated vegetation and soil indicators. J. Arid Environ. 2025, 229, 105391. [Google Scholar] [CrossRef]
- Li, J. Responses of vegetation NDVI to climate change and land use in Ordos City, north China. Appl. Sci. 2022, 12, 7288. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, Z.; Zhao, C.; Qu, Y.; Liu, Q.; Zhang, H.; Tong, Y.; Wang, C.; Li, S.; Guo, J.; et al. Review of land surface albedo: Variance characteristics, climate effect and management strategy. Remote Sens. 2022, 14, 1382. [Google Scholar] [CrossRef]
- Wen, Y.; Guo, B.; Zang, W.; Ge, D.; Luo, W.; Zhao, H. Desertification detection model in Naiman Banner based on the albedo-modified soil adjusted vegetation index feature space using the Landsat8 OLI images. Geomat. Nat. Hazards Risk 2020, 11, 544–558. [Google Scholar] [CrossRef]
- Dong, X.; Chen, Z.; Wu, M.; Hu, C. Long time series of remote sensing to monitor the transformation research of Kubuqi Desert in China. Earth Sci. Inform. 2020, 13, 795–809. [Google Scholar] [CrossRef]
- Lamaamri, M.; Lghabi, N.; Ghazi, A.K.; Harchaoui, N.; Gani Adnan, M.S.; ShakiulIslam, M. Evaluation of desertification in the middle Moulouya basin (north-east morocco) using sentinel-2 images and spectral index techniques. Earth Syst. Environ. 2023, 7, 473–492. [Google Scholar] [CrossRef]
- Hong, L.; Huang, Y.; Peng, S. Monitoring the trends of water-erosion desertification on the Yunnan-Guizhou Plateau, China from 1989 to 2016 using time-series Landsat images. PLoS ONE 2020, 15, e0227498. [Google Scholar] [CrossRef]
- Luo, Q.; Hu, K.; Liu, W. Scientometric analysis for spatial autocorrelation-related research from 1991 to 2021. ISPRS Int. J. Geo-Inf. 2022, 11, 309. [Google Scholar] [CrossRef]
- Wang, Z.; Lam, N.S. Extending Getis–Ord statistics to account for local space–time autocorrelation in spatial panel data. Prof. Geogr. 2020, 72, 411–420. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, J.; Li, Q.; Fang, N.; Wang, P.; Ding, L.; Li, S. A hybrid model for prediction in asphalt pavement performance based on support vector machine and grey relation analysis. J. Adv. Transp. 2020, 2020, 7534970. [Google Scholar] [CrossRef]
- Yi, Y.; Shi, M.; Wu, J.; Yang, N.; Zhang, C.; Yi, X. Spatio-temporal patterns and driving forces of desertification in Otindag Sandy Land, Inner Mongolia, China, in recent 30 years. Remote Sens. 2023, 15, 279. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, X.; Lei, J.; Meng, X.; Zhou, N. Analysis of spatiotemporal changes and driving factors of desertification in the Africa Sahel. Catena 2022, 213, 106213. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, T.; Wang, Y.; Su, B.; Tao, H.; Qin, J.; Zhai, J. Spatiotemporal variations of aridity index over the Belt and Road region under the 1.5 C and 2.0 C warming scenarios. J. Geogr. Sci. 2020, 30, 37–52. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Al-Obaidi, J.R.; Yahya Allawi, M.; Salim Al-Taie, B.; Alobaidi, K.; Al-Khayri, J.; Abdullah, S.; Ahmad-Kamil, E.I. The environmental, economic, and social development impact of desertification in Iraq: A review on desertification control measures and mitigation strategies. Environ. Monit. Assess. 2022, 194, 440. [Google Scholar] [CrossRef]
- Abdelsalam, M.I. Effects of Overgrazing on Rangeland Resources in Semi-Arid Areas and Rangel and Management: A Review Article. Agrica 2021, 10, 144–151. [Google Scholar] [CrossRef]
- Hossain, A.; Krupnik, T.J.; Timsina, J.; Mahboob, M.; Chaki, A.K.; Farooq, M.; Bhatt, R.; Fahad, S.; Hasanuzzaman, M. Agricultural Land Degradation: Processes and Problems Undermining Future Food Security, in Environment, Climate, Plant and Vegetation Growth; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–61. [Google Scholar]
- Liu, W.-X.; Wei, Y.X.; Li, R.C.; Chen, Z.; Wang, H.D.; Virk, A.L.; Lal, R.; Zhao, X.; Zhang, H.L. Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the North China Plain. Sci. Total Environ. 2022, 847, 157518. [Google Scholar] [CrossRef] [PubMed]
- Wuyun, D.; Sun, L.; Chen, Z.; Hou, A.; Crusiol, L.G.T.; Yu, L.; Chen, R.; Sun, Z. The spatiotemporal change of cropland and its impact on vegetation dynamics in the farming-pastoral ecotone of northern China. Sci. Total Environ. 2022, 805, 150286. [Google Scholar] [CrossRef]
- Abdullahi, M.B.; Elnaggar, A.A.; Omar, M.M.; Murtala, A.; Lawal, M.; Mosa, A.A. Land degradation, causes, implications and sustainable management in arid and semi arid regions: A case study of Egypt. Egypt. J. Soil Sci. 2023, 63, 659–676. [Google Scholar] [CrossRef]
- Zhai, J.; Wang, L.; Liu, Y.; Wang, C.; Mao, X. Assessing the effects of China’s three-north shelter forest program over 40 years. Sci. Total Environ. 2023, 857, 159354. [Google Scholar] [CrossRef]
- Xu, D.; Kang, X.; Liu, Z.; Zhuang, D.; Pan, J. Assessing the relative role of climate change and human activities in sandy desertification of Ordos region, China. Sci. China Ser. D Earth Sci. 2009, 52, 855–868. [Google Scholar] [CrossRef]
- Xu, D.; Kang, X.; Qiu, D.; Zhuang, D.; Pan, J. Quantitative assessment of desertification using Landsat data on a regional scale—A case study in the Ordos Plateau, China. Sensors 2009, 9, 1738–1753. [Google Scholar] [CrossRef]
Date Type | Spatial Resolution | Format |
---|---|---|
NDVI data | 250 m | Tif |
DEM data | 30 m | Tif |
Albedo data | 250 m | Tif |
Meteorological data | monitoring stations (11 different) | Txt |
Socioeconomic data | Txt |
Year | Dry-Edge Scatter Fitting Model | R2 | DDI Extraction Formula |
---|---|---|---|
2000 | A = −0.52361N + 0.7951 | 0.75033 | DDI = 1.9098 × NDVI–Albedo |
2005 | A = −0.33576N + 0.7941 | 0.70316 | DDI = 2.9783 × NDVI–Albedo |
2010 | A = −0.53324N + 0.8660 | 0.76668 | DDI = 1.8753 × NDVI–Albedo |
2015 | A = −0.34918N + 0.7840 | 0.65527 | DDI = 2.8639 × NDVI–Albedo |
2020 | A = −0.33341N + 0.8206 | 0.89248 | DDI = 2.9993 × NDVI–Albedo |
2023 | A = −0.29682N + 0.7985 | 0.73439 | DDI = 3.3690 × NDVI–Albedo |
2000 | 2005 | 2010 | ||||
---|---|---|---|---|---|---|
Area/km2 | Percentage/% | Area/km2 | Percentage/% | Area/km2 | Percentage/% | |
Extremely severe | 12,219.43 | 14.09% | 15,054.34 | 17.35% | 10,877.55 | 12.55% |
Severe | 25,948.04 | 29.91% | 28,950.44 | 33.37% | 28,808.80 | 33.21% |
Moderate | 20,237.85 | 23.33% | 26,608.24 | 30.67% | 21,564.88 | 24.86% |
Slight | 19,809.35 | 22.83% | 13,498.89 | 15.56% | 18,845.33 | 21.72% |
No | 8537.32 | 9.84% | 2640.09 | 3.04% | 6645.44 | 7.66% |
2015 | 2020 | 2023 | ||||
Area/km2 | Percentage/% | Area/km2 | Percentage/% | Area/km2 | Percentage/% | |
Extremely severe | 10,397.44 | 11.99% | 9425.48 | 10.86% | 9146.38 | 10.54% |
Severe | 31,351.40 | 36.14% | 17,758.36 | 20.47% | 18,034.23 | 20.79% |
Moderate | 17,716.88 | 20.42% | 28,237.52 | 32.55% | 21,733.04 | 25.05% |
Slight | 18,028.63 | 20.78% | 23,471.07 | 27.06% | 19,523.20 | 22.50% |
No | 9257.66 | 10.67% | 7859.57 | 9.06% | 18,315.15 | 21.11% |
Trend | Classification Criteria | Percentage |
---|---|---|
Significantly Intensified | slope ≤ −0.01 | 1.62% |
Slightly Intensified | −0.01 ≤ slope ≤ −0.005 | 1.35% |
Stable | −0.005 ≤ slope ≤ 0.005 | 62.21% |
Slightly Improved | 0.005 ≤ slope ≤ 0.01 | 29.90% |
Significantly Improved | 0.01 ≤ Slope | 4.92% |
Year | Moran’s Index | Z Value | p Value |
---|---|---|---|
2000 | 0.192 | 138.672 | 0.000 |
2005 | 0.223 | 133.666 | 0.000 |
2010 | 0.171 | 184.833 | 0.000 |
2015 | 0.155 | 154.368 | 0.000 |
2020 | 0.152 | 147.888 | 0.000 |
2023 | 0.157 | 151.872 | 0.000 |
Year | Maternal Sequence | Subsequence (Natural Factor) | ||||
---|---|---|---|---|---|---|
ADI | Wind Speed | Precipitation | Temperature | Soil Wind Erosion | Evapotranspiration | |
(m/s) | (mm) | (°C) | (t/(km2·a)) | (mm) | ||
2000 | 2.16 | 1 | 1 | 1 | 1 | 1 |
2005 | 2.46 | 0.7756 | 0.7749 | 0.7712 | 0.2148 | 0.7494 |
2010 | 2.21 | 0.7806 | 0.6544 | 0.7685 | 0.5521 | 0.7360 |
2015 | 2.18 | 0.7280 | 0.6085 | 0.6926 | 0.5315 | 0.7924 |
2020 | 1.97 | 0.7524 | 0.6371 | 0.7568 | 0.4275 | 0.6832 |
2023 | 1.77 | 0.7305 | 0.5522 | 0.6872 | 0.5640 | 0.6975 |
Year | Maternal Sequence | Subsequence (Human Factor) | ||||
ADI | Population Density | GDP per Capita | Cropland Sown Area | Number of Livestock | Raw Coal Output | |
(People/km2) | (Million Yuan) | (Thousand Hectares) | (10,000 pigs) | (10,000 ton) | ||
2000 | 2.16 | 1 | 1 | 1 | 1 | 1 |
2005 | 2.46 | 0.7335 | 0.6341 | 0.7098 | 0.6532 | 0.5937 |
2010 | 2.21 | 0.7164 | 0.3427 | 0.7297 | 0.7866 | 0.3532 |
2015 | 2.18 | 0.6874 | 0.8333 | 0.6960 | 0.7434 | 0.2625 |
2020 | 1.97 | 0.7068 | 0.4590 | 0.7427 | 0.7638 | 0.4469 |
2023 | 1.77 | 0.6576 | 0.2586 | 0.6734 | 0.7161 | 0.3158 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, G.; Hao, W.; Wu, X.; Sheng, Y.; Huang, P.; Yang, X.; Li, F. Spatiotemporal Dynamic Monitoring of Desertification in Ordos Section of Yellow River Basin. Sustainability 2025, 17, 7594. https://doi.org/10.3390/su17177594
Qu G, Hao W, Wu X, Sheng Y, Huang P, Yang X, Li F. Spatiotemporal Dynamic Monitoring of Desertification in Ordos Section of Yellow River Basin. Sustainability. 2025; 17(17):7594. https://doi.org/10.3390/su17177594
Chicago/Turabian StyleQu, Guohua, Weiwei Hao, Xiaoguang Wu, Yan Sheng, Pengfei Huang, Xi Yang, and Fang Li. 2025. "Spatiotemporal Dynamic Monitoring of Desertification in Ordos Section of Yellow River Basin" Sustainability 17, no. 17: 7594. https://doi.org/10.3390/su17177594
APA StyleQu, G., Hao, W., Wu, X., Sheng, Y., Huang, P., Yang, X., & Li, F. (2025). Spatiotemporal Dynamic Monitoring of Desertification in Ordos Section of Yellow River Basin. Sustainability, 17(17), 7594. https://doi.org/10.3390/su17177594