Recent Research on Circular Architecture: A Literature Review of 2021–2024 on Circular Strategies in the Built Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Collecting the Data
2.2. Categorization
2.3. Selection
2.4. Synthesis
2.5. Methodological Limitations
3. Results
3.1. General Results
3.2. Circular Economy
3.3. Circularity Indicators
3.4. Design for Adaptability
3.5. Design for Disassembly
3.6. Life Cycle Assessment
3.7. Material and Component Reuse
3.8. Other Identified Topics
3.8.1. Building Renovations
3.8.2. Level(s)
3.8.3. Urban Mining
3.8.4. Building Stock
3.8.5. Construction Waste Management
3.8.6. Industrial and Municipal Waste Implementation in Construction Sector
3.8.7. Taxonomy
3.8.8. Prior Major Reviews in the Circular Built Environment Domain
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CE | circular economy |
CI | circularity indicator |
DfA | design for adaptability |
DfD | design for disassembly |
LCA | life cycle assessment |
LCC | life cycle cost |
References
- Wang, G.; Luo, T.; Luo, H.; Liu, R.; Liu, Y.; Liu, Z. A Comprehensive Review of Building Lifecycle Carbon Emissions and Reduction Approaches. City Built Environ. 2024, 2, 12. [Google Scholar] [CrossRef]
- Movaffaghi, H.; Yitmen, I. Framework for Dynamic Circular Economy in the Building Industry: Integration of Blockchain Technology and Multi-Criteria Decision-Making Approach. Sustainability 2023, 15, 15914. [Google Scholar] [CrossRef]
- Thirumal, S.; Udawatta, N.; Karunasena, G.; Al-Ameri, R. Barriers to Adopting Digital Technologies to Implement Circular Economy Practices in the Construction Industry: A Systematic Literature Review. Sustainability 2024, 16, 3185. [Google Scholar] [CrossRef]
- Kuperberg, M.; Geipel, M. Blockchain and BIM (Building Information Modeling): Progress in Academia and Industry. arXiv 2021, arXiv:2104.00547. [Google Scholar] [CrossRef]
- Alsofiani, M.A. Digitalization in Infrastructure Construction Projects: A PRISMA-Based Review of Benefits and Obstacles. arXiv 2024, arXiv:2405.16875. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, M.; Zhou, N.; Yan, J. GLOBUS: Global building renovation potential by 2070. arXiv 2024, arXiv:2406.04133. [Google Scholar] [CrossRef]
- Castillo-Nobre, G.C.; Tavares, E. The Quest for a Circular Economy Final Definition: A Scientific Perspective. J. Clean. Prod. 2021, 314, 127973. [Google Scholar] [CrossRef]
- Ho, O.; Iyer-Raniga, U.; Sadykova, C.; Balasooriya, M.; Sylva, K.; Dissanayaka, M.; Sukwanchai, K.; Pal, I.; Bhatia, A.; Jain, D.; et al. A Conceptual Model for Integrating Circular Economy in the Built Environment: An Analysis of Literature and Local-Based Case Studies. J. Clean. Prod. 2024, 449, 141516. [Google Scholar] [CrossRef]
- Torres Curado, M.; Resende, R.; Rato, V.M. Circular Economy: Current View from the Construction Industry Based on Published Definitions. Sustain. Sci. Pract. Policy 2024, 20, 2364954. [Google Scholar] [CrossRef]
- Charef, R.; Morel, J.-C.; Rakhshan, K. Barriers to Implementing the Circular Economy in the Construction Industry: A Critical Review. Sustainability 2021, 13, 12989. [Google Scholar] [CrossRef]
- Griffiths, P.; Itanola, M.; Andabaka, A.; Atstāja, D. Hurdles to a Circular Built Environment: A Look at the Economic and Market Barriers. Buildings 2025, 15, 1332. [Google Scholar] [CrossRef]
- Montacchini, E.; Tedesco, S.; Di Prima, N. CiaBOT: The Circular Design of an Experimental Microarchitecture between Material and Immaterial Values. Vitr.-Int. J. Archit. Technol. Sustain. 2024, 9, 44–55. [Google Scholar] [CrossRef]
- Srećković, M.; Hartmann, D.; Schützenhofer, S.; Kotecki, A. Bridging Theory and Practice: Stakeholder Insights on Circular Economy in the Building Life Cycle. Energy Rep. 2024, 12, 3291–3301. [Google Scholar] [CrossRef]
- Kronenwett, F.; Maier, G.; Leiss, N.; Gruna, R.; Thome, V.; Längle, T. Sensor-Based Characterization of Construction and Demolition Waste at High Occupancy Densities Using Synthetic Training Data and Deep Learning. Waste Manag. Res. 2024, 42, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Lux, J.; Lau Hiu Hoong, J.D.; Mahieux, P.-Y.; Turcry, P. Classification and Estimation of the Mass Composition of Recycled Aggregates by Deep Neural Networks. Comput. Ind. 2023, 148, 103889. [Google Scholar] [CrossRef]
- Lin, K.; Zhao, Y.; Zhou, T.; Gao, X.; Zhang, C.; Huang, B.; Shi, Q. Applying Machine Learning to Fine Classify Construction and Demolition Waste Based on Deep Residual Network and Knowledge Transfer. Environ. Dev. Sustain. 2023, 25, 8819–8836. [Google Scholar] [CrossRef]
- Keulemans, G.; Adams, R. Emergent Digital Possibilities for Design-Led Reuse within Circular Economy. NPJ Urban. Sustain. 2024, 4, 31. [Google Scholar] [CrossRef]
- Lima, P.R.B.D.; Rodrigues, C.D.S.; Post, J.M. Integration of BIM and Design for Deconstruction to Improve Circular Economy of Buildings. J. Build. Eng. 2023, 80, 108015. [Google Scholar] [CrossRef]
- Lins, E.J.M.; Palha, R.P.; Sobral, M.D.C.M.; Araújo, A.G.D.; Marques, É.A.T. Application of Building Information Modelling in Construction and Demolition Waste Management: Systematic Review and Future Trends Supported by a Conceptual Framework. Sustainability 2024, 16, 9425. [Google Scholar] [CrossRef]
- Mallick, P.K.; Salling, K.B.; Pigosso, D.C.A.; McAloone, T.C. Designing and Operationalising Extended Producer Responsibility under the EU Green Deal. Environ. Chall. 2024, 16, 100977. [Google Scholar] [CrossRef]
- Ascione, F.; Maselli, G.; Nesticò, A. Sustainable Materials Selection in Industrial Construction: A Life-Cycle Based Approach to Compare the Economic and Structural Performances of Glass Fibre Reinforced Polymer (GFRP) and Steel. J. Clean. Prod. 2024, 475, 143641. [Google Scholar] [CrossRef]
- Cudzik, J.; Kropisz, K. Assessment of Utilizing Hard-to-Recycle Plastic Waste from the Packaging Sector in Architectural Design—Case Study for Experimental Building Material. Sustainability 2024, 16, 6133. [Google Scholar] [CrossRef]
- Sapna, A.P.A.; Anbalagan, C. Constructions in india for sustainable built environment based on compressed stabilized earth blocks (cseb) case studies. PES 2024, 6, 1021–1030. [Google Scholar] [CrossRef]
- Hu, M. Exploring Low-Carbon Design and Construction Techniques: Lessons from Vernacular Architecture. Climate 2023, 11, 165. [Google Scholar] [CrossRef]
- Galluccio, G. Towards an Informational Upcyling: Leveraging Computation to (Re)design Biomaterials’ Life Cycles. Detritus 2024, 28, 28–40. [Google Scholar] [CrossRef]
- Campbell, E.; Niblock, C.; Flood, N.; Lappin, S. Introducing circularity in early architectural design education. ArchNet-IJAR Int. J. Archit. Res. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Dokter, G.; Cohen, J.E.; Hagejärd, S.; Rexfelt, O.; Thuvander, L. Mapping the Practice of Circular Design: A Survey Study with Industrial Designers and Architects in the Netherlands and Sweden. J. Des. Res. 2024, 21, 177–209. [Google Scholar] [CrossRef]
- Bello, A.O.; Isa, R.B.; Oke, A.E.; Arogundade, S.; Lewis, J.M.O. Circular Economy Implementation in the Construction Industry: An Examination of the Barriers in a Developing Country. Int. J. Build. Pathol. Adapt. 2024. [Google Scholar] [CrossRef]
- Suleman, T.; Ezema, I.; Aderonmu, P. Challenges of Circular Design Adoption in the Nigerian Built Environment: An Empirical Study. Clean. Eng. Technol. 2023, 17, 100686. [Google Scholar] [CrossRef]
- Arshi, T.A.; Wallis, J. Entrepreneurial Values and Circular Economy Adoption: A Cross-Lagged SEM-Based Machine Learning Study. Entrep. Bus. Econ. Rev. 2024, 12, 157–176. [Google Scholar] [CrossRef]
- Material Circularity Indicator. Available online: https://www.ellenmacarthurfoundation.org/material-circularity-indicator (accessed on 4 March 2025).
- Gomis, K.; Kahandawa, R.; Jayasinghe, R.S. Scientometric Analysis of the Global Scientific Literature on Circularity Indicators in the Construction and Built Environment Sector. Sustainability 2022, 15, 728. [Google Scholar] [CrossRef]
- Khadim, N.; Agliata, R.; Marino, A.; Thaheem, M.J.; Mollo, L. Critical review of nano and micro-level building circularity indicators and frameworks. J. Clean. Prod. 2022, 357, 131859. [Google Scholar] [CrossRef]
- Incelli, F.; Cardellicchio, L.; Rossetti, M. Circularity Indicators as a Design Tool for Design and Construction Strategies in Architecture. Buildings 2023, 13, 1706. [Google Scholar] [CrossRef]
- van der Zwaag, M.; Wang, T.; Bakker, H.; van Nederveen, S.; Schuurman, A.C.B.; Bosma, D. Evaluating building circularity in the early design phase. Autom. Constr. 2023, 152, 104941. [Google Scholar] [CrossRef]
- Verberne, J.J.H. Building Circularity Indicators: An Approach for Measuring Circularity of a Building. Master’s Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2016. [Google Scholar]
- Cottafava, D.; Ritzen, M. Circularity indicator for residential buildings: Addressing the gap between embodied impacts and design aspects. Resour. Conserv. Recycl. 2021, 164, 105120. [Google Scholar] [CrossRef]
- Khadim, N.; Agliata, R.; Thaheem, M.J.; Mollo, L. Whole building circularity indicator: A circular economy assessment framework for promoting circularity and sustainability in buildings and construction. Build. Environ. 2023, 241, 110498. [Google Scholar] [CrossRef]
- Coenen, T.B.J.; Santos, J.; Fennis, S.A.A.M.; Halman, J.I.M. Development of a bridge circularity assessment framework to promote resource efficiency in infrastructure projects. J. Ind. Ecol. 2021, 25, 288–304. [Google Scholar] [CrossRef]
- Luthin, A.; Crawford, R.H.; Traverso, M. Demonstrating circular life cycle sustainability assessment—A case study of recycled carbon concrete. J. Clean. Prod. 2023, 433, 139853. [Google Scholar] [CrossRef]
- Dräger, P.; Letmathe, P.; Reinhart, L.; Robineck, F. Measuring circularity: Evaluation of the circularity of construction products using the ÖKOBAUDAT database. Environ. Sci. Eur. 2022, 34, 13. [Google Scholar] [CrossRef]
- Luthin, A.; Crawford, R.H.; Traverso, M. Assessing the circularity and sustainability of circular carpets—A demonstration of circular life cycle sustainability assessment. Int. J. Life Cycle Assess. 2024, 29, 1945–1964. [Google Scholar] [CrossRef]
- Antwi-Afari, P.; Ng, S.T.; Chen, J. Determining the optimal partition system of a modular building from a circular economy perspective: A multicriteria decision-making process. Renew. Sustain. Energy Rev. 2023, 185, 113601. [Google Scholar] [CrossRef]
- Antwi-Afari, P.; Ng, S.T.; Chen, J.; Zheng, X.M. Determining the impacts and recovery potentials of a modular designed residential building using the novel LCA-C2C–PBSCI method. J. Clean. Prod. 2022, 378, 134575. [Google Scholar] [CrossRef]
- Antwi-Afari, P.; Ng, S.T.; Chen, J.; Oluleye, B.I.; Antwi-Afari, M.F.; Ababio, B.K. Enhancing life cycle assessment for circular economy measurement of different case scenarios of modular steel slab. Build. Environ. 2023, 239, 110411. [Google Scholar] [CrossRef]
- Dervishaj, A.; Gudmundsson, K. From LCA to circular design: A comparative study of digital tools for the built environment. Resour. Conserv. Recycl. 2024, 200, 107291. [Google Scholar] [CrossRef]
- Al-Qazzaz, I.; Osorio-Sandoval, C.A.; Tokbolat, S.; Thermou, G. Integration of building information modeling into building circularity assessment: A systematic review. Built Environ. Proj. Asset Manag. 2024. [Google Scholar] [CrossRef]
- Barrak, E.; Rodrigues, C.; Antunes, C.H.; Freire, F.; Dias, L.C. Applying multi-criteria decision analysis to combine life cycle assessment with circularity indicators. J. Clean. Prod. 2024, 451, 141872. [Google Scholar] [CrossRef]
- Saadé, M.; Erradhouani, B.; Pawlak, S.; Appendino, F.; Peuportier, B.; Roux, C. Combining circular and LCA indicators for the early design of urban projects. Int. J. Life Cycle Assess. 2022, 27, 1–19. [Google Scholar] [CrossRef]
- Braakman, L.; Bhochhibhoya, S.; de Graaf, R. Exploring the relationship between the level of circularity and the life cycle costs of a one-family house. Resour. Conserv. Recycl. 2021, 164, 105149. [Google Scholar] [CrossRef]
- Tanthanawiwat, K.; Gheewala, S.H.; Nilsalab, P.; Schoch, M.; Silalertruksa, T. Environmental sustainability and cost performances of construction and demolition waste management scenarios: A case study of timber and concrete houses in Thailand. J. Clean. Prod. 2024, 436, 140652. [Google Scholar] [CrossRef]
- Munaro, M.R.; Tavares, S.F.; Bragança, L. The ecodesign methodologies to achieve buildings’ deconstruction: A review and framework. Sustain. Prod. Consum. 2022, 30, 566–583. [Google Scholar] [CrossRef]
- Mlote, D.S.; Budig, M.; Cheah, L. Adaptability of buildings: A systematic review of current research. Front. Built Environ. 2024, 10, 1376759. [Google Scholar] [CrossRef]
- Kręt-Grześkowiak, A.; Baborska-Narożny, M. Guidelines for disassembly and adaptation in architectural design compared to circular economy goals—A literature review. Sustain. Prod. Consum. 2023, 39, 1–12. [Google Scholar] [CrossRef]
- Askar, R.; Bragança, L.; Gervásio, H. Design for Adaptability (DfA)—Frameworks and Assessment Models for Enhanced Circularity in Buildings. Appl. Syst. Innov. 2022, 5, 24. [Google Scholar] [CrossRef]
- Izquierdo, R.S.; Soliu, I.; Migliaccio, G.C. Enablers and Barriers to Implementation of Circular Economy Practices in the Built Environment: An Exploratory Study. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2024, 16, 05023009. [Google Scholar] [CrossRef]
- Tarpio, J.; Huuhka, S.; Vestergaard, I. Barriers to implementing adaptable housing: Architects’ perceptions in Finland and Denmark. J. Hous. Built Environ. 2022, 37, 1859–1881. [Google Scholar] [CrossRef]
- Rockow, Z.R.; Ross, B.E.; Becker, A.K. Comparison of Building Adaptation Projects and Design for Adaptability Strategies. J. Archit. Eng. 2021, 27, 04021022. [Google Scholar] [CrossRef]
- David, M.-N.; Miguel, R.-S.; Ignacio, P.-Z. Timber structures designed for disassembly: A cornerstone for sustainability in 21st century construction. J. Build. Eng. 2024, 96, 110619. [Google Scholar] [CrossRef]
- Ottenhaus, L.-M.; Yan, Z.; Brandner, R.; Leardini, P.; Fink, G.; Jockwer, R. Design for adaptability, disassembly and reuse—A review of reversible timber connection systems. Constr. Build. Mater. 2023, 400, 132823. [Google Scholar] [CrossRef]
- Walsh, S.J.; Shotton, E. Integrating Design for Adaptability, Disassembly, and Reuse into Architectural Design Practice. Sustainability 2024, 16, 7771. [Google Scholar] [CrossRef]
- Reed-Grice, M.; Ross, B.E. Application of the Black–Scholes Financial Model to Support Adaptability as a Sustainability Strategy for Buildings: A Case Study of an Adaptable Campus Parking Garage. Sustainability 2024, 16, 2610. [Google Scholar] [CrossRef]
- Brigante, J.; Ross, B.E.; Bladow, M. Costs of Implementing Design for Adaptability Strategies in Wood-Framed Multifamily Housing. J. Archit. Eng. 2023, 29, 05022013. [Google Scholar] [CrossRef]
- Munaro, M.R.; Tavares, S.F. Design for Adaptability and Disassembly: Guidelines for Building Deconstruction. Constr. Innov. 2025, 25, 665–687. [Google Scholar] [CrossRef]
- Allam, A.S.; Nik-Bakht, M. From Demolition to Deconstruction of the Built Environment: A Synthesis of the Literature. J. Build. Eng. 2023, 64, 105679. [Google Scholar] [CrossRef]
- Resta, G.; Gonçalves, S. Design for Disassembly and Cultural Sites. The Use of Modular Architecture and Prefabrication in Exhibition Venues. Vitr.-Int. J. Archit. Technol. Sustain. 2024, 9, 78–95. [Google Scholar] [CrossRef]
- Mazzoli, C.; Corticelli, R.; Dragonetti, L.; Ferrante, A.; Van Oorschot, J.; Ritzen, M. Assessing and Developing Circular Deep Renovation Interventions towards Decarbonisation: The Italian Pilot Case of “Corte Palazzo” in Argelato. Sustainability 2022, 14, 13150. [Google Scholar] [CrossRef]
- Iacovidou, E.; Purnell, P.; Tsavdaridis, K.D.; Poologanathan, K. Digitally Enabled Modular Construction for Promoting Modular Components Reuse: A UK View. J. Build. Eng. 2021, 42, 102820. [Google Scholar] [CrossRef]
- Uotila, U.; Saari, A.; Joensuu, T. Demands for DfD Data Characteristics: A Step towards Enabling Reuse of Prefabricated Concrete Components. Environ. Res. Infrastruct. Sustain. 2024, 4, 015014. [Google Scholar] [CrossRef]
- Hudert, M.; Lindemann, D.; Mangliár, L.; Swann, A. Computing Irregular Hypar-Based Quad-Mesh Patterns for Segmented Timber Shells. Comput.-Aided Des. 2024, 177, 103772. [Google Scholar] [CrossRef]
- Piccardo, C.; Hughes, M. Design Strategies to Increase the Reuse of Wood Materials in Buildings: Lessons from Architectural Practice. J. Clean. Prod. 2022, 368, 133083. [Google Scholar] [CrossRef]
- Bertin, I.; Saadé, M.; Le Roy, R.; Jaeger, J.-M.; Feraille, A. Environmental Impacts of Design for Reuse Practices in the Building Sector. J. Clean. Prod. 2022, 349, 131228. [Google Scholar] [CrossRef]
- Kitayama, S.; Iuorio, O. Disassembly and Reuse of Structural Members in Steel-Framed Buildings: State-of-the-Art Review of Connection Systems and Future Research Trends. J. Archit. Eng. 2023, 29, 03123006. [Google Scholar] [CrossRef]
- Thalmann, J.R.; Yavaribajestani, Y.; Stocker, C.; Vigneri, V.; Taras, A.; Fischli-Boson, P. Hybridsysteme Aus Gekantetem Stahlblech Und Zementfreiem Beton. Stahlbau 2024, 93, 782–793. [Google Scholar] [CrossRef]
- Pepe, M.; Michels, J.; Zani, G.; Rampini, M.C.; Martinelli, E. Deconstructable Concrete Structures Made of Recycled Aggregates from Construction & Demolition Waste: The Experience of the DeConStRAtion Project. In International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-Based Materials and Concrete Structures; Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D., Eds.; RILEM Bookseries; Springer Nature: Cham, Switzerland, 2023; Volume 43, pp. 487–499. ISBN 978-3-031-33210-4. [Google Scholar] [CrossRef]
- Karaca, F.; Tleuken, A.; Pineda-Martos, R.; Cardoso, S.R.; Askar, R.; Salles, A.; Güemez, E.G.; Agibayeva, A.; Varol, H.A.; Braganca, L. Analysing Stakeholder Opinions Within the COST Action CA21103 CircularB and Beyond: Circular Economy Implementation in Construction. In Proceedings of the 4th International Conference “Coordinating Engineering for Sustainability and Resilience” & Midterm Conference of CircularB “Implementation of Circular Economy in the Built Environment”, Timisoara, Romania, 29–31 May 2024; Ungureanu, V., Bragança, L., Baniotopoulos, C., Abdalla, K.M., Eds.; Lecture Notes in Civil Engineering. Springer Nature: Cham, Switzerland, 2024; Volume 489, pp. 335–345, ISBN 978-3-031-57799-4. [Google Scholar] [CrossRef]
- Azcárate-Aguerre, J.F.; Den Heijer, A.C.; Arkesteijn, M.H.; Vergara d’Alençon, L.M.; Klein, T. Facades-as-a-Service: Systemic Managerial, Financial, and Governance Innovation to Enable a Circular Economy for Buildings. Lessons Learnt from a Full-Scale Pilot Project in the Netherlands. Front. Built Environ. 2023, 9, 1084078. [Google Scholar] [CrossRef]
- ISO 20887:2020; Sustainability in Buildings and Civil Engineering Works—Design for Disassembly and Adaptability—Principles, Requirements and Guidance. International Organization for Standardization: Geneva, Switzerland, 2020.
- Anastasiades, K.; Goffin, J.; Rinke, M.; Buyle, M.; Audenaert, A.; Blom, J. Standardisation: An Essential Enabler for the Circular Reuse of Construction Components? A Trajectory for a Cleaner European Construction Industry. J. Clean. Prod. 2021, 298, 126864. [Google Scholar] [CrossRef]
- Çimen, Ö. Construction and built environment in circular economy: A comprehensive literature review. J. Clean. Prod. 2021, 305, 127180. [Google Scholar] [CrossRef]
- Fang, Z.; Yan, J.; Lu, Q.; Chen, L.; Yang, P.; Tang, J.; Jiang, F.; Broyd, T.; Hong, J. A systematic literature review of carbon footprint decision-making approaches for infrastructure and building projects. Appl. Energy 2023, 335, 120768. [Google Scholar] [CrossRef]
- Minunno, R.; O’Grady, T.; Morrison, G.M.; Gruner, R.L. Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments. Renew. Sustain. Energy Rev. 2021, 143, 110935. [Google Scholar] [CrossRef]
- Yang, M.; Chen, L.; Wang, J.; Msigwa, G.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.S. Circular economy strategies for combating climate change and other environmental issues. Environ. Chem. Lett. 2023, 21, 55–80. [Google Scholar] [CrossRef]
- Harris, S.; Mata, É.; Lucena, A.F.P.; Bertoldi, P. Climate mitigation from circular and sharing economy in the buildings sector. Resour. Conserv. Recycl. 2023, 188, 106709. [Google Scholar] [CrossRef]
- Kong, M.; Lee, M.; Kang, H.; Hong, T. Development of a framework for evaluating the contents and usability of the building life cycle assessment tool. Renew. Sustain. Energy Rev. 2021, 150, 111475. [Google Scholar] [CrossRef]
- Säwén, T.; Kalagasidis, A.S.; Hollberg, A. Critical perspectives on life cycle building performance assessment tool reviews. Renew. Sustain. Energy Rev. 2024, 197, 114407. [Google Scholar] [CrossRef]
- van Stijn, A.; Eberhardt, L.C.M.; Jansen, B.W.; Meijer, A. A Circular Economy Life Cycle Assessment (CE-LCA) model for building components. Resour. Conserv. Recycl. 2021, 174, 105683. [Google Scholar] [CrossRef]
- Vandervaeren, C.; Galle, W.; Stephan, A.; De Temmerman, N. More than the sum of its parts: Considering interdependencies in the life cycle material flow and environmental assessment of demountable buildings. Resour. Conserv. Recycl. 2022, 177, 106001. [Google Scholar] [CrossRef]
- Crawford, R.H.; Stephan, A.; Prideaux, F. The EPiC database: Hybrid embodied environmental flow coefficients for construction materials. Resour. Conserv. Recycl. 2022, 180, 106058. [Google Scholar] [CrossRef]
- Ansah, M.K.; Chen, X.; Yang, H.; Lu, L.; Li, H. Developing a tier-hybrid uncertainty analysis approach for lifecycle impact assessment of a typical high-rise residential building. Resour. Conserv. Recycl. 2021, 167, 105424. [Google Scholar] [CrossRef]
- Yeung, J.; Menacho, A.J.H.; Marvuglia, A.; Gutiérrez, T.N.; Beach, T.; Rezgui, Y. An open building information modelling based co-simulation architecture to model building energy and environmental life cycle assessment: A case study on two buildings in the United Kingdom and Luxembourg. Renew. Sustain. Energy Rev. 2023, 183, 113419. [Google Scholar] [CrossRef]
- Wang, J.; Wei, J.; Liu, Z.; Huang, C.; Du, X. Life cycle assessment of building demolition waste based on building information modeling. Resour. Conserv. Recycl. 2022, 178, 106095. [Google Scholar] [CrossRef]
- Gao, H.; Wang, D.; Du, X.; Zhao, Z. An LCA-BIM integrated model for carbon-emission calculation of prefabricated buildings. Renew. Sustain. Energy Rev. 2024, 203, 114775. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Zhu, W.; Zeng, G.; Ouyang, Z.; Cheng, M.; Jiang, Z. Carbon dioxide cured building materials as an approach to decarbonizing the calcium carbide related industry. Renew. Sustain. Energy Rev. 2023, 186, 113688. [Google Scholar] [CrossRef]
- Dickson, T.; Pavía, S. Energy performance, environmental impact and cost of a range of insulation materials. Renew. Sustain. Energy Rev. 2021, 140, 110752. [Google Scholar] [CrossRef]
- Weththasinghe, K.K.; Stephan, A.; Francis, V.; Tiwari, P. Improving material selection in shopping centres through a parametric life cycle embodied flow and material cost analysis model. Renew. Sustain. Energy Rev. 2022, 165, 112530. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Chen, Z.; Dong, Y.; Jiang, Y.; Hua, J.; Liu, Y.; Osman, A.I.; Farghali, M.; Huang, L.; et al. Biomaterials technology and policies in the building sector: A review. Environ. Chem. Lett. 2024, 22, 715–750. [Google Scholar] [CrossRef]
- Osman, A.I.; Farghali, M.; Dong, Y.; Kong, J.; Yousry, M.; Rashwan, A.K.; Chen, Z.; Al-Fatesh, A.; Rooney, D.W.; Yap, P.S. Reducing the carbon footprint of buildings using biochar-based bricks and insulating materials: A review. Environ. Chem. Lett. 2024, 22, 71–104. [Google Scholar] [CrossRef]
- Ben-Alon, L.; Loftness, V.; Harries, K.A.; Hameen, E.C. Life cycle assessment (LCA) of natural vs conventional building assemblies. Renew. Sustain. Energy Rev. 2021, 144, 110951. [Google Scholar] [CrossRef]
- Ata-Ali, N.; Penadés-Plà, V.; Martínez-Muñoz, D.; Yepes, V. Recycled versus non-recycled insulation alternatives: LCA analysis for different climatic conditions in Spain. Resour. Conserv. Recycl. 2021, 175, 105838. [Google Scholar] [CrossRef]
- Caldas, L.R.; Saraiva, A.B.; Lucena, A.F.P.; Da Gloria, M.Y.; Santos, A.S.; Filho, R.D.T. Building materials in a circular economy: The case of wood waste as CO2-sink in bio concrete. Resour. Conserv. Recycl. 2021, 166, 105346. [Google Scholar] [CrossRef]
- Alderete, N.M.; Joseph, A.M.; Van den Heede, P.; Matthys, S.; De Belie, N. Effective and sustainable use of municipal solid waste incineration bottom ash in concrete regarding strength and durability. Resour. Conserv. Recycl. 2021, 167, 105356. [Google Scholar] [CrossRef]
- Daehn, K.; Basuhi, R.; Gregory, J.; Berlinger, M.; Somjit, V.; Olivetti, E.A. Innovations to decarbonize materials industries. Nat. Rev. Mater. 2022, 7, 275–294. [Google Scholar] [CrossRef]
- Sousa, V.; Bogas, J.A. Comparison of energy consumption and carbon emissions from clinker and recycled cement production. J. Clean. Prod. 2021, 306, 127277. [Google Scholar] [CrossRef]
- Andersen, R.; Ravn, A.S.; Ryberg, M.W. Environmental benefits of applying selective demolition to buildings: A case study of the reuse of façade steel cladding. Resour. Conserv. Recycl. 2022, 184, 106430. [Google Scholar] [CrossRef]
- Božiček, D.; Peterková, J.; Zach, J.; Košir, M. Vacuum insulation panels: An overview of research literature with an emphasis on environmental and economic studies for building applications. Renew. Sustain. Energy Rev. 2024, 189, 113849. [Google Scholar] [CrossRef]
- Mustafa, M.N.; Abdah, M.A.A.M.; Numan, A.; Moreno-Rangel, A.; Radwan, A.; Khalid, M. Smart window technology and its potential for net-zero buildings: A review. Renew. Sustain. Energy Rev. 2023, 181, 113355. [Google Scholar] [CrossRef]
- Vassiliades, C.; Agathokleous, R.; Barone, G.; Forzano, C.; Giuzio, G.F.; Palombo, A.; Buonomano, A.; Kalogirou, S. Building integration of active solar energy systems: A review of geometrical and architectural characteristics. Renew. Sustain. Energy Rev. 2022, 164, 112482. [Google Scholar] [CrossRef]
- Skandalos, N.; Wang, M.; Kapsalis, V.; D’Agostino, D.; Parker, D.; Bhuvad, S.S.; Peng, J.; Karamanis, D. Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases. Renew. Sustain. Energy Rev. 2022, 169, 112950. [Google Scholar] [CrossRef]
- Peñaloza, D.; Mata, É.; Fransson, N.; Fridén, H.; Samperio, Á.; Quijano, A.; Cuneo, A. Social and market acceptance of photovoltaic panels and heat pumps in Europe: A literature review and survey. Renew. Sustain. Energy Rev. 2022, 155, 111867. [Google Scholar] [CrossRef]
- Mihalakakou, G.; Souliotis, M.; Papadaki, M.; Menounou, P.; Dimopoulos, P.; Kolokotsa, D.; Paravantis, J.A.; Tsangrassoulis, A.; Panaras, G.; Giannakopoulos, E.; et al. Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renew. Sustain. Energy Rev. 2023, 180, 113306. [Google Scholar] [CrossRef]
- Manso, M.; Teotónio, I.; Silva, C.M.; Cruz, C.O. Green roof and green wall benefits and costs: A review of the quantitative evidence. Renew. Sustain. Energy Rev. 2021, 135, 110111. [Google Scholar] [CrossRef]
- Rowe, T.; Poppe, J.; Buyle, M.; Belmans, B.; Audenaert, A. Is the sustainability potential of vertical greening systems deeply rooted? Establishing uniform outlines for environmental impact assessment of VGS. Renew. Sustain. Energy Rev. 2022, 162, 112414. [Google Scholar] [CrossRef]
- Dong, X.; He, B.-J. A standardized assessment framework for green roof decarbonization: A review of embodied carbon, carbon sequestration, bioenergy supply, and operational carbon scenarios. Renew. Sustain. Energy Rev. 2023, 182, 113376. [Google Scholar] [CrossRef]
- Kong, M.; Ji, C.; Hong, T.; Kang, H. Impact of the use of recycled materials on the energy conservation and energy transition of buildings using life cycle assessment: A case study in South Korea. Renew. Sustain. Energy Rev. 2022, 155, 111891. [Google Scholar] [CrossRef]
- Arceo, A.; MacLean, H.L.; Saxe, S. Material intensity in single-family dwellings: Variability between locations, functional unit and drivers of material use in Toronto, Perth, and Luzon. Resour. Conserv. Recycl. 2023, 188, 106683. [Google Scholar] [CrossRef]
- Su, X.; Huang, Y.; Chen, C.; Xu, Z.; Tian, S.; Peng, L. A dynamic life cycle assessment model for long-term carbon emissions prediction of buildings: A passive building as case study. Sustain. Cities Soc. 2023, 96, 104636. [Google Scholar] [CrossRef]
- Jungclaus, M.A.; Grant, N.; Torres, M.I.; Arehart, J.H.; Srubar, W.V. Embodied carbon benchmarks of single-family residential buildings in the United States. Sustain. Cities Soc. 2024, 117, 105975. [Google Scholar] [CrossRef]
- Gazquez, L.A.M.; Hernández, F.F.; López, J.M.C. A Comparison of Traditional and Contemporary Social Houses in Catarmarca (Argentina). Comfort Conditions and Life Cycle Assessment. Sustain. Cities Soc. 2022, 82, 103891. [Google Scholar] [CrossRef]
- Craft, W.; Oldfield, P.; Reinmuth, G.; Hadley, D.; Balmforth, S.; Nguyen, A. Towards net-zero embodied carbon: Investigating the potential for ambitious embodied carbon reductions in Australian office buildings. Sustain. Cities Soc. 2024, 113, 105702. [Google Scholar] [CrossRef]
- Zandifaez, P.; Nezhad, A.A.; Zhou, H.; Dias-da-Costa, D. A systematic review on energy-efficient concrete: Indicators, performance metrics, strategies, and future trends. Renew. Sustain. Energy Rev. 2024, 194, 114306. [Google Scholar] [CrossRef]
- Cappellesso, V.; di Summa, D.; Pourhaji, P.; Prabhu Kannikachalam, N.; Dabral, K.; Ferrara, L.; Cruz Alonso, M.; Camacho, E.; Gruyaert, E.; De Belie, N. A review of the efficiency of self-healing concrete technologies for durable and sustainable concrete under realistic conditions. Int. Mater. Rev. 2023, 68, 556–603. [Google Scholar] [CrossRef]
- Devos, K.; Devlieger, L.; Steeman, M. Reclaimed or new? Life cycle assessment of ceramic bricks. J. Clean. Prod. 2024, 476, 143764. [Google Scholar] [CrossRef]
- Wu, T.; Gong, M.; Xiao, J. Preliminary sensitivity study on an life cycle assessment (LCA) tool via assessing a hybrid timber building. J. Bioresour. Bioprod. 2020, 5, 108–113. [Google Scholar] [CrossRef]
- Shin, B.; Chang, S.J.; Wi, S.; Kim, S. Estimation of energy demand and greenhouse gas emission reduction effect of cross-laminated timber (CLT) hybrid wall using life cycle assessment for urban residential planning. Renew. Sustain. Energy Rev. 2023, 185, 113604. [Google Scholar] [CrossRef]
- López-Guerrero, R.E.; Vera, S.; Carpio, M. A quantitative and qualitative evaluation of the sustainability of industrialised building systems: A bibliographic review and analysis of case studies. Renew. Sustain. Energy Rev. 2022, 157, 112034. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, M.; Laclau, B.; Garnesson, T.; Yang, X.; Tukker, A. Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden. Renew. Sustain. Energy Rev. 2021, 145, 111077. [Google Scholar] [CrossRef]
- Cai, K.; Wang, H.; Wang, J.; Bai, J.; Zuo, J.; Chan, K.; Lai, K.; Song, Q. Mitigating lifecycle GHG emissions of building sector through prefabricated light-steel buildings in comparison with traditional cast-in-place buildings. Resour. Conserv. Recycl. 2023, 194, 107007. [Google Scholar] [CrossRef]
- Su, S.; Ju, J.; Guo, Q.; Li, X.; Zhu, Y. A temporally dynamic model for regional carbon impact assessment based on city information modeling. Renew. Sustain. Energy Rev. 2023, 173, 113076. [Google Scholar] [CrossRef]
- Muñoz-Liesa, J.; Toboso-Chavero, S.; Beltran, A.M.; Cuerva, E.; Gallo, E.; Gassó-Domingo, S.; Josa, A. Building-integrated agriculture: Are we shifting environmental impacts? An environmental assessment and structural improvement of urban greenhouses. Resour. Conserv. Recycl. 2021, 169, 105526. [Google Scholar] [CrossRef]
- Gobbo, É.; Nia, E.M.; Straub, A.; Stephan, A. Exploring the Effective Reuse Rate of Materials and Elements in the Construction Sector. J. Build. Eng. 2024, 98, 111344. [Google Scholar] [CrossRef]
- Lei, B.; Yang, W.; Yan, Y.; Tang, Z.; Dong, W. Carbon Emission Reduction Evaluation of End-of-Life Buildings Based on Multiple Recycling Strategies. Sustainability 2023, 15, 15711. [Google Scholar] [CrossRef]
- Cheong, C.Y.; Brambilla, A.; Gasparri, E.; Kuru, A.; Sangiorgio, A. Life Cycle Assessment of Curtain Wall Facades: A Screening Study on End-of-Life Scenarios. J. Build. Eng. 2024, 84, 108600. [Google Scholar] [CrossRef]
- Kitayama, S.; Iuorio, O.; Josa, I.; Borrion, A.; Black, L. Determining the Carbon Footprint Reduction of Reusing Lightweight Exterior Infill Walls: A Case Study of a School Building in the United Kingdom. J. Clean. Prod. 2024, 469, 143061. [Google Scholar] [CrossRef]
- Monsù Scolaro, A.; De Medici, S. Downcycling and Upcycling in Rehabilitation and Adaptive Reuse of Pre-Existing Buildings: Re-Designing Technological Performances in an Environmental Perspective. Energies 2021, 14, 6863. [Google Scholar] [CrossRef]
- Charef, R.; Lu, W.; Hall, D. The Transition to the Circular Economy of the Construction Industry: Insights into Sustainable Approaches to Improve the Understanding. J. Clean. Prod. 2022, 364, 132421. [Google Scholar] [CrossRef]
- Topraklı, A.Y. Enabling Circularity in Turkish Construction: A Case of BIM-Based Material Management Utilizing Material Passports. Smart Sustain. Built Environ. 2024. [Google Scholar] [CrossRef]
- Christensen, T.B.; Johansen, M.R.; Buchard, M.V.; Glarborg, C.N. Closing the Material Loops for Construction and Demolition Waste: The Circular Economy on the Island Bornholm, Denmark. Resour. Conserv. Recycl. Adv. 2022, 15, 200104. [Google Scholar] [CrossRef]
- Ruokamo, E.; Savolainen, H.; Seppälä, J.; Sironen, S.; Räisänen, M.; Auvinen, A.-P. Exploring the Potential of Circular Economy to Mitigate Pressures on Biodiversity. Glob. Environ. Change 2023, 78, 102625. [Google Scholar] [CrossRef]
- Münster, M.B. Adaptive Reuse: Atmospherics in Buildings Repurposed as Coffee Shops. Sustainability 2024, 16, 1585. [Google Scholar] [CrossRef]
- Condotta, M.; Zatta, E. Reuse of Building Elements in the Architectural Practice and the European Regulatory Context: Inconsistencies and Possible Improvements. J. Clean. Prod. 2021, 318, 128413. [Google Scholar] [CrossRef]
- McNamee, M.; Göras, T.; Mossberg, A.; Wetterqvist, C.; Lundh, K.; Blomqvist, P.; Blomqvist, S. Challenges and Opportunities for Reuse of Products and Materials with Fire Safety Requirements—A Swedish Perspective. Fire Saf. J. 2023, 140, 103857. [Google Scholar] [CrossRef]
- Gillott, C.; Mihkelson, W.; Lanau, M.; Cheshire, D.; Densley Tingley, D. Developing Regenerate: A Circular Economy Engagement Tool for the Assessment of New and Existing Buildings. J. Ind. Ecol. 2023, 27, 423–435. [Google Scholar] [CrossRef]
- Bellini, A.; Andersen, B.; Klungseth, N.J.; Tadayon, A. Achieving a Circular Economy through the Effective Reuse of Construction Products: A Case Study of a Residential Building. J. Clean. Prod. 2024, 450, 141753. [Google Scholar] [CrossRef]
- Gordon, M.; Batallé, A.; De Wolf, C.; Sollazzo, A.; Dubor, A.; Wang, T. Automating Building Element Detection for Deconstruction Planning and Material Reuse: A Case Study. Autom. Constr. 2023, 146, 104697. [Google Scholar] [CrossRef]
- Fahlstedt, O.; Temeljotov-Salaj, A.; Lohne, J.; Bohne, R.A. Holistic assessment of carbon abatement strategies in building refurbishment literature—A scoping review. Renew. Sustain. Energy Rev. 2022, 167, 112636. [Google Scholar] [CrossRef]
- Fahlstedt, O.; Rasmussen, F.N.; Temeljotov-Salaj, A.; Huang, L.; Bohne, R.A. Building renovations and life cycle assessment—A scoping literature review. Renew. Sustain. Energy Rev. 2024, 203, 114774. [Google Scholar] [CrossRef]
- Galimshina, A.; Moustapha, M.; Hollberg, A.; Lasvaux, S.; Sudret, B.; Habert, G. Strategies for robust renovation of residential buildings in Switzerland. Nat. Commun. 2024, 15, 2227. [Google Scholar] [CrossRef]
- Condotta, M.; Scanagatta, C.; Zatta, E. Sustainable strategies to preserve tangible and intangible values in social housing rehabilitation: An Italian case study. Vitr.—Int. J. Archit. Technol. Sustain. 2023, 8, 84–99. [Google Scholar] [CrossRef]
- De Silva, S.; Samarakoon, S.M.S.M.K.; Haq, M.A.A. Use of circular economy practices during the renovation of old buildings in developing countries. Sustain. Future 2023, 6, 100135. [Google Scholar] [CrossRef]
- Askar, R.; Bragança, L.; Gervásio, H. Analysis of Adaptability Requirements Against Their Implementation in Level(s) Framework. In Creating a Roadmap Towards Circularity in the Built Environment; Bragança, L., Cvetkovska, M., Askar, R., Ungureanu, V., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 371–381. [Google Scholar] [CrossRef]
- Del Rosario, P.; Palumbo, E.; Traverso, M. Environmental Product Declarations as Data Source for the Environmental Assessment of Buildings in the Context of Level(s) and DGNB: How Feasible Is Their Adoption? Sustainability 2021, 13, 6143. [Google Scholar] [CrossRef]
- De Wolf, C.; Cordella, M.; Dodd, N.; Byers, B.; Donatello, S. Whole life cycle environmental impact assessment of buildings: Developing software tool and database support for the EU framework Level(s). Resour. Conserv. Recycl. 2023, 188, 106642. [Google Scholar] [CrossRef]
- Luciano, A.; Altamura, P.; Baiani, S.; Cutaia, L. The building stock as an urban mine: The case of the circular regeneration of disused buildings. Sustain. Chem. Pharm. 2023, 33, 101104. [Google Scholar] [CrossRef]
- Yang, X.; Hu, M.; Zhang, C.; Steubing, B. Urban mining potential to reduce primary material use and carbon emissions in the Dutch residential building sector. Resour. Conserv. Recycl. 2022, 180, 106215. [Google Scholar] [CrossRef]
- Röck, M.; Baldereschi, E.; Verellen, E.; Passer, A.; Sala, S.; Allacker, K. Environmental modelling of building stocks—An integrated review of life cycle-based assessment models to support EU policy making. Renew. Sustain. Energy Rev. 2021, 151, 111550. [Google Scholar] [CrossRef]
- Bischof, J.; Duffy, A. Life-cycle assessment of non-domestic building stocks: A meta-analysis of current modelling methods. Renew. Sustain. Energy Rev. 2022, 153, 111743. [Google Scholar] [CrossRef]
- Yang, X.; Hu, M.; Zhang, C.; Steubing, B. Key strategies for decarbonizing the residential building stock: Results from a spatiotemporal model for Leiden, the Netherlands. Resour. Conserv. Recycl. 2022, 184, 106388. [Google Scholar] [CrossRef]
- Ohms, P.K.; Horup, L.H.; Gummidi, S.R.B.; Ryberg, M.; Laurent, A.; Liu, G. Temporally dynamic environmental impact assessment of a building stock: Coupling MFA and LCA. Resour. Conserv. Recycl. 2024, 202, 107340. [Google Scholar] [CrossRef]
- Meijer, A.; Arora, M.; Cheah, L. Material stock-service and circularity prospects of buildings in Singapore. Resour. Conserv. Recycl. 2024, 208, 107697. [Google Scholar] [CrossRef]
- Wang, X.; Huang, B.; Wang, Y.; Liu, J.; Long, Y.; Daigo, I. The impact of allocation methods on carbon benefits—A case study of construction waste recycling. Resour. Conserv. Recycl. 2023, 199, 107269. [Google Scholar] [CrossRef]
- Wu, H.; Zuo, J.; Zillante, G.; Wang, J.; Duan, H. Environmental impacts of cross-regional mobility of construction and demolition waste: An Australia Study. Resour. Conserv. Recycl. 2021, 174, 105805. [Google Scholar] [CrossRef]
- Lase, I.S.; Tonini, D.; Caro, D.; Albizzati, P.F.; Cristóbal, J.; Roosen, M.; Kusenberg, M.; Ragaert, K.; Van Geem, K.M.; Dewulf, J.; et al. How much can chemical recycling contribute to plastic waste recycling in Europe? An assessment using material flow analysis modeling. Resour. Conserv. Recycl. 2023, 192, 106916. [Google Scholar] [CrossRef]
- Pilipenets, O.; Hui, F.K.P.; Gunawardena, T.; Mendis, P.; Aye, L. New circularity indicator for decision making in the stockpile management of construction and demolition waste: Perspectives of Australian practitioners. J. Environ. Manag. 2024, 363, 121345. [Google Scholar] [CrossRef]
- Mohan, S.; Thilagavathi, G.; Rajkhowa, R. Development of Micro Dust Reinforced Composite for Building Applications. J. Clean. Prod. 2024, 470, 143244. [Google Scholar] [CrossRef]
- Nair, A.T.; Mathew, A.; Archana, R.A.; Akbar, M.A. Use of Hazardous Electric Arc Furnace Dust in the Construction Industry: A Cleaner Production Approach. J. Clean. Prod. 2022, 377, 134282. [Google Scholar] [CrossRef]
- Cintura, E.; Faria, P.; Molari, L.; Barbaresi, L.; D’Orazio, D.; Nunes, L. A Feasible Re-Use of an Agro-Industrial by-Product: Hazelnut Shells as High-Mass Bio-Aggregate in Boards for Indoor Applications. J. Clean. Prod. 2024, 434, 140297. [Google Scholar] [CrossRef]
- Vidaurre-Arbizu, M.; Pérez-Bou, S.; Zuazua-Ros, A.; Martín-Gómez, C. From the Leather Industry to Building Sector: Exploration of Potential Applications of Discarded Solid Wastes. J. Clean. Prod. 2021, 291, 125960. [Google Scholar] [CrossRef]
- Tul Muntaha, S.; Keitsch, M. A Pathway for Plastic Waste in Construction Materials. Sustain. Dev. 2025, 33, 19–29. [Google Scholar] [CrossRef]
- Akfas, F.; Elghali, A.; Aboulaich, A.; Munoz, M.; Benzaazoua, M.; Bodinier, J.-L. Exploring the Potential Reuse of Phosphogypsum: A Waste or a Resource? Sci. Total Environ. 2024, 908, 168196. [Google Scholar] [CrossRef]
- Lisco, M.; Aulin, R. Taxonomy Supporting Design Strategies for Reuse of Building Parts in Timber-Based Construction. Constr. Innov. 2024, 24, 221–241. [Google Scholar] [CrossRef]
- SimaPro 9.6.0; PRé Sustainability B.V.: Amersfoort, The Netherlands, 2024; Available online: https://simapro.com (accessed on 3 June 2025).
- One Click LCA; One Click LCA Ltd.: Helsinki, Finland, 2025; Available online: https://oneclicklca.com (accessed on 3 June 2025).
- Level(s). A Common EU Framework of Core Sustainability Indicators for Office and Residential Buildings: Part 3; European Commission, Joint Research Centre: Seville, Spain, 2017. [Google Scholar]
- YOLOv3 by Ultralytics, Version 7.0; Ultralytics Inc.: online, 2020. Available online: https://github.com/ultralytics/yolov3 (accessed on 3 June 2025).
- Liang, C.-J.M.; Liu, J.; Luo, L.; Terzis, A.; Zhao, F. RACNet: A High-Fidelity Data Center Sensing Network. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys ’09); ACM: New York, NY, USA, 2009; pp. 15–28. Available online: https://dl.acm.org/doi/10.1145/1644038.1644041 (accessed on 3 June 2025).
- LP360; GeoCue Corp.: Desktop LiDAR Processing Software. 2025. Available online: https://www.lp360.com (accessed on 3 June 2025).
- Victar, H.C.; Waidyasekara, K.G.A.S. Circular economy strategies for minimising construction waste in Sri Lanka: Focus on the preconstruction stage. Constuction Innov. Inf. Process Manag. 2024. [Google Scholar] [CrossRef]
- Becker, A.K.; Ross, B.E.; Albright, D. Comparing Design Features of Campus Buildings with Adaptation/Demolition Outcomes. Technol.|Archit. + Des. 2023, 7, 192–203. [Google Scholar] [CrossRef]
- Gamage, I.; Senaratne, S.; Perera, S.; Jin, X. Implementing Circular Economy throughout the Construction Project Life Cycle: A Review on Potential Practices and Relationships. Buildings 2024, 14, 653. [Google Scholar] [CrossRef]
- Chang, Y.T.; Sierra, E.M.; Hsieh, S.H. Combining BIM & GIS Information to Simulate Circularity of Building Stocks in a City—A Case Study of Taipei City. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Online, 23–25 November 2022; Volume 1122. [Google Scholar] [CrossRef]
- Jiang, L.; Bhochhibhoya, S.; Slot, N.; de Graaf, R. Measuring product-level circularity performance: An economic value-based metric with the indicator of residual value. Resour. Conserv. Recycl. 2022, 186, 106541. [Google Scholar] [CrossRef]
- Fernandes, J.B.; Ferrão, P.C.; Silvestre, J.D.; Aguiar Costa, A.; Göswein, V. Advancing Circular Economy in the existing building stock: A methodology to support building characterisation for sustainable refurbishment design. Acta Polytech. CTU Proc. 2022, 38, 599–605. [Google Scholar] [CrossRef]
- Finch, G.; Marriage, G.; Pelosi, A.; Gjerde, M. Building envelope systems for the circular economy; Evaluation parameters, current performance and key challenges. Sustain. Cities Soc. 2021, 64, 102561. [Google Scholar] [CrossRef]
- Antwi-Afari, P.; Ng, S.T.; Chen, J. Developing an integrative method and design guidelines for achieving systemic circularity in the construction industry. J. Clean. Prod. 2022, 354, 131752. [Google Scholar] [CrossRef]
- Luthin, A.; Traverso, M.; Crawford, R.H. Circular life cycle sustainability assessment: An integrated framework. J. Ind. Ecol. 2024, 28, 41–58. [Google Scholar] [CrossRef]
- Lam, W.C.; Claes, S.; Ritzen, M. Exploring the Missing Link between Life Cycle Assessment and Circularity Assessment in the Built Environment. Buildings 2022, 12, 2152. [Google Scholar] [CrossRef]
- Dervishaj, A.; Gudmundsson, K. Parametric design workflow for solar, context-adaptive and reusable facades in changing urban environments. J. Build. Perform. Simul. 2025, 18, 161–190. [Google Scholar] [CrossRef]
- Bompa, D.V.; Ungureanu, V.; Elghazouli, A.Y.; Afsal, A. Disassembly and Structural Reuse Potential of Steel-Timber Shear Connections with Screws. In Proceedings of the 4th International Conference “Coordinating Engineering for Sustainability and Resilience” & Midterm Conference of CircularB “Implementation of Circular Economy in the Built Environment”, Timișoara, Romania, 29–31 May 2024. [Google Scholar] [CrossRef]
- Segara, S.; Li, Q.; Gallotta, A.; Wang, Y.; Gosling, J.; Rezgui, Y. Taxonomy of circularity indicators for the built environment: Integrating circularity through the Royal Institute of British architects (RIBA) plan of work. J. Clean. Prod. 2024, 446, 141429. [Google Scholar] [CrossRef]
- Shin, B.; Kim, S. Advancing the circular economy and environmental sustainability with timber hybrid construction in South Korean public building. Build. Environ. 2024, 257, 111543. [Google Scholar] [CrossRef]
- Lima, A.T.; Simoes, S.G.; Aloini, D.; Zerbino, P.; Oikonomou, T.I.; Karytsas, S.; Karytsas, C.; Calvo, O.S.; Porcar, B.; Herrera, I.; et al. Climate mitigation models need to become circular—Let’s start with the construction sector. Resour. Conserv. Recycl. 2023, 190, 106808. [Google Scholar] [CrossRef]
- König, K.; Mathieu, J.; Vielhaber, M. Resource conservation by means of lightweight design and design for circularity—A concept for decision making in the early phase of product development. Resour. Conserv. Recycl. 2024, 201, 107331. [Google Scholar] [CrossRef]
- Chen, L.; Huang, L.; Hua, J.; Chen, Z.; Wei, L.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Dong, L.; Yap, P.-S. Green construction for low-carbon cities: A review. Environ. Chem. Lett. 2023, 21, 1627–1657. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, D.; Zuo, J.; Miller, T.R.; Duan, H.; Schiller, G. Potential for CO2 mitigation and economic benefits from accelerated carbonation of construction and demolition waste. Renew. Sustain. Energy Rev. 2022, 169, 112920. [Google Scholar] [CrossRef]
- Ahmadi, M.; Piadeh, F.; Hosseini, M.R.; Zuo, J.; Kocaturk, T. Unraveling building sector carbon mechanisms: Critique and solutions. Renew. Sustain. Energy Rev. 2024, 205, 114873. [Google Scholar] [CrossRef]
- Pan, W.; Teng, Y. A systematic investigation into the methodological variables of embodied carbon assessment of buildings. Renew. Sustain. Energy Rev. 2021, 141, 110840. [Google Scholar] [CrossRef]
- Azis, S.S.A. Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads. Renew. Sustain. Energy Rev. 2021, 137, 110570. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Zhang, B. What kinds of building energy-saving retrofit projects should be preferred? Efficiency evaluation with three-stage data envelopment analysis (DEA). Renew. Sustain. Energy Rev. 2022, 161, 112392. [Google Scholar] [CrossRef]
- Gursel, A.P.; Shehabi, A.; Horvath, A. What are the energy and greenhouse gas benefits of repurposing non-residential buildings into apartments? Resour. Conserv. Recycl. 2023, 198, 107143. [Google Scholar] [CrossRef]
- Ferrari, S.; Zoghi, M.; Blázquez, T.; Dall’O’, G. New Level(s) framework: Assessing the affinity between the main international Green Building Rating Systems and the european scheme. Renew. Sustain. Energy Rev. 2022, 155, 111924. [Google Scholar] [CrossRef]
- da Silva Souza, F.; Mendes, J.C.; Morais, L.J.B.; Silva, J.S.; Peixoto, R.A.F. Mapping and recycling proposal for the construction and demolition waste generated in the Brazilian Amazon. Resour. Conserv. Recycl. 2022, 176, 105896. [Google Scholar] [CrossRef]
- Sun, C.; Chen, L.; Xiao, J.; Singh, A.; Zeng, J. Compound utilization of construction and industrial waste as cementitious recycled powder in mortar. Resour. Conserv. Recycl. 2021, 170, 105561. [Google Scholar] [CrossRef]
- Arora, M.; Raspall, F.; Fearnley, L.; Silva, A. Urban mining in buildings for a circular economy: Planning, process and feasibility prospects. Resour. Conserv. Recycl. 2021, 174, 105754. [Google Scholar] [CrossRef]
- Jiang, J.; Chu, C.; Song, L.; Gao, X.; Huang, B.; Zhang, Y.; Zhang, Y.; Liu, Y.; Hou, L.; Ju, M.; et al. From prospecting to mining: A review of enabling technologies, LCAs, and LCCAs for improved construction and demolition waste management. Waste Manag. 2023, 159, 12–26. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.-H.; Kaloush, K.E.; Shacat, J. Cool pavements for urban heat island mitigation: A synthetic review. Renew. Sustain. Energy Rev. 2021, 146, 111171. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Wang, D.; Song, C.; Fu, Z.; Zhang, C. A review of the photothermal-photovoltaic energy supply system for building in solar energy enrichment zones. Renew. Sustain. Energy Rev. 2024, 191, 114100. [Google Scholar] [CrossRef]
- Liu, M.; Nejat, P.; Cao, P.; Jimenez-Bescos, C.; Calautit, J.K. A critical review of windcatcher ventilation: Micro-environment, techno-economics, and commercialisation. Renew. Sustain. Energy Rev. 2024, 191, 114048. [Google Scholar] [CrossRef]
- Habibi, A.; Bamshad, O.; Golzary, A.; Buswell, R.; Osmani, M. Biases in life cycle assessment of circular concrete. Renew. Sustain. Energy Rev. 2024, 192, 114237. [Google Scholar] [CrossRef]
- Liang, G.; Luo, L.; Yao, W. Reusing waste red brick powder as partial mineral precursor in eco-friendly binders: Reaction kinetics, microstructure and life-cycle assessment. Resour. Conserv. Recycl. 2022, 185, 106523. [Google Scholar] [CrossRef]
- Scheinherrová, L.; Doleželová, M.; Vimmrová, A.; Vejmelková, E.; Jerman, M.; Pommer, V.; Černý, R. Fired clay brick waste as low cost and eco-friendly pozzolana active filler in gypsum-based binders. J. Clean. Prod. 2022, 368, 133142. [Google Scholar] [CrossRef]
- Andersen, C.E.; Stupak, I.; Hoxha, E.; Raulund-Rasmussen, K.; Birgisdóttir, H. Forest dynamics in LCA: Integrating carbon fluxes from forest management systems into the life cycle assessment of a building. Resour. Conserv. Recycl. 2024, 209, 107805. [Google Scholar] [CrossRef]
- Mohammed, A.; Ghannam, M.; Elmasoudi, I. Design for steel structures deconstruction: An analytics system for construction waste minimization in a circular economy through BIM technology. Innov. Infrastruct. Solut. 2024, 9, 409. [Google Scholar] [CrossRef]
- Heesom, D.; Boden, P.; Hatfield, A.; De Los Santos Melo, A.; Czarska-Chukwurah, F. Implementing a HBIM approach to manage the translocation of heritage buildings. Eng. Constr. Archit. Manag. 2021, 28, 2948–2966. [Google Scholar] [CrossRef]
- Mattaraia, L.; Fabricio, M.M.; Codinhoto, R. Structure for the classification of disassembly applied to BIM models. Archit. Eng. Des. Manag. 2023, 19, 56–73. [Google Scholar] [CrossRef]
- Hartwell, R.; Macmillan, S.; Overend, M. Circular economy of façades: Real-world challenges and opportunities. Resour. Conserv. Recycl. 2021, 175, 105827. [Google Scholar] [CrossRef]
- Tenório, M.; Ferreira, R.; Belafonte, V.; Sousa, F.; Meireis, C.; Fontes, M.; Vale, I.; Gomes, A.; Alves, R.; Silva, S.M.; et al. Contemporary Strategies for the Structural Design of Multi-Story Modular Timber Buildings: A Comprehensive Review. Appl. Sci. 2024, 14, 3194. [Google Scholar] [CrossRef]
- Giglio, F.; Sansotta, S.; Grillo, E. Reversible Building Technologies and Unconventional Materials for the Circular and Creative Reuse of Small Centers. In Proceedings of the International Symposium New Metropolian Perspectives, Reggio Calabria, Italy, 24–26 May 2022; Voume 466, pp. 2210–2221. [Google Scholar] [CrossRef]
- Costantino, C.; Benedetti, A.C.; Gulli, R. The Role of Circular Design Principles in the Language of Residential Architecture. A Reflection on the Implications that Technical Aspects Bring to the Contemporary Way of Building. In Springer Tracts in Civil Engineering; Chen, S.-H., di Prisco, M., Vayas, I., Shukla, S.K., Eds.; Springer: Cham, Switzerland, 2024; pp. 3–17. [Google Scholar] [CrossRef]
- Figueirôa, Í.; do Carmo Duarte Freitas, M.; Tavares, S.F.; Bragança, L. How Circular Economy Strategies Can Be Implemented in the Dwelling Renovation Design Phase. In Springer Tracts in Civil Engineering; Chen, S.-H., di Prisco, M., Vayas, I., Shukla, S.K., Eds.; Springer: Cham, Switzerland, 2024; pp. 47–56. [Google Scholar] [CrossRef]
- Chen, Q.; Feng, H.; de Soto, B.G. Revamping construction supply chain processes with circular economy strategies: A systematic literature review. J. Clean. Prod. 2022, 338, 130240. [Google Scholar] [CrossRef]
- Li, J.; Andersen, L.V.; Hudert, M.M. The Potential Contribution of Modular Volumetric Timber Buildings to Circular Construction: A State-of-the-Art Review Based on Literature and 60 Case Studies. Sustainability 2023, 15, 16203. [Google Scholar] [CrossRef]
- Besana, D.; Tirelli, D. Reuse and Retrofitting Strategies for a Net Zero Carbon Building in Milan: An Analytic Evaluation. Sustainability 2022, 14, 16115. [Google Scholar] [CrossRef]
- Asdrubali, F.; Grazieschi, G.; Roncone, M.; Thiebat, F.; Carbonaro, C. Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry. Energies 2023, 16, 1846. [Google Scholar] [CrossRef]
- Hartwell, R.; Overend, M. Reclamation potential in the built environment: A method and metric for assessing environmental benefits beyond first use. Build. Environ. 2024, 252, 111866. [Google Scholar] [CrossRef]
- Melella, R.; Di Ruocco, G.; Sorvillo, A. Circular construction process: Method for developing a selective, low CO2eq disassembly and demolition plan. Sustainability 2021, 13, 68815. [Google Scholar] [CrossRef]
- Lima, A.T.; Kirkelund, G.M.; Lu, Z.; Mao, R.; Kunther, W.; Rode, C.; Slabik, S.; Hafner, A.; Sameer, H.; Dürr, H.H.; et al. Mapping circular economy practices for steel, cement, glass, brick, insulation, and wood—A review for climate mitigation modeling. Renew. Sustain. Energy Rev. 2024, 202, 114697. [Google Scholar] [CrossRef]
- Keena, N.; Rondinel-Oviedo, D.R.; De-los-Ríos, A.A.; Sarmiento-Pastor, J.; Lira-Chirif, A.; Raugei, M.; Dyson, A. Implications of circular strategies on energy, water, and GHG emissions in housing of the Global North and Global South. Clean. Eng. Technol. 2023, 17, 100684. [Google Scholar] [CrossRef]
- Wouterszoon Jansen, B.; van Stijn, A.; Eberhardt, L.C.M.; van Bortel, G.; Gruis, V. The technical or biological loop? Economic and environmental performance of circular building components. Sustain. Prod. Consum. 2022, 34, 476–489. [Google Scholar] [CrossRef]
- Bataille, C.; Stiebert, S.; Hebeda, O.; Trollip, H.; McCall, B.; Vishwanathan, S.S. Towards net-zero emissions concrete and steel in India, Brazil and South Africa. Clim. Policy 2023, 23, 1025–1043. [Google Scholar] [CrossRef]
- Lu, Y.; Ge, Y.; Zhang, G.; Abdulwahab, A.; Salameh, A.A.; Ali, H.E.; Nguyen Le, B. Evaluation of waste management and energy saving for sustainable green building through analytic hierarchy process and artificial neural network model. Chemosphere 2023, 318, 137708. [Google Scholar] [CrossRef]
- Umar, U.A.; Shafiq, N.; Ahmad, F.A. A case study on the effective implementation of the reuse and recycling of construction & demolition waste management practices in Malaysia. Ain Shams Eng. J. 2021, 12, 283–291. [Google Scholar] [CrossRef]
- Morin Pépin, S.; Francis, A. Modeling and categorizing standardized artifacts for scheduling occupancy on building construction sites. Front. Built Environ. 2024, 10, 1380106. [Google Scholar] [CrossRef]
- Cherene, M.G.P.; Xavier, G.D.C.; Barroso, L.D.S.; Oliveira, J.D.S.M.; Azevedo, A.R.G.D.; Vieira, C.M.; Alexandre, J.; Monteiro, S.N. Technological and microstructural perspective of the use of ceramic waste in cement-based mortars. Constr. Build. Mater. 2023, 367, 130256. [Google Scholar] [CrossRef]
- Nežerka, V.; Prošek, Z.; Trejbal, J.; Pešta, J.; Ferriz-Papi, J.A.; Tesárek, P. Recycling of fines from waste concrete: Development of lightweight masonry blocks and assessment of their environmental benefits. J. Clean. Prod. 2023, 385, 135711. [Google Scholar] [CrossRef]
- Puerto, J.D.; Uribe, S.; Ayala, L.; Padilla, A.; Rodriguez, A. Reliability of Reusing Gypsum Flat Board Grinded Waste as a Conventional Plaster Replacement for Buildings. Sustainability 2024, 16, 7889. [Google Scholar] [CrossRef]
- Pristerà, G.; Tonini, D.; Lamperti Tornaghi, M.; Caro, D.; Sala, S. Taxonomy of design for deconstruction options to enable circular economy in buildings. Resour. Environ. Sustain. 2024, 15, 100153. [Google Scholar] [CrossRef]
- Pittri, H.; Agyekum, K.; Ayebeng Botchway, E.; Opoku, A.; Bimpli, I. Design for deconstruction (DfD) implementation among design professionals: Empirical evidence from Ghana. Int. J. Constr. Manag. 2024, 24, 1387–1397. [Google Scholar] [CrossRef]
- Marey, H.; Kozma, G.; Szabó, G. Effects of Using Green Concrete Materials on the CO2 Emissions of the Residential Building Sector in Egypt. Sustainability 2022, 14, 3592. [Google Scholar] [CrossRef]
- Henrion, L.; Zhang, D.; Li, V.; Sick, V. Built Infrastructure Renewal and Climate Change Mitigation Can Both Find Solutions in CO2. Front. Sustain. 2021, 2, 733133. [Google Scholar] [CrossRef]
- Bowers, A.; Thorniley-Walker, R.; Yates, D.; Thew, I. Attempts at low carbon dioxide construction: Successes, failures and the way forward. Proc. Inst. Civ. Eng.-Civ. Eng. 2021, 174, 160–167. [Google Scholar] [CrossRef]
- Kröhnert, H.; Itten, R.; Stucki, M. Comparing flexible and conventional monolithic building design: Life cycle environmental impact and potential for material circulation. Build. Environ. 2022, 222, 109409. [Google Scholar] [CrossRef]
- Riggio, M.; Dalle Vedove, A.; Piazza, M. Load-bearing furniture modules for fast deployable and reusable systems. Front. Built Environ. 2024, 10, 1405500. [Google Scholar] [CrossRef]
- De Gregorio, S.; Laurini, E.; De Vita, M. Circular Process for Sustainable On-Site Management of Valuable Materials in the Rehabilitation of the Built Heritage. Heritage 2023, 6, 4086–4101. [Google Scholar] [CrossRef]
- Murali, D.; Suresh, M.; Raman, R. Breaking down to build up: How deconstruction and carbon finance foster sustainable, resilient construction in the industry 5.0 era. Constr. Innov. Innov. Process Manag. 2024. [Google Scholar] [CrossRef]
- Kio, P.N.; Anumba, C. Circularity: A workflow for reusing waste wind turbine blades. Built Environ. Proj. Asset Manag. 2024, 14, 751–764. [Google Scholar] [CrossRef]
- Passarelli, R.N.; Mouton, B.J. Embodied life cycle impacts of lightweight building methods for affordable houses in the USA: Comparison of conventional, circular, and regenerative strategies. J. Build. Eng. 2023, 77, 107513. [Google Scholar] [CrossRef]
- Malabi Eberhardt, L.C.; Rønholt, J.; Birkved, M.; Birgisdottir, H. Circular Economy potential within the building stock – Mapping the embodied greenhouse gas emissions of four Danish examples. J. Build. Eng. 2021, 33, 101845. [Google Scholar] [CrossRef]
- Van Gulck, L.; Steeman, M. Life cycle assessment of demountable building elements: Influential design and use parameters. Build. Environ. 2023, 245, 110876. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, P.; Hossain, M.U.; Fang, Y.; He, Y.; Li, H. An Index of Completeness (IoC) of life cycle assessment: Implementation in the building sector. J. Clean. Prod. 2021, 283, 124672. [Google Scholar] [CrossRef]
- Obrecht, T.P.; Jordan, S.; Legat, A.; Ruschi Mendes Saade, M.; Passer, A. An LCA methodology for assessing the environmental impacts of building components before and after refurbishment. J. Clean. Prod. 2021, 327, 129527. [Google Scholar] [CrossRef]
- Küpfer, C.; Bastien-Masse, M.; Fivet, C. Reuse of concrete components in new construction projects: Critical review of 77 circular precedents. J. Clean. Prod. 2023, 383, 135235. [Google Scholar] [CrossRef]
- Mhatre, P.; Gedam, V.V.; Unnikrishnan, S. Material circularity potential for construction materials – The case of transportation infrastructure in India. Resour. Policy 2021, 74, 102446. [Google Scholar] [CrossRef]
- Rakhshan, K.; Daneshkhah, A.; Morel, J.-C. Stakeholders’ impact on the reuse potential of structural elements at the end-of-life of a building: A machine learning approach. J. Build. Eng. 2023, 70, 106351. [Google Scholar] [CrossRef]
- Rakhshan, K.; Morel, J.-C.; Daneshkhah, A. A probabilistic predictive model for assessing the economic reusability of load-bearing building components: Developing a Circular Economy framework. Sustain. Prod. Consum. 2021, 27, 630–642. [Google Scholar] [CrossRef]
- Rakhshan, K.; Morel, J.-C.; Daneshkhah, A. Predicting the technical reusability of load-bearing building components: A probabilistic approach towards developing a Circular Economy framework. J. Build. Eng. 2021, 42, 102791. [Google Scholar] [CrossRef]
- Sharif, S.A.; Hammad, A.; Eshraghi, P. Generation of whole building renovation scenarios using variational autoencoders. Energy Build. 2021, 230, 110520. [Google Scholar] [CrossRef]
- Andriyani, N.; Suprobo, P.; Adi, T.J.W.; Aspar, W.A.N.; Jatmiko, A.D.; Santoso, A.D. Integrating urban building information modeling and circular economy framework for green sustainability. Glob. J. Environ. Sci. Manag. 2024, 10, 1313–1332. [Google Scholar] [CrossRef]
- Mowafy, N.; El Zayat, M.; Marzouk, M. Parametric BIM-based life cycle assessment framework for optimal sustainable design. J. Build. Eng. 2023, 75, 106898. [Google Scholar] [CrossRef]
- Shojaei, A.; Ketabi, R.; Razkenari, M.; Hakim, H.; Wang, J. Enabling a circular economy in the built environment sector through blockchain technology. J. Clean. Prod. 2021, 294, 126352. [Google Scholar] [CrossRef]
- Dorignon, L.; Oswald, D.; Kempton, L.; Boehme, T.; Iyer-Raniga, U.; Moore, T.; Dalton, T. Investigating Residential Building Materials in a Circular Economy: An Australian Perspective. J. Constr. Eng. Manag. 2024, 150, 04024021. [Google Scholar] [CrossRef]
- Mostert, C.; Weber, C.; Bringezu, S. Modelling and Simulation of Building Material Flows: Assessing the Potential for Concrete Recycling in the German Construction Sector. Recycling 2022, 7, 13. [Google Scholar] [CrossRef]
- Fu, C.; Fath, B.D.; Daigo, I.; Zhang, Y.; Deng, T. Tracking urban metabolism flows through the lifecycle of buildings, infrastructure, and durable goods at material, product, and sector levels. J. Clean. Prod. 2022, 336, 130402. [Google Scholar] [CrossRef]
- Munaro, M.R.; Tavares, S.F. Materials passport’s review: Challenges and opportunities toward a circular economy building sector. Built Environ. Proj. Asset Manag. 2021, 11, 767–782. [Google Scholar] [CrossRef]
- Honic, M.; Kovacic, I.; Aschenbrenner, P.; Ragossnig, A. Material Passports for the end-of-life stage of buildings: Challenges and potentials. J. Clean. Prod. 2021, 319, 128702. [Google Scholar] [CrossRef]
- Samoylenko, D.E.; Rodygin, K.S.; Ananikov, V.P. Sustainable application of calcium carbide residue as a filler for 3D printing materials. Sci. Rep. 2023, 13, 4465. [Google Scholar] [CrossRef]
- Volpe, S.; Sangiorgio, V.; Petrella, A.; Notarnicola, M.; Varum, H.; Fiorito, F. 3D printed concrete blocks made with sustainable recycled material. Vitruvio 2023, 8, 70–83. [Google Scholar] [CrossRef]
- Vaccaro, G.; Buoninconti, L. 3D print e circular economy: Innovation and sustainability for the construction sector. Sustain. Mediterr. Constr. 2021, 14, 73–82. [Google Scholar]
- Poyyamozhi, M.; Murugesan, B.; Perumal, S.; Chidambaranathan, V.; Senthil, R. Elevating thermal comfort with eco-friendly concrete roof tiles crafted from municipal solid waste. J. Build. Eng. 2024, 88, 109222. [Google Scholar] [CrossRef]
- Chartier, A.; Pot, W. How to decide upon circular cities: The role of evidence in local tender procedures. J. Clean. Prod. 2024, 472, 143449. [Google Scholar] [CrossRef]
- Burgert, I.; Kegel, S.; Schnider, T.; Achatz, J.; Stucki, S.; Schubert, M. Split wooden rods for novel wood-based boards in the construction sector. RILEM Tech. Lett. 2024, 9, 30–35. [Google Scholar] [CrossRef]
- Størdal, S.; Gangsø, M.R.; Lien, G.; Sjølie, H.K. Drivers of housing developers’ perception on future construction reuse material premium for wood. J. Clean. Prod. 2024, 476, 143642. [Google Scholar] [CrossRef]
- Zhu, S.; Feng, H. Enhancing circularity of wood waste through deconstruction in building sector. J. Clean. Prod. 2024, 485, 144382. [Google Scholar] [CrossRef]
- Pauliuk, S.; Heeren, N.; Berrill, P.; Fishman, T.; Nistad, A.; Tu, Q.; Wolfram, P.; Hertwich, E.G. Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nat. Commun. 2021, 12, 5097. [Google Scholar] [CrossRef] [PubMed]
- Cruz Rios, F.; Grau, D.; Bilec, M. Barriers and Enablers to Circular Building Design in the US: An Empirical Study. J. Constr. Eng. Manag. 2021, 147, 04021117. [Google Scholar] [CrossRef]
- Knoth, K.; Fufa, S.M.; Seilskjær, E. Barriers, success factors, and perspectives for the reuse of construction products in Norway. J. Clean. Prod. 2022, 337, 130494. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Das, B.B.; Adak, D. A comprehensive review on integrating sustainable practices and circular economy principles in concrete industry. J. Environ. Manag. 2024, 370, 122702. [Google Scholar] [CrossRef]
- Galila, A.; Kaseireldeil, S.; Abdalkhaliq, N.; Farouk, E.; Eichner, M.; Sarhan, Y. Enhancing sustainability and resource efficiency through upcycling: A comprehensive review and analytical–based framework for evaluating building upcycled products. Innov. Infrastruct. Solut. 2024, 9, 270. [Google Scholar] [CrossRef]
- Verhagen, T.J.; Sauer, M.L.; Voet, E.; Sprecher, B. Matching demolition and construction material flows, an urban mining case study. Sustainability 2021, 13, 653. [Google Scholar] [CrossRef]
- Genovese, P.V.; Zoure, A.N. Architecture trends and challenges in sub-Saharan Africa’s construction industry: A theoretical guideline of a bioclimatic architecture evolution based on the multi-scale approach and circular economy. Renew. Sustain. Energy Rev. 2023, 184, 113593. [Google Scholar] [CrossRef]
- Saeedi, K. Promoting Sustainable Household Engagement in Recycling via Blockchain-Based Loyalty Program. Sustainability 2024, 16, 9191. [Google Scholar] [CrossRef]
- Ferreira, I.A.; Palazzo, G.; Pinto, A.; Pinto, P.; Sousa, P.; Godina, R.; Carvalho, H. A blockchain architecture with smart contracts for an additive symbiotic network—A case study. Oper. Manag. Res. 2024, 18, 537–553. [Google Scholar] [CrossRef]
- Gasparini, K. Urban Screens Metamorphosis: An Overview. Int. J. Architecton. Spat. Environ. Des. 2024, 18, 103–123. [Google Scholar] [CrossRef]
- Ostapska, K.; Rüther, P.; Loli, A.; Gradeci, K. Design for Disassembly: A systematic scoping review and analysis of built structures Designed for Disassembly. Sustain. Prod. Consum. 2024, 48, 377–395. [Google Scholar] [CrossRef]
- Mayanti, B.; Helo, P. Circular economy through waste reverse logistics under extended producer responsibility in Finland. Waste Manag. Res. 2023, 42, 59–73. [Google Scholar] [CrossRef]
- Nowicka, K.; Bentkowska, K. Circular economy from companies and consumers perspectives: Toward value co-creation. Econ. Environ. 2024, 90, 788. [Google Scholar] [CrossRef]
- Hendrianto, F.C.; Negara, K.P.; Devia, Y.P. Analyzing critical success factors for implementing a circular economy in East Java’s construction industries using fuzzy synthetic evaluation. Civ. Environ. Eng. 2024, 20, 1077–1094. [Google Scholar] [CrossRef]
- Ramadan, M.M.A.; Gabr, A.H. Incorporating circular economy in the architectural design process: Design methodology using gamification tools. Archnet-IJAR Int. J. Archit. Res. 2024. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Memari, S.; Martek, I.; Kocaturk, T.; Bararzadeh, M.; Arashpour, M. Dismantling linear lock-ins in the Australian AEC industry: A pathway to a circular economy. Sustain. Dev. 2024, 32, 7171–7185. [Google Scholar] [CrossRef]
- Dufrasnes, E.; Eich, L.; Angyal, F. Development of a Circularity Assessment Tool with Local Stakeholders from Strasbourg. In Proceedings of the 4th International Conference “Coordinating Engineering for Sustainability and Resilience” & Midterm Con-ference of CircularB “Implementation of Circular Economy in the Built Environment”, Timișoara, Romania, 29–31 May 2024; pp. 436–445. [Google Scholar]
- Yu, Y.; van den Berg, M.; Yazan, D.M. Circular (de)construction matchmaking: A matter of space and time. J. Ind. Ecol. 2024, 28, 868–884. [Google Scholar] [CrossRef]
- Yu, Y.; Yazan, D.M.; van den Berg, M.; Firdausy, D.R.; Junjan, V.; Iacob, M.-E. Circularity information platform for the built environment. Autom. Constr. 2023, 152, 104933. [Google Scholar] [CrossRef]
- Shafiee, S.; Piroozfar, P.; Forberg, L.-F.; Hansen, H.N.; Farr, E. Enhancing efficiency and sustainability in construction: A product configurator for customizable off-site building solutions. Archit. Eng. Des. Manag. 2024, 21, 450–466. [Google Scholar] [CrossRef]
- Liu, L.; Sheng, K. Navigating legal pathways for accelerating urban energy transition: A comprehensive deep analysis of photovoltaic power prediction and policy instruments. Sustain. Cities Soc. 2024, 110, 105358. [Google Scholar] [CrossRef]
- Fischli-Boson, P.; Graser, J. Circular house in a steel-hybrid lightweight construction. Der Stahlbau 2024, 93, 801–807. (In German) [Google Scholar] [CrossRef]
- Ruan, G.; Filz, G.H.; Fink, G. Planar rectangular slide-in reciprocal frame system using salvaged timber and wooden nails. J. Int. Assoc. Shell Spat. Struct. 2024, 65, 95–105. [Google Scholar] [CrossRef]
- van Capelleveen, G.; Vegter, D.; Olthaar, M.; van Hillegersberg, J. The anatomy of a passport for the circular economy: A conceptual definition, vision and structured literature review. Resour. Conserv. Recycl. Adv. 2023, 17, 200131. [Google Scholar] [CrossRef]
- Ramos, M.; Paiva, A.; Martinho, G. Understanding the perceptions of stakeholders on selective demolition. J. Build. Eng. 2024, 82, 108353. [Google Scholar] [CrossRef]
- Cortés, A.Y. Life after the Cultural Pavilions in Colombia: Circular approach strategies for extending useful life cycles and the social potential of re-use. Dearq 2024, 39, 57–69. [Google Scholar] [CrossRef]
- Rajagopal, R.; Gandh, M.A.; Selvam, N.; Kanase, S.S.; Bhoopathy, V.; Mishra, N.; Rajaram, A. Optimising waste collection and recycling in urban areas with VANET. J. Environ. Prot. Ecol. 2024, 25, 115–122. [Google Scholar]
Search Set | Number of Results (Scopus) | Number of Results (WoS) |
---|---|---|
“circular economy” + “built environment”/“architecture”/ “building”/“construction sector” | 3211 | 3046 |
“circularity indicator” + “built environment”/“architecture”/ “building”/“construction sector” | 50 | 32 |
“design for adaptability” + “built environment”/“architecture”/ “building”/“construction sector” | 32 | 27 |
“design for disassembly” + “built environment”/“architecture”/ “building”/“construction sector” | 124 | 81 |
“life cycle assessment” + “built environment”/“architecture”/ “building”/“construction sector” | 2916 | 3585 |
“material reuse”/“component reuse” + “built environment”/“architecture”/ “building”/“construction sector” | 142 | 71 |
Category | Subcategory |
---|---|
circular economy | AI in CE; alternative construction material; BIM in C; biobased materials in CE; bioclimatic architecture; blockchain technology in CE; circular business models; CE barriers; CE in architectural education; CE in built environment; CE literature review; CE policymaking; transition to CE; circular strategies; circularity assessment tools; circularity hubs; customizable building solutions; deep learning in CE; design for circularity; material passports; parametric design in circular architecture; selective demolition; temporary architecture; timber structures in CE; waste management |
circularity indicator | BIM and CE; CIs and economic value; CIs and renovations; CIs and literature review; CIs at early design stage; CIs and case study; construction waste management; development of CI; LCA and CIs; level(s) framework; modular buildings; parametric design and CE; reversible connections; CIs and taxonomy; timber structures and CE; urban mining |
design for adaptability | literature review and DfA; DfA assessment methods and guidelines; implementation of DfA strategies; timber structures and DfA; DfA strategies and renovation; DfA and construction waste; economic costs of DfA strategies; taxonomy and DfA |
design for disassembly | DfD and BIM; DfD and concrete structures; DfD and facades; DfD and hybrid structures; DfD and material passports; DfD and modularity; DfD and prefabricated structures; DfD and standardization; DfD and timber structures; DfD and urban mining; DfD implementation obstacles; DfD in existing structures; DfD literature review; ecodesign; embodied carbon; masonry structures; reclamation potential; selective demolition |
life cycle assessment | LCA and CE; improvement proposition for LCA method; carbon reduction or storage; the energy efficiency of buildings; LCA and literature review; LCA and BIM; Level(s) framework; building stock; construction waste; urban mining; LCA on an urban scale; LCA of buildings; LCA of building infrastructure; LCA and building renovations; LCA of building components; LCA of building materials; LCA of natural building material; LCA of recycled building materials; LCA and building materials production; LCA and concrete structures; LCA and brick structures; LCA and timber structures; LCA and prefabricated structures; LCA and green roofs/facades |
material and component reuse | adaptive reuse; biodiversity; CE frameworks; circular strategies; component reuse; reuse of concrete structures; construction and demolition waste management; construction management; construction waste in building sector; design for deconstruction; embodied carbon; environmental impact; furniture; heritage conservation; Industry 5.0; industry waste in building sector; life cycle analysis; literature review; machine learning; material and component reuse and BIM; material and component reuse and blockchain; material circularity; material flow analysis; material passports; material reuse; material reuse in 3D printing; municipal waste in building sector; policymaking; reuse of steel structures; reuse of timber structures; reusability assessment; reuse barriers; reuse of concrete structures; upcycling; urban mining |
Category | Number of Results |
---|---|
circular economy | 42 |
circularity indicator | 34 |
design for adaptability | 18 |
design for disassembly | 28 |
life cycle assessment | 86 |
material and component reuse | 76 |
Tool/Framework | Function | Limitations |
---|---|---|
SimaPro [172], One Click LCA [173] | Life Cycle Assessment (LCA) | Requires high-quality input data; often lacks design phase integration |
Level(s) [174] | EU sustainability reporting framework | Inconsistent methodology; cradle-to-gate data prevalent over cradle-to-cradle |
Material Passports | Track material properties and reuse potential | Lack of standard format; limited platform integration |
BIM-based CE Tools | Component tracking, circularity assessments | Interoperability issues; lack of reuse-value metadata |
Faster R-CNN, YOLOv3 [175], RACNET [176] | Material identification and classification | Not yet integrated into mainstream AEC tools; limited environmental metrics |
Scan-to-BIM, LIDAR [177] | Deconstruction planning, inventory generation | Requires manual validation; high upfront data acquisition costs |
Category | Linked Topics | Identified Challenges |
---|---|---|
general circular economy concept | digital tools, BIM, AI, blockchain technology, deep learning, circular business models, policymaking, vernacular architecture and biomaterials | data standardization and interoperability, scalability, regulatory, financial and technical challenges, supply chain disruptions, societal trust |
circularity indicators | BIM, LCA, Level(s), building renovations, construction waste management, parametric design, reversible connections, timber structures, taxonomy | integration with other evaluation tools, lack of well-validated and widely adopted indicators |
design for adaptability | assessment frameworks, timber structures, building renovations | lack of widely accepted procedures, lack of developers’ interest, high economic costs |
design for disassembly | modularity, prefabricated structures, standardization, urban mining, selective demolition | technical and regulatory challenges, labor-intensive character of selective demolition, material losses, and downcycling |
life cycle assessment | building materials and components, concrete and timber structures, prefabricated buildings, building materials production, green roofs and façades, LCC, BIM, Level(s) | data availability and reliability, functional unit definition, comparability of results |
material/component reuse | adaptive reuse, construction and demolition waste, municipal and industrial waste, urban mining, material flow analysis, material passports, design for deconstruction | stakeholder collaboration, digital infrastructure development, regulatory challenges, scalability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pierzchlewicz, D.; Woźniak, A.; Widera, B. Recent Research on Circular Architecture: A Literature Review of 2021–2024 on Circular Strategies in the Built Environment. Sustainability 2025, 17, 7580. https://doi.org/10.3390/su17177580
Pierzchlewicz D, Woźniak A, Widera B. Recent Research on Circular Architecture: A Literature Review of 2021–2024 on Circular Strategies in the Built Environment. Sustainability. 2025; 17(17):7580. https://doi.org/10.3390/su17177580
Chicago/Turabian StylePierzchlewicz, Dominik, Apolonia Woźniak, and Barbara Widera. 2025. "Recent Research on Circular Architecture: A Literature Review of 2021–2024 on Circular Strategies in the Built Environment" Sustainability 17, no. 17: 7580. https://doi.org/10.3390/su17177580
APA StylePierzchlewicz, D., Woźniak, A., & Widera, B. (2025). Recent Research on Circular Architecture: A Literature Review of 2021–2024 on Circular Strategies in the Built Environment. Sustainability, 17(17), 7580. https://doi.org/10.3390/su17177580